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Abstract: This article proposes an adaptive neuro-fuzzy inference system (ANFIS) for 

solving navigation problems of an autonomous ground vehicle (AGV). The system consists 

of four ANFIS controllers; two of which are used for regulating both the left and right 

angular velocities of the AGV in order to reach the target position; and other two ANFIS 

controllers are used for optimal heading adjustment in order to avoid obstacles. The two 

velocity controllers receive three sensor inputs: front distance (FD); right distance (RD) and 

left distance (LD) for the low-level motion control. Two heading controllers deploy the angle 

difference (AD) between the heading of AGV and the angle to the target to choose the 

optimal direction. The simulation experiments have been carried out under two different 

scenarios to investigate the feasibility of the proposed ANFIS technique. The simulation 

results have been presented using MATLAB software package; showing that ANFIS is 

capable of performing the navigation and path planning task safely and efficiently in a 

workspace populated with static obstacles. 

Keywords: ANFIS; autonomous ground vehicle; navigation; obstacle avoidance;  

static environment 
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1. Introduction 

Autonomous ground vehicles are an important key of industrial automation. Such vehicles could be 

utilized in different applications such as monitoring, transportation and many other potential 

applications. The path planning and navigation problems are one of area of current research.  

A considerable attention has been paid in recent years to deal with such problems. The autonomous 

vehicle must be able to gather and extract information from its surrounding using sensors. Thus, these 

sensors are fed to a controller to plan and execute its mission within its environment without human 

intervention [1]. 

The path planning methods are classified into either the global planning method or the local planning 

method [2]. In the global planning method, the autonomous vehicle requires the environment to be 

completely priori-known and the terrain should be static. In contrast, local path planning means the 

environment might be only partially known or completely unknown. In the local planning method, the 

autonomous ground vehicle utilises the received sensory information during its local  

navigation [3]. The autonomous ground vehicle must use sensors to perceive its surroundings and plan 

the motion.  

In the current literature, many techniques have been used for solving the navigation and path planning 

problems. Some of the popular methods are the Visibility Graph algorithm [4], Voronoi Diagram [5], 

Bug Algorithm and the Potential Field method. For instance, in the potential field method, there is an 

attractive potential pulling the robot towards the goal point and a repulsive potential pushing the robot 

away from the obstacles over free space. However, the potential field method is prone to becoming stuck 

within local search minima.  

In recent years, with the rapid development of modern computing techniques, artificial intelligence 

techniques have been applied widely in solving path planning and navigation problems. These 

techniques include genetic algorithm [6,7]. In [8], an obstacle avoidance control algorithm for mobile 

robots based on fuzzy controller was presented. The environment information surrounding the robot 

detected by the ultrasonic sensors is fuzzified, and then input into a fuzzy control system. The output of 

the fuzzy control system is used to drive the robot. The simulation results show that the algorithm can 

help the robot to avoid obstacles safely and is certainly feasible. 

In [9], fuzzy logic controllers using different membership functions are developed and used to 

navigate mobile robots. First, a fuzzy controller was used with four types of input members, two types 

of output members and three parameters each. Next, two types of fuzzy controllers were developed 

having same input members and output members with five parameters each. Each robot had an array of 

ultrasonic sensors for measuring the distances of obstacles around it and an infrared sensor for detecting 

the bearing of the target. In [10], a fuzzy logic system was designed for a path planning in an unknown 

environment for a mobile robot. The ultrasonic sensors were employed for detecting the distance and 

positions of obstacles. An angular velocity control for left and right wheels was implemented by a fuzzy 

logic system. This included another new rule table that was induced from the consideration of the 

distance to obstacles and the angle between the robot and the goal.  

In [11], an obstacle avoidance approach for an e-puck robot by using fuzzy logic controller was 

introduced. The inputs from eight IR sensors and the output of the motor speed were used to construct 

the fuzzy logic rules. A Webots Pro Simulation software was used to model and program the e-puck 
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robot and fuzzy algorithm and to test an environment. Chi and Less [12], showed an artificial neural 

networks was applied to learn the environment from sensory data to move along a collision free 

trajectory. In [13], the navigation of non-holonomic robot was discussed using neuro-fuzzy. The ANFIS 

parameters were discovered offline by using suitable datasets and the obtained parameters were fed into 

the robot. 

