
Robotics 2015, 4, 223-252; doi:10.3390/robotics4020223
OPEN ACCESS

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

Learning Task Knowledge from Dialog and Web Access
Vittorio Perera 1,*, Robin Soetens 2, Thomas Kollar 1, Mehdi Samadi 1, Yichao Sun 3,
Daniele Nardi 4, René van de Molengraft 2 and Manuela Veloso 1

1 School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213,
USA; E-Mails: tkollar@cmu.edu (T.K.); msamadi@cs.cmu.edu (M.S.); mmv@cs.cmu.edu (M.V.)

2 Department of Mechanical Engineering, Eindhoven University of Technology, Den Dolech 2,
Eindhoven; E-Mails: robinsoetens@gmail.com (R.S.); m.j.g.v.d.molengraft@tue.nl (R.M.)

3 State Key Laboratory of Industrial Control Technology, Zhejiang University, 38 Zheda Road,
Hangzhou 456555, China; E-Mail: inchaos.sun@gmail.com

4 Department of Computer, Control, and Management Engineering “Antonio Ruberti”, “Sapienza”
University of Rome Via Ariosto 25, Rome 00185, Italy; E-Mail: nardi@dis.uniroma1.it

* Author to whom correspondence should be addressed; E-Mail: vdperera@cs.cmu.edu.

Academic Editors: Nicola Bellotto, Nick Hawes and Mohan Sridharan

Received: 20 March 2015 / Accepted: 5 June 2015 / Published: 17 June 2015

Abstract: We present KnoWDiaL, an approach for Learning and using task-relevant
Knowledge from human-robot Dialog and access to the Web. KnoWDiaL assumes that
there is an autonomous agent that performs tasks, as requested by humans through speech.
The agent needs to “understand” the request, (i.e., to fully ground the task until it can proceed
to plan for and execute it). KnoWDiaL contributes such understanding by using and updating
a Knowledge Base, by dialoguing with the user, and by accessing the web. We believe that
KnoWDiaL, as we present it, can be applied to general autonomous agents. However, we
focus on our work with our autonomous collaborative robot, CoBot, which executes service
tasks in a building, moving around and transporting objects between locations. Hence, the
knowledge acquired and accessed consists of groundings of language to robot actions, and
building locations, persons, and objects. KnoWDiaL handles the interpretation of voice
commands, is robust regarding speech recognition errors, and is able to learn commands
involving referring expressions in an open domain, (i.e., without requiring a lexicon).
We present in detail the multiple components of KnoWDiaL, namely a frame-semantic
parser, a probabilistic grounding model, a web-based predicate evaluator, a dialog manager,
and the weighted predicate-based Knowledge Base. We illustrate the knowledge access and

Robotics 2015, 4 224

updates from the dialog and Web access, through detailed and complete examples. We
further evaluate the correctness of the predicate instances learned into the Knowledge Base,
and show the increase in dialog efficiency as a function of the number of interactions. We
have extensively and successfully used KnoWDiaL in CoBot dialoguing and accessing the
Web, and extract a few corresponding example sequences from captured videos.

Keywords: knowledge acquisition; knowledge based systems; knowledge transfer; robots;
intelligent robots; service robots; mobile robots; human robot interaction; speech;
speech recognition

1. Introduction

Speech-based interaction holds the promise of enabling robots to become both flexible and intuitive
to use. When the robot is a mobile robot servicing people, speech-based interaction will have to deal
with tasks involving locations and objects in the environment. For example, a human might command a
robot like CoBot to “go to Dana’s office” or to “get me a coffee”. The mobile robot must then infer the
type of action it should take, the corresponding location parameters and the mentioned object.

If we place no restrictions on speech, interpreting and executing a command becomes a challenging
problem for several reasons. First, the robot may not have the knowledge necessary to execute the
command in this particular environment. In the above examples, the robot must know where “Dana”
or “a coffee” is located in the building, and it should understand the type of action a user asks for
when using phrases like “get me” or “go to”. Second, performing robust speech recognition can be
challenging, resulting in multiple interpretation strings of which some might contain a partially correct
translation while others can be less intelligible. Finally, speech-based interaction from untrained users
requires understanding a wide variety of different ways to refer to the same location, object or action.

To bridge the semantic gap between the robot and human representations, we introduce KnoWDiaL,
an approach for robot Learning of task-relevant environmental Knowledge from human-robot Dialog
and access to the Web, as illustrated in Figure 1.