Joshi and Zaveri [14], showed a neuro-fuzzy based system for the behaviour based control of a mobile 

robot for reactive navigation. Systems transform sensors’ input to yield wheel velocities using behaviour 

based fuzzy reasoning. Singh et al. [15], analysed an adaptive neuro-fuzzy technique for the navigation 

of a mobile robot in unknown environment. The results improved the validity of the proposed technique 

to determine the optimal time and create a collision free path of the mobile robot. In [16], a hybrid neuro-

genetic fuzzy technique was proposed for choosing the collision free path form a set of paths. Fuzzy 

logic was used for obstacle avoidance when a neural network is unable to choose a path due to blockage 

from obstacles in a number of sets of directions.  

From the literature survey, it can be clearly seen that several issues have not been addressed yet. 

Firstly, the consideration of the physical dimensions of the autonomous ground vehicle (length and 

width); authors normally assume the vehicle is a point in a workplace. Secondly, the online sensing 

information from the three directions (front, right, left) during the navigation. Thirdly, the problem of 

the complexity of the navigation environment. Therefore, in this paper, all aforementioned issues have 

been involved to create a new problem formulation for solving the navigation problem in a complex 

static environment contains multiple obstacles with different shapes and sizes.  

The contribution of the proposed approach can be understood as the implementing a new ANFIS 

model which has the ability to avoid becoming stuck into local minimum and generates a smooth 

trajectory between the starting and the target points in unknown environment based local planning method. 

In other words, the ANFIS model successfully and efficiently guide the vehicle through the workspace. 

Moreover, the performance of the ANFIS controller is verified by changing the poses  

of obstacles. 

The work in this paper is divided in two stages: firstly, the target reaching controller, and secondly, 

the obstacle avoidance controller. The target reaching controller was implemented using two ANFIS 

controllers. Each controller received the same input, which was the angle difference between the 

autonomous ground vehicle’s direction and the target’s angle. The output of first ANFIS controller was 

used to control the right angular velocity, and the second ANFIS controller was used to control the left 

angular velocity. The obstacle avoidance controller was also implemented also using two ANFIS 

controllers. Each controller received three inputs that represent the front, right and left distances. These 

distances represent sensory information between the autonomous vehicle and obstacles. The paper is 

organized as follows: Section 2 describes a kinematic model of an autonomous ground vehicle. The 

architecture of neuro-fuzzy inference system is presented in Section 3. The design of adopted four 

ANFIS controllers and autonomous ground vehicle platform are described in Section 4. To validate the 

proposed approach, simulation results are conducted and discussed in Section 5. Finally, the conclusions 

are presented in Section 6. 
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2. The Kinematic Model of an Autonomous Ground Vehicle 

The schematic diagram of a two-dimensional plane for an autonomous ground vehicle is shown in 

Figure 1. The initial Cartesian coordinates for this vehicle are xo in x-axis and yo in y-axis. Similarly, 

target point coordinates are denoted as xt and yt respectively. The vehicle’s current position is coordinate 

Pc. The vehicle has four fixed standard wheels and is differentially driven by skid steer motion. The 

wheels have the same radius, r. The driving wheels are separated by a distance L. In general, the posture 

of the vehicle in the two dimensional plane at any instant is defined by the systems Cartesian coordinates 

and heading angle, 𝜃, with respect to a global frame reference, Pc = (xc, yc, 𝜃). In this paper, the wheels’ 

radius equals r = 0.1 m, and the distance between the driving wheels equals L = 0.3 m. It is assumed that 

the autonomous ground vehicle is subject to the kinematic constraints such as the contact between the 

wheels and the ground is pure rolling, and non-slipping [17]. Such constraints cause some challenge in 

the motion planning. 

Figure 1. The schematic diagram of the autonomous ground vehicle. 

 

 

A set of relationships for the autonomous ground vehicle can be defined as: 

a. No slip constraint 

𝑥�̇�(𝑡) cos 𝜃(𝑡) − 𝑦�̇�(𝑡) sin 𝜃(𝑡)  = 𝑎 �̇�(𝑡) (1) 

b. Pure rolling constraint 

𝑥�̇�(𝑡) cos 𝜃(𝑡) + 𝑦�̇�(𝑡) sin 𝜃(𝑡) +  𝐿 �̇�(𝑡) = 𝑟 ∅�̇�(𝑡) (2) 

𝑥�̇�(𝑡) cos 𝜃(𝑡) + 𝑦�̇�(𝑡) sin 𝜃(𝑡) −  𝐿 �̇�(𝑡)  = 𝑟 ∅𝑙
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�̇�(𝑡) = 𝑣(𝑡) cos 𝜃(𝑡) (7) 

�̇�(𝑡) = 𝑣(𝑡) sin 𝜃(𝑡) (8) 

𝑤(𝑡) = �̇�(𝑡) (9) (9) 

wr(t) =  ∅�̇�(𝑡) (10) 

wl(t) = ∅𝑙
̇ (𝑡) (11) 

or [

 �̇�(𝑡)

�̇�(𝑡)

�̇�(𝑡)

] = [
𝑐𝑜𝑠𝜃 0
𝑆𝑖𝑛𝜃 0

0 1
] [

𝑉
𝑤

] (12) 

where, 

vx(t) = longitudinal velocity of the moving vehicle [m/s] 

vy(t) = lateral velocity of the moving vehicle [m/s] 

θ = moving vehicle orientation [degree] 

wr(t) = angular velocity of right wheel [rad/s] 

wl(t) = angular velocity of left wheel [rad/s] 

w(t) = angular velocity of vehicle [rad/s] 

r = wheel radius [m] 

a = the distance between the centre of mass and driving wheels axis in x-direction [m] 

L = the distance between each driving wheel and the vehicle axis of symmetry in y-direction [m]. 

3. The Architecture of Adaptive Neuro-Fuzzy Inference System (ANFIS) 

The architecture of the ANFIS technique, consists of the fuzzy inference system and neural network 

with given input and output data pairs. This technique is a self-tuning and adaptive hybrid controller that 

uses learning algorithms. In other words, this technique gives the fuzzy logic capability to adapt the 

membership function parameters that best allow the associated fuzzy inference system to track the given 

input and output data parameters of ANFIS model. In order to process a fuzzy rule by neural networks, 

it is necessary to modify the standard neural network structure accordingly. Figure 2 depicts the 

architecture model of ANFIS. This model is called a first-order Takagi-Sugeno-fuzzy model [18]. For 

simplicity, it is assumed that the ANFIS model has two inputs k1 and k2, and one output f.  

Figure 2. The architecture of an adaptive neuro-fuzzy inference system (ANFIS). 
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This system is broken down into five layers: 

Layer 1: Every node i in this layer is an adaptive node with a node function 

 𝑂1,𝑖 = 𝜇𝐴_𝑖(𝑥), 𝑓𝑜𝑟 𝑖 = 1,2 (13) 

 𝑂1,𝑖 = 𝜇𝐵𝑖−2
(𝑦), 𝑓𝑜𝑟 𝑖 = 3,4 (14) 

where 𝑘1 (or 𝑘2) is the input to node i and Ai (or Bi-2) is a linguistic label (such as "small" or "large") 

associated with this node. In other words, O1,i is the membership grade of a fuzzy set A ( = A1 , A2 , B1 

or B2 ) and it specifies the degree to which the given input 𝑘1 (or 𝑘2) satisfies the quantifier A. Here the 

membership function for A is assumed be triangular shaped membership function: 

 𝜇𝐴(𝑥) = 𝑚𝑎𝑥 [𝑚𝑖𝑛 {
𝑥 − 𝑎𝑖

𝑏𝑖 − 𝑎𝑖
,
𝑐𝑖 − 𝑥

𝑐𝑖 − 𝑏𝑖
} , 0] (15) 

where {ai, bi, ci} is the parameter set. As the values of these parameters change, the bell-shaped function 

varies accordingly, thus exhibiting various forms of membership function for fuzzy set A. Parameters in 

this layer are referred to as premise parameters. 

Layer 2: Every node in this layer is a fixed node labelled Π, whose output is the product of all the 

incoming signals: 

 𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴_𝑖(𝑥)𝜇𝐵𝑖
(𝑦), 𝑖 = 1,2 (16) 

Each node output represents the firing strength of a rule. In general, any other T-norm operators that 

perform a fuzzy AND can be used as the node function in this layer. 