KnoWDiaL contains five primary components: A frame-semantic parser, a probabilistic grounding
model, a Knowledge Base, a Web-based predicate evaluator, and a dialog manager. Once a user provides
a spoken command, our frame-semantic parser maps the entire list of speech to text candidates to
pre-defined frames containing slots for phrases referring to action types and slots for phrases referring to
action parameters. Next, using the Knowledge Base, the probabilistic grounding model maps this set of
frames to referents. In our system, referents are either known action types or room numbers, which we
assume are known to the robot, (e.g., as physical coordinates on the robot’s map for navigation). In case
required information is missing, the dialog manager component attempts to fill missing fields via dialog
or via Web searches. In the event that it attempts a Web search it generates a query to OpenEval, which
is a Web-based predicate evaluator able to evaluate the validity of predicates by extracting information

Robotics 2015, 4 225

from unstructured Web pages [1,2]. When the action type and required fields are set, the dialog manager
asks for confirmation, executes the task and updates the Knowledge Base.

(a)

Dialog Example

User: Get me a coffee.

CoBot: According to OpenEval

this object is most likely

to be found in location

“kitchen”. Is that correct?

User: Yes.

(b)

Learned Facts

objectGroundsTo(coffee, 7602)

actionGroundsTo(get, BringObject)

(c)

Figure 1. Example of an interaction between a user and mobile service robot CoBot, with
KnoWDiaL: (a) Speech-based verbal interaction; (b) Action and object inferred from spoken
command, and access to the web with OpenEval for object location inference; (c) Learned
knowledge base with “7602” being the room number of location “kitchen”.

KnoWDiaL is implemented on and continues to be part of CoBot, a service robot able to
autonomously navigate in office buildings [3]. With CoBot, we perform several empirical evaluations
of KnoWDiaL. The first performance criterion we evaluate is the overall correctness of the knowledge
that has been accumulated. Asking untrained users to provide commands, we evaluate how well the
system is able to infer the correct action type, and the correct parameters required to execute this action
type. In an environment constrained to eight locations and 40 objects, KnoWDiaL directly understands
90% of the requested action types, and 70% of the required arguments. These percentages were
achieved in an experiment with 91 user-interactions from untrained users. Using the Web-based predicate
evaluator improved the performance of parameter grounding by around 15%. A second performance
criterion evaluates how well KnoWDiaL uses the knowledge it accumulates to increase dialog efficiency.
Compared to a non-learning baseline system that directly asks for the action type and its corresponding
parameters, our approach required significantly fewer user-questions (i.e., 214 compared to 318).

With KnoWDiaL we contribute a dialog system that is efficient in terms of required user interaction
and robust in terms of speech recognition and parsing errors. We handle knowledge in a probabilistic
manner, representing uncertainty with probability distributions. Since many aspects of knowledge
required to understand task-based dialog are intrinsically uncertain, we consider this an important
contribution. Knowledge has been handled probabilistically by others (e.g., [4]), but our system handles
Knowledge Base updates incrementally, and uses knowledge within a concrete, real-world, mobile,
service robot.

Furthermore, KnoWDiaL does not rely on a single highly probable speech-to-text candidate being
available. We are doing inference over the entire chain of probabilities involved in voice commands,
and ground commands based on each of the speech-to-text candidates, while also keeping track of
multiple parses and multiple plans the robot can execute. Such an approach is important especially

Robotics 2015, 4 226

when dealing with mobile service robots, that operate in noisy environments with a large number of
different users. These types of environments usually come with a flat probability distribution over
speech-to-text candidates. Given that we are looking for specific task-related language, a speech-to-text
candidate that gets a low probability score from the speech recognizer might actually be very important
in understanding the command. As suggested by [5], it might turn out to be impossible to make automatic
speech recognition as good as human speech recognition without taking context and interpretation into
account. The KnoWDiaL way of grounding commands is a step in this direction.

Learning, via the Knowledge Base, ensures that KnoWDiaL does not make the same mistakes over
and over again. Key to this is a confirmation question at the end of the dialog. Learned facts are added
to the Knowledge Base only when confirmed by the user. Since we are storing small phrases in our
predicates, as opposed to the entire speech-to-text sentence, our dialog system can generalize learned
facts from one specific command to a comparable but slightly different new command. Therefore with
KnoWDiaL we contribute a system that learns to understand more and more commands over time, while
reducing the required user interaction.