Layer 3: Every node in this layer is a fixed node labelled N. The ith node calculates the ratio of the 

ith rule’s firing strength to the sum of all of the rules firing strengths: 

 𝑂3,𝑖 = 𝑤𝑖 =
𝑤𝑖

𝑤1 + 𝑤2
 𝑖 = 1,2 (17) 

The output of this layer is called the normalised firing strengths. 

Layer 4: Every node i in this layer is an adaptive node with a node function: 

 𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖), 𝑖 = 1,2 (18) 

where 𝑤𝑖 is the normalised firing strength from layer 3 and {pi, qi, ri} is the parameter set of this node. 

Parameters in this layer are referred to as consequent parameters. 

Layer 5: The single node in this layer is a fixed node labelled ∑, which computes the overall output, 

f, as the summation of all incoming signals: 

𝑓 = 𝑂5,1 = ∑𝑤𝑖

𝑖

𝑓𝑖 =
∑ 𝑤𝑖𝑖 𝑓𝑖
∑ 𝑤𝑖𝑖

 𝑖 = 1,2 (19) 

The first and fourth layers are adaptive layers in the ANFIS architecture. The modifiable parameters 

are called premise parameters in the first layer and consequent parameters in the fourth layer. The task 

of learning is to tune all modifiable parameters to make the ANFIS match the training data. In this paper, 

the trainable parameters of ANFIS, i.e., premise parameters and consequent parameters {ai, bi, ci} and 

{pi, qi, ri} are adjusted to make the ANFIS output match the training data. The adopted hybrid learning 

technique combines the least square method and gradient descent method in ANFIS Toolbox. The hybrid 

learning algorithm is composed of a forward pass and a backward pass. The least squares method 
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(forward pass) is used to optimize the consequent parameters with the premise parameters fixed. Once 

the optimal consequent parameters are found, the backward pass starts immediately. The gradient 

descent method (backward pass) is used to adjust optimally the premise parameters corresponding to the 

fuzzy sets in the input domain. The output of the ANFIS is calculated by employing the consequent 

parameters found in the forward pass. The output error is used to adapt the premise parameters by means 

of a standard back propagation algorithm. It has been proven that this hybrid algorithm is highly efficient 

in training the ANFIS. 

4. Design of the Autonomous Ground Vehicle’s ANFIS Controller 

In this section, the proposed ANFIS controllers are discussed in detail. There are four ANFIS 

controllers which have been designed to accomplish the navigation task; firstly, two ANFIS controllers 

for achieving the target reaching task, secondly, the other two ANFIS controllers for performing the 

obstacle avoidance mission.  

All four controllers will be combined through a switch block for choosing which controller will be 

activated. For instance, if there are no obstacles in the vehicle’s path, the target reaching controller will 

be activated. Otherwise, if the vehicle senses an obstacle, the obstacle avoidance controller will be 

activated. The switching between these two controllers will be decided according to an obstacle sensing 

signal, OS, from an environment model. This signal is generated in accordance to measured distances 

(front, right, and left) from sensory information. If the vehicle does not sense an obstacle in its path, this 

OS parameter will indicate ‘0’ if there is no an obstacle and ‘1’ if the vehicle senses an obstacle near to 

its platform. Thus, the output of the switching block will be the angular velocities of the left and right 

wheel of the autonomous ground vehicle. These velocities are fed into the vehicle model in order to 

obtain the instantaneous vehicle’s posture through the movement of the vehicle. Figure 3 depicts the 

structure of the proposed ANFIS controllers based navigation systems with the autonomous ground 

vehicle and the implemented workspace.  

Figure 3. The structure of the proposed ANFIS and the autonomous ground vehicle. 
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4.1. Autonomous Ground Vehicle Platform 

The autonomous ground vehicle utilized in this paper is equipped with four wheels. The right and left 

back wheels drive independently. Two encoders are fixed on the back axis for the left and right wheel 

in order to measure the instantaneous position of the vehicle. The platform is created by using the 

Matlab-Simulink software package. This software has a vast diversity of tools that used for technical 

computing and interface graphical implementations. The implementation of this platform is illustrated 

in Figure 4. As show in the figure the vehicle has three degrees of freedom that are represented by the 

vehicle’s posture (xc, yc, 𝜃) in the global coordinate system. The s-function is a Matlab Simulink block 

was used to create the platform. As illustrated in the Figure 4, the Simulink block receives six inputs and 

produces five outputs. The platform parameters are explained below: 

Remark 1. The front, right and left distances (FD, RD, and LD) represent the shortest distance 

between the vehicle and obstacles in the front, right and left directions respectively. The sensory 

information is modelled by assuming these three sensors are placed on a vehicle’s platform, and each 

senor carries the information for three directions of the platform. These sensor outputs change depending 

on the distance between the instantaneous positions of the vehicle.  

Remark 2. The angle difference (AD) represents the difference between the vehicle’s heading and 

the target point. 

Remark 3. Obstacle sensing (OS) signal is generated in accordance to the measured distances (front, 

right, left) from the sensory information. If the vehicle does not sense an obstacle in its path, this OS 

parameter will indicate ‘0’ if there is no an obstacle, and ‘1’ if the vehicle senses an obstacle near to  

its platform. 

Remark 4. The clock timer is used for measuring the simulation running time that the vehicle elapsed 

to reach the destination in the platform. 

Figure 4. The Schematic diagram for the autonomous ground vehicle platform. 

 

4.2. Target Reaching ANFIS Controller 

To achieve the target reaching mission, two ANFIS controllers are implemented to drive the right and 

left angular velocities. The input of this controller is the angle difference, AD. This angle represents the 

difference between the vehicle’s heading and the target’s point. The calculation of this angle is depicted 
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in Figure 5. The output of the first controller is the right angular velocity and for the second controller 

is the left angular velocity. In this study, a total of 40 sets of data range were selected for implemented 

the target-reaching controller for the purpose of training the ANFIS. The training data for input and 

outputs ranges are given in Table 1. This training adjusts the membership parameters to implement the 

required model. The ANFIS learning information for predicting the angular velocity for the left and the 

right wheels are as follows: number of nodes, 52; number of linear parameters, 12; number of nonlinear 

parameters, 36; total number of parameters, 48; number of fuzzy rules, 12. Training results shows that 

the average error for predicting angular velocity is 0.15631 rad/s with an epoch number of 200. The 

epoch value is chosen after a number of iteration for obtaining the minimum value of error between the 

input and local set points. The relation between the average error and epoch number is given in Figure 6. 

Figure 7a,b shows the output training data for obstacle avoidance ANFIS initially before the training 

and after the training process is completed. 

Figure 5. Coordinates for moving to a target point. 

 

Table 1. Training data of target reaching ANFIS controller. 

Item Number Angle Difference Right Angular Velocity Left Angular Velocity 

1 0 80 80 

2 −44.007 40.882 −37.352 

3 −29.214 54.031 2.093 

4 −14.226 67.353 42.061 

5 −4.319 76.160 68.480 

6 0.505 78.652 79.550 

7 1.975 74.731 78.243 

8 1.809 75.173 78.391 

9 0.530 78.584 79.528 

10 −0.009 79.991 79.974 

11 4.4693 68.081 76.027 

12 13.668 43.550 67.850 

13 25.192 12.819 57.606 

14 26.956 8.116 56.038 
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Table 1. Cont. 

Item Number Angle Difference Right Angular Velocity Left Angular Velocity 

15 27.114 7.694 55.898 

16 18.5223 30.607 63.535 

17 9.047 55.873 71.957 

18 2.774 72.602 77.534 

19 −0.295 79.737 79.211 

20 6.759 61.975 73.991 

21 15.705 38.117 66.039 

22 29.555 1.186 53.728 

23 43.460 −35.895 41.368 

25 55.161 −40 40 

26 62.435 −40 40 

27 14.562 41.167 67.055 

28 4.477 68.058 76.019 

29 −5.788 74.854 64.563 

30 −13.107 68.348 45.046 

31 −20.435 61.835 25.505 

32 −27.755 55.328 5.985 

33 −85.460 40 −40 

34 −37.315 46.830 −19.507 

35 −22.376 60.110 20.330 

36 −22.843 59.694 19.082 

37 −15.563 66.165 38.496 

38 −7.999 72.888 58.66 

39 −2.812 77.500 72.500 

40 0.2973 79.207 79.735 

 

Figure 6. Relationship between training error and epoch’s number for the target-reaching 

ANFIS controller.  
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Figure 7. The output data for target reaching ANFIS controller. (a) The initial data before 

the training (b). The matched data after the ANFIS is trained.  