Apart from learning, extracting information from the Web is another reason KnoWDiaL is efficient
in terms of required user interaction. By querying the World Wide Web for common sense information
(e.g., coffee is probably in a kitchen), we avoid asking the user. We have created a dialog system able to
retrieve information from the Web in real time (i.e., while engaged in dialog), which we also consider to
be a contribution. In order to efficiently search the Web, KnoWDiaL processes its Knowledge Base also
when not in dialog, to find valid referring expressions for future Web searches.

This article is organized as follows. In Section 2, we briefly discuss related work. Section 3
presents the complete KnoWDiaL system with its five main components. Section 4 presents our
empirical evaluation, namely the controlled experiments, and an illustration of the different types
of dialog interaction with KnoWDiaL implemented on CoBot. Section 5 concludes the article and
discusses future work.

2. Related Work

KnoWDiaL is tested and implemented on CoBot, a mobile service robot [3,6,7]. It builds on our work
on learning location groundings from spoken commands [8]. However, it moves beyond this initial work
by enabling the robot to also deal with tasks related to the transportation of objects, and by incorporating
Web searches as an additional source of information during dialog. To achieve the latter, we build on our
earlier work in creating a Web-based predicate evaluator [1,2].

The structure of our parsing step represents a computational instantiation of previously introduced
parsing formalisms [9–11], including ternary expressions to capture relations between words in a
sentence [12]. Our parser is trained as a structured Conditional Random Field (CRF) [13], implemented
by using the CRF++ toolkit [14]. For tagging, we use the Python NLTK library [15].

From very early on (e.g., with SHRDLU [16]), systems have exploited the compositional structure
of language to statically generate a plan corresponding to a natural language command [17,18,20,21].
Our work moves beyond these frameworks by defining a probabilistic model that deals with the
uncertainty in speech, parsing, and plans corresponding to a certain command.

Robotics 2015, 4 227

Understanding route instructions is a popular application of task-based dialog. Generative and
discriminative models have been introduced [22,23], but there was no explicit representation of the
uncertainty in speech recognition, parsing and grounding of the natural language command. A motion
grammar has also been investigated (e.g., [24]), providing guarantees of completeness and correctness
for robotic systems when performing task decomposition, but not including teaching on how to execute
the commands. A flat, fixed action space was used to train a CRF that followed route instructions [25].

In general, dialog systems have tended to focus on the language of specific tasks, such as finding
objects, following directions, or manipulating objects. A variety of approaches aim at teaching a
robot about objects and locations, some using a dialog system but with focus on using human-robot
dialog to support visual object recognition and with reasoning about objects deterministically, based
on a single highly-probable speech-to-text candidate [26]; some using large amounts of written text
to extract common-sense knowledge about object locations and common tasks [27]. Groundings of
spatial language (route directions and mobile manipulation) have been demonstrated using Generalized
Grounding Graphs [28,29]. Complete action plans have been instructed from spoken language by
humans within robot home assistive tasks (e.g., [30]). Furthermore, within the competition scenarios
of RoboCup@Home (e.g., [31]) spoken language is captured with the aim of extracting action plans.

Research in task-constrained dialog for a mobile humanoid robot has been conducted, but with the
requirement of lexicon, and without directly extracting environmental knowledge from dialog [32].
Others have extracted knowledge from dialog, but with a deterministic Knowledge Base, as opposed
to our probabilistic approach. Rather than keeping track of a probability distribution in case conflicting
information is gathered, existing knowledge is deterministically overwritten, or the user is queried to
provide more information [33].

Using the World Wide Web as an additional source of information within a dialog system has
previously been done, with the particular purpose of classifying the topic of a conversation [34].
Their source was Wikipedia, a subset of the information available on the Web. OpenEval handles
free-form language (i.e., any written text returned by a search engine). Several other efforts have
targeted extracting action plans from the Web. In, e.g., [35] Websites like ehow.com, containing
instructions initially intended for human users are used as input. Such work faces challenges similar
to the challenges we face in dialog, (i.e., grounding human readable text to robot or agent action
frames). Others use the Web as a way to conduct dialog with large numbers of people [36], thereby
accumulating common sense knowledge for a mobile service robot. These and additional efforts [37]
take written natural language dialog as input, as opposed to spoken natural language, and are therefore
not dealing with uncertainties in the speech-to-text engines. Work where truth of semantic relations
is evaluated by extracting HTML tables from the Web exists as well [38]. But only using formatted
tables, as opposed to free-form language, again limits the form and variety of input information.
Other approaches, (e.g., KnowItAll [39], NELL [40], ReVerb [41], OLLIE [42] and CycL [43]) have
been able to extract knowledge from unstructured, free-form, Web pages but have not been applied
within strongly time-constrained human-robot dialog systems. Of particular closeness to our work, is
the processing of single-user spoken commands for execution by a mobile service robot, but from access
to structured sources of information on the Web, and represented as deterministic, instantiated robot

Robotics 2015, 4 228

action plans [44,45]. Finally in [46] the Web is used to build a common-sense object locality (CSOL)
Knowledge Base to guide a robotic visual search task.