 

(a) 

 

(b) 

The number of membership functions was chosen for the angle difference input is ten. This number 

gives a reasonable amount of error as shown in Figure 6. The type of membership function is triangular. 

The relationship of surface view between angle difference and the output for the first and second ANFIS 

controllers is illustrated in Figure 8a, b respectively. 

Figure 8. The surface view for target reaching ANFIS controller. (a) The first ANFIS 

controller. (b) The second ANFIS controller. 
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4.3. Obstacle Avoidance ANFIS Controller 

The essential mission of the autonomous ground vehicle is to have a collision free path during the 

navigation. The other two ANFIS controllers have been implemented to comprise the third and fourth 

ANFIS controllers. These controllers are utilised to steer the vehicle’s orientation when the vehicle be 

in the vicinity an obstacle. Each ANFIS has three inputs which are the front, right and left distance and 

one output which is either the right or left angular velocity. The received sensory information is depicted 

in Figure 9 which represents the left, right and front distances as inputs for each ANFIS. The output of 

the third and fourth ANFIS controller is right angular velocity (𝑤𝑙 ) and left angular velocity (𝑤𝑟 ) 

respectively. Each controller regulates the vehicle’s velocities (left or right) depending upon the 

distances between the obstacles and the current posture of the autonomous ground vehicle. 

Figure 9. Schematic diagram for the sensory information. 

 

For implementing the obstacle avoidance ANFIS controller, the 21 sets of data range were selected 

for the training purpose. These training data ranges for inputs and outputs are given in Table 2. This 

training as mentioned previously adjusts the membership parameters to implement the required model. 

The ANFIS learning information for predicting the angular velocity for the left and the right wheels are 

as follows: number of nodes, 286; number of linear parameters, 125; number of nonlinear parameters, 

45; total number of parameters, 170; number of fuzzy rules, 125. Training result shows that the average 

error for predicting angular velocity is 0.329231 rad/s with an epoch number of 200. Again, the 

relationship between the average error and epoch number is given in Figure 10. Figure 11a, b shows the 

output training data for obstacle avoidance ANFIS initially before the training and after the training 

process is completed.  

Table 2. Training data of obstacle avoidance ANFIS controller. 

Item Number Front Distance Right Distance Left Distance 
Right Angular 

Velocity 

Left Angular 

Velocity 

1 0.100 0.100 0.100 −40 −40 

2 0.800 0.800 0.800 80 80 

3 0.800 0.399 0.800 79.99 79.999 

4 0.800 0.339 0.800 67.999 43.999 

5 0.800 0.279 0.800 55.999 7.999 

6 0.800 0.249 0.800 49.99 −10.006 

7 0.547 0.800 0.800 80 80 
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Table 2. Cont. 

Item Number Front Distance Right Distance Left Distance 
Right Angular 

Velocity 

Left Angular 

Velocity 

8 0.4873 0.309 0.800 61.997 25.992 

9 0.397 0.279 0.800 54.922 8.351 

10 0.4269 0.219 0.800 43.997 −28.008 

11 0.515 0.219 0.800 43.967 −28.098 

12 0.800 0.249 0.800 49.853 −10.440 

13 0.800 0.308 0.800 61.644 24.932 

14 0.800 0.800 0.392 75.580 78.526 

15 0.800 0.800 0.333 40.013 66.671 

16 0.786 0.800 0.303 22.230 60.743 

17 0.800 0.800 0.304 22.418 60.806 

18 0.800 0.800 0.304 22.803 60.934 

19 0.800 0.800 0.335 41.084 67.028 

20 0.800 0.800 0.395 77.330 79.110 

21 0.800 0.800 0.455 80 80 

Figure 10. Relationship between training error and epoch’s number for obstacle  

avoidance ANFIS. 