3. KnoWDiaL

KnoWDiaL consists of five components, interacting with the user via third-party speech recognition
and text-to-speech engines (Figure 2).

Figure 2. Schematic overview of KnoWDiaL with its five components.

The speech recognizer returns a set of possible interpretations; these interpretations are the
input for the first component of KnoWDiaL, a frame-semantic parser. The parser labels the list
of speech-to-text candidates and stores them in pre-defined frame elements, like action references,
locations, objects or people.

The second component of KnoWDiaL is a Knowledge Base storing groundings of commands
encountered in previous dialog. A grounding is simply a probabilistic mapping of a specific frame
element obtained from the frame-semantic parser to locations in the building or tasks the robot can
perform.

The Grounding Model, the third component of KnoWDiaL, uses the information stored in the
Knowledge Base to infer the correct action to take when a command is received. Sometimes, not all of
the parameters required to ground a spoken command are available in the Knowledge Base. When this
happens, the Grounding Model resorts to OpenEval, the fourth component of KnoWDiaL. OpenEval is
able to extract information from the World Wide Web, to fill missing parameters of the Grounding Model.

In case a Web search does not provide enough information, the fifth component of KnoWDiaL,
the Dialog Manager, engages in dialog with the user, and explicitly asks for the missing parameters.
The Dialog Manager also decides when to ask a follow-up question and when to ask for confirmation.
When a command is successfully grounded, the Dialog Manager schedules the task in the CoBot
planning system and updates the KnoWDiaL Knowledge Base.

Before describing each of the five components in more detail, we first formally introduce our
high-level model.

Robotics 2015, 4 229

3.1. High-Level Joint-Probabilistic Model

We formalize the problem of understanding natural language commands as inference in a joint
probabilistic model over the groundings Γ, a parse P and speech S, given access to a Knowledge Base
K and OpenEval O. Our goal is to find the grounding that maximizes the joint probability, as expressed
by the following equation:

arg max
Γ

p(Γ, P, S|K,O) (1)

This joint model factors into three main probability distributions: A model of speech, a parsing model
and a grounding model. Formally:

p(Γ, P, S|K,O) = p(Γ|P,K,O)× p(P |S)× p(S) (2)

In our system, the probability of the speech model p(S) is given by a third-party speech-to-text engine.
The factors for parsing and grounding will be derived in the upcoming sections.

3.2. Frame-Semantic Parser

The speech recognizer returns a set S = [S1, ..., Sn] of speech-to-text candidates and a confidence
for each of them CSi

; the first step of KnoWDiaL is to parse them. To train our parser we collected a
corpus of approximately 150 commands from people within our group, read these out loud for the speech
recognizer and annotated the resulting speech to text candidates by hand; Figure 3 shows a small sample
of the annotations used. Labels we use are action, toLocation, fromLocation, toPerson, fromPerson,
robot, objectHere and objectElse. Words we label as action are the words used to refer to the tasks the
robot can execute (e.g., “go”, “bring” or “please deliver”). Locations, both toLocation and fromLocation,
include expressions like “classroom” or “printer room”. People, labeled as toPerson or fromPerson,
include expressions like “Tom” or “receptionist”. Examples of object references are “cookies” or “tablet
pc” and are labeled as objectHere or objectElse. With robot we label parts of the command that refer to
the robot itself. Words that are supposed to be ignored are labeled with an additional label none.

Commands in Corpus and Their Annotation

- [Go]action to the [bridge]toLocation [CoBot]robot
- Could [you]robot [take]action a [screwdriver]objectElse to the [lab]toLocation
- [Go]action to [Dana’s]toPerson [office]toLocation
- Please [bring]action a [pencil]objectElse from the [lab]fromLocation to the [meeting room]toLocation
- [Return]action these [documents]objectHere to [Diane]toPerson
- Please [get]action [me]toPerson some [coffee]objectElse from the [kitchen]fromLocation

Figure 3. A corpus of approximately 150 go to location and transport object commands is
annotated by hand. Separate labels are used to distinguish whether an object can be found at
the current location or elsewhere. After learning, our method is able to properly recognize
the action type of these commands and extract the required parameters.