 

Figure 11. The output data for obstacle avoidance ANFIS. (a) The initial data before the 

training. (b) The matched data after the ANFIS is trained.  

 
(a) 
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Figure 11. Cont. 

  
(b) 

For obstacle avoidance ANFIS controller, the number of membership functions that was chosen for 

each input is five. Thus, the amount of error was reasonable with this number of membership functions. 

The type of the membership function is triangular. The surface view between the inputs and the output 

for the third ANFIS controllers is illustrated in Figure 12. 

Figure 12. The surface view for obstacle avoidance ANFIS controller. (a) The surface view 

between input-1, input-2 and the output. (b) The surface view between input-1,  

input-3 and the output. (c) The surface view between input-2, input-3 and the output. 
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For the fourth obstacle avoidance ANFIS controller, the surface view of the parameters is described 

in Figure 13. 

Figure 13. The surface view for obstacle avoidance ANFIS controller. (a) The surface view 

between input-1, input-2 and the output. (b) The surface view between input-1,  

input-3 and the output. (c) The surface view between input-2, input-3 and the output. 

  

(a) (b) 

 

(c) 

5. Simulation Results  

To validate the proposed ANFIS controller, two scenarios have been adopted and carried out in this 

paper using the MATLAB-SIMULINK environment. In the first scenario, an artificial workspace has 

been created with seven identical static obstacles that were placed in different positions in the workspace. 

An initial position and the target point of an autonomous ground vehicle can be set arbitrarily in the 

workspace. Figure 14 illustrates the workspace for the autonomous vehicle platform filled with seven 

static obstacles. The workspace dimensions are fixed by four corner points having coordinates (–2, –2), 

(18, –2), (18, 18), (–2, 18) to combine the workspace grid. The dimensions of the obstacles described by 

their peripheral vertices are given in Table 3. The Cartesian coordinates of the initial and target points 

are Ps (0, 0) and Pt (15, 15) respectively.  
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By running the implemented SIMULINK model, the autonomous ground vehicle started moving from 

a start position towards to the destination position. As can be observed from the Figure 14, the vehicle 

avoided obstacles successfully and safely. The decision is made to correctly change the vehicle’s 

direction when it approached the obstacles, and finally, the target is reached. The simulation results of 

angular velocity for both right and left wheels are shown in Figure 15. Figure 16 represents the angular 

position of the autonomous ground vehicle. The linear velocity profile is shown in Figure 17. These 

figures illustrate the changing in the position and velocity of the vehicle when it confronts an obstacle 

and during the vehicle’s turning. 

Table 3. Obstacles description on the workspace grid. 

Obstacle No. Peripheral Vertices Coordinates 

1 (2, 2), (2, 3.5), (3.5, 3.5), (3.5, 2) 

2 (8, 4), (8, 5.5), (9.5, 5.5), (9.5, 4) 

3 (6, 7), (6, 8.5), (7.5, 8.5), (7.5, 7) 

4 (10, 8), (10, 9.5), (11.5, 9.5), (11.5, 8) 

5 (12, 12), (12, 13.5), (13.5, 13.5), (13.5, 12) 

6 (3.5, 12.5), (3.5, 14), (5, 14), (5, 12.5) 

7 (8, 14), (8, 15.5), (9.5, 15.5), (9.5, 14) 

Figure 14. Navigation platform contains five identical static obstacles. 

 

Figure 15. The angular velocity for both of the right and left wheel angular velocities. 
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Figure 16. The angular position for autonomous ground vehicle. 

 

Figure 17. The linear velocity profile for autonomous ground vehicle. 

 

In a more realistic situation, environments might contain obstacles that have different shapes and 

sizes. In case of increasing the number of obstacles, the frequency of the switching between the obstacle 

avoidance ANFIS controller and the target reaching ANFIS controller will be increased most the time. 

This makes the behaviour of the whole system more challenging and the environment more complicated. 

The performance of the platform was tested in such a case to validate the response of the system in 

different situations.  

In this second scenario, we considered the vehicle navigating in the case that the obstacles have 

different sizes and shapes. The dimensions of the obstacles are described by their peripheral vertices are 

given in Table 4. The number of obstacles was increased to eleven to make a more complex environment. 

The simulation results showed that the trained obstacle avoidance ANFIS controller made the vehicle 

traverses all the obstacles in the vehicle’s route by making decisions to change the vehicle’s headings 

when it approached an obstacle. Decisions are made upon the controllers’ inputs to manipulate the left 

and right angular velocities. A new feasible trajectory was generated by the autonomous ground vehicle 

after roving around the obstacles as shown in Figure 18.  

The simulation results of angular velocity for both of right and left wheels are shown in Figure 19. 

Figure 20 represents the angular position of the autonomous ground vehicle. The linear velocity profile 
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is shown in Figure 21. These figures illustrate the changing in the position and velocity of the vehicle 

when it wanders around the obstacles.  

Table 4. Obstacles description on the workspace grid. 

Obstacle No. Peripheral Vertices Coordinates Shape Type 

1 (3.5, 3.5), (5, 5), (2.5, 4), (4, 2.5) Square 

2 (8, 0), (9, 1.5), (10, 0) Triangle 

3 Centre (9, 4) and Radius = 0.75m Circle 

4 (12, 1), (12, 4), (14, 4), (14, 1) Rectangle 

5 (0, 6), (0, 8), (2, 8), (2, 6) Square 

6 (3.5, 3.5), (5, 5), (15.5, 4) Triangle 

7 (14.5, 8), (16, 8), (15.5, 6), (14, 6) parallelogram 

8 Centre (10, 10) and Radius = 1m Circle 

9 Centre (3, 13) and Radius = 0.75m Circle 

10 (12, 12), (12.5, 5), (13.5, 13), (14, 12) Trapezoid 

11 (8, 14), (8, 15.5), (9.5, 15.5), (9.5, 14) Square 

Figure 18. Navigation platform contains eleven static obstacles with different sizes  

and shapes. 

 

Figure 19. The angular velocity for both of the right and left wheel angular velocities. 
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Figure 20. The angular position for autonomous ground vehicle. 

 

Figure 21. The linear velocity profile for autonomous ground vehicle. 

 

Figure 22. The Error rate between the target point and vehicle’s actual point. (a) First 

scenario. (b) Second scenario. 
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Figure 22. Cont. 

 

(b) 

The error signals for both of x and y coordinates between the target point (xt
 = 15, yt = 15) and the 

vehicle’s actual points during the navigation was obtained. These signals of the autonomous ground 

vehicle for the first and second scenarios are shown in Figure 22a,b respectively. The results show the 

behaviour of the vehicle as it reached its destination. Before the vehicle started moving the error rate 

was maximum and when the vehicle arrived at its target the error rate became zero. 

6. Conclusion 

In this paper, an adaptive neuro-fuzzy inference system has been implemented to control the angular 

velocities of the wheels of an autonomous ground vehicle. These velocities guide the vehicle safely to 

reach the destination in a static environment without colliding with obstacles presented on its way. The 

proposed system utilises four ANFIS controllers. Firstly, two controllers for the target reaching which 

to ensure that the vehicle reaches its destination point; Secondly, two controllers for guiding the vehicle 

to avoid the collision with obstacles. In these four controllers, the right and left angular velocities will 

derive the vehicle’s heading during the navigation. 

The validation of the proposed method has been demonstrated by considering two scenarios; firstly, 

seven identical static obstacles are placed randomly with the workspace; secondly, eleven obstacles have 

different sizes and shapes. In case of reducing obstacle numbers significantly, the obstacle avoidance 

ANFIS controller did not activate until the vehicle confronted an obstacle. Therefore, the target reaching 

ANFIS controller was active most of the time. This case will be similar in the situation if a path is free 

of obstacles so the vehicle will take straight line that connects between both start and target points.  

In contrast, in multiple obstacles simulation, the obstacle avoidance ANFIS controller was activated 

frequently in order to avoid obstacles. After each avoiding point the vehicle switched to the target 

reaching ANFIS controller. In both considered scenarios, the autonomous ground vehicle was capable 

of avoiding obstacles safely and reaching the target with a feasible and smooth online generated path 

between the initial and the target points. The simulation experiments have been conducted using 

MATLAB-Simulink software package. 
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In the future, the proposed ANFIS control strategy will be implemented in a real AGV to further 

verify its feasibility and performance.  
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