Robotics 2015, 4 230

Labeling tasks often require a much bigger training set [25], but 150 commands proved to be enough
to train our parser. There are three main reasons for this: First of all, for each command we get multiple,
slightly different, speech-to-text candidates (typically 5 to 10), resulting in an increase in the effective
size of the corpus. Second, our set of labels is relatively small. Third, the language used to give
commands to our robot is limited by the tasks the robot is able to execute, transporting objects and
going to a location.

If li ∈ {action, fromLocation, toLocation, fromPerson, ...} is the label of the i-th word in a
speech-to-text candidate S, and this candidate containsN words si, then the parsing model is represented
as a function of pre-learned weights w and observed features:

p(P |S) , p(l1 . . . lN |s1 . . . sK) (3)

=
1

Z(S)
exp

(
N∑
i

w · φ(li, si−1, si, si+1)

)
(4)

where Z(S) is a normalization factor and φ is a function producing binary features based on the
part-of-speech tags of the current, next, and previous words, as well as the current, next, and previous
words themselves. The weights w for each combination of a feature with a label were learned from the
corpus mentioned before. We learned them as a Conditional Random Field (CRF) and used gradient
descent (LBFGS) as our method to optimize.

After labeling all of the words in each of the speech interpretations in S, we want to extract a frame
from them. In order to do so for each S ∈ S , we greedily group together words with the same label.
The output of the semantic-frame parser is therefore a set of parses P = [P1, ..., Pn], one for each of
the speech interpretations in S; each of the parses Pi consists of labeled chunks together with an overall
confidence score CPi

.

3.3. Knowledge Base

In the Knowledge Base of KnoWDiaL, facts are stored by using five different predicates. Four of
them are used to store previously user-confirmed groundings of labeled chunks obtained from the
semantic-frame parser, while the fifth is used when querying OpenEval. The rest of this section describes
each of the predicates in detail.

The predicate actionGroundsTo stores mappings between references to actions and the corresponding
tasks for the robot. Our robot can execute two tasks, GoTo and BringObject, and all of the actions are
grounded to one of them. Examples of this type of predicate are actionGroundsTo(‘take’, BringObject)
and actionGroundsTo(‘get to’, GoTo).

The two predicates personGroundsTo and locationGroundsTo have very similar functions, as they
both map expressions referring to people or locations to places the robot can navigate to. The map
CoBot uses to navigate in the building has each room labeled with a four digit number; these labels
are used as groundings for both of the predicates, as in locationsGroundsTo(‘small-size lab’, 7412) or
personGroundsTo(‘Alex’, 7004). While the functions of the two predicates are similar, they convey
slightly different information: LocationGroundsTo saves the way people refer to specific rooms while
personGroundsTo is intended to store information about where the robot is likely to find a specific person.

Robotics 2015, 4 231

The fourth predicate storing information about grounding is objectGroundsTo. Similarly to the
personGroundsTo, this predicate stores information about where the robot is likely to find a specific
object. As for the two previous predicates, objects are grounded to room numbers. Examples are
objectGroundsTo(“screwdriver”, 7412) or objectGroundsTo(“marker”, 7002).

To each of the four grounding predicates in the Knowledge Base, a number is attached to keep track
of how many times an expression e has been mapped to a grounding γ. From now on, we will refer to
this number by using a dotted notation, such as locationGroundsTo(e, γ).count or simply as count; the
updates of this value are explained through detailed examples in Section 4.

Finally, the last predicate used in KnoWDiaL is locationWebFitness. The Knowledge Base
contains one instance of this predicate for each locationGroundsTo element. The goal of this
predicate is to store how useful each expression referring to a location is, when querying the Web
using OpenEval (more details in Section 3.5); to do so, we associate a score between 0 and 1 to
each expression. Examples of this predicate are locationWebFitness(“the elevator”, 0.890825) and
locationWebFitness(“elevated”, 0.375724).

3.4. Grounding Model

In KnoWDiaL, all of the tasks the robot can execute are represented by semantic frames. A semantic
frame is composed by an action a, invoking the frame, and a set of arguments e; therefore, grounding a
spoken command corresponds to identifying the correct frame and retrieving all of its argument; Figure 4
shows two examples of semantic frames and their arguments.

Frame: GoTo
- Parameters: destination

Frame: BringObject
- Parameters: object,

source,
destination

Figure 4. Semantic frames of the two tasks our robot, CoBot, is able to execute.

We make the assumption that the action a and the arguments e of a frame can be grounded separately.
The chunks returned by the frame-semantic parser correspond either to an action a or to one of the
arguments e. Therefore, in order to compute p(Γ|P,K,O) in Equation (2), we need to find the most
likely grounding γ first for the action and then for each of its arguments. The general formula used to
compute the likelihood of a grounding is the following:

p(γ∗|F ; K) =

∑
iCSi

· CPi
· groundsTo(chunki, γ∗).count∑

i,j CSi
· CPi

· groundsTo(chunki, γj).count
(5)

where γ∗ is a specific grounding, CSi
and CPi

are respectively the confidence of the speech recognizer
and of the parser, i ranges over the set of parses P , j ranges over all of the different groundings for the
frame element being considered (i.e., the action a or one of the parameters e), and groundsTo is one of
the predicates in the Knowledge Base, namely actionGroundsTo, locationGroundsTo, personGroundsTo
or objectGroundsTo. The chunks used to compute Equation (5) are the ones matching the frame element

Robotics 2015, 4 232

currently being grounded. For instance, if we are trying to ground the action, only the chunks labeled as
action are considered.

Section 4 explains, with detailed examples, how Equation (5) is used to infer the correct grounding
for a command.

3.5. Querying the Web with OpenEval

One of the core features of KnoWDiaL is the ability to autonomously access the Web to ground
the location to which the robot needs to navigate, based on a request that does not explicitly mention
a known location. So far, we have provided this ability for the robot to determine the location of
objects. For example, if a user requests “Please, bring me coffee,” the robot may not know the location
of the object “coffee.” KnoWDiaL accesses the Web by using OpenEval [1,2] to determine the possible
location(s) of objects corresponding to its map of the building. The detailed description of OpenEval
technology is beyond the scope of this work, but we review the general approach of OpenEval by
focusing on its interaction with KnoWDiaL.

OpenEval [47] is an information processing approach capable of evaluating the confidence on the
truth of any proposition by using the information on the open World Wide Web. Propositions are
stated as multi-argument predicate instances. KnoWDiaL uses two predicates when invoking OpenEval
to determine the possible and appropriateness of object locations, namely locationHasObject and
locationWebFitness. KnoWDiaL fully autonomously forms the queries, as propositions (instantiated
predicates) to OpenEval based on its parsing of a user request. An example of a proposition generated by
KnoWDiaL to query OpenEval is locationHasObject(kitchen, coffee), to which OpenEval could return
a confidence of 80%, meaning that it computed a confidence of 80% on the truth of the proposition,
namely that kitchen is a location that has the object coffee.

OpenEval has a training phase for each predicate, in which it is provided a small number of instances
of the predicate, (i.e., propositions), as seed positive examples. The instances that serve as positive
examples of one predicate are negative examples of the others [48]. In terms of KnoWDiaL, it is assumed
that OpenEval has been trained on the two predicates locationHasObject and locationWebFitness, which
capture significantly different facts; namely, these are locations of objects and the validity of a particular
expression referring to a location in terms of its fitness of information on the Web. For example,
training instances of these two predicates would be positive examples locationHasObject(office, desk),
locationHasObject(kitchen, refrigerator), and positive examples, such as locationWebFitness(kitchen),
and locationWebFitness(office).

OpenEval uses the training examples to generate complex feature vectors that are used to train a
classifier. Such feature vectors, termed Context-Based Instances (CBIs), are constructed based on the
context of the Web pages returned by searching for the proposition in the open Web. In a nutshell,
OpenEval composes CBIs from selective word counting (features) of some predefined amount of
“neighboring” text to the training examples in the webpages returned by the search. When a new
proposition is given to the classifier, OpenEval evaluates its correctness following a similar process to the
training one. From the proposition, it generates a search on the web, and it constructs the corresponding
CBIs, which are then given to the trained classifier. OpenEval returns a confidence value on the truth of

Robotics 2015, 4 233

the new proposition based on several factors, including the number of test instances that are classified as
positive, and the trust score of each source of information.

One of the core insights of OpenEval [47], consists of showing that training on CBIs for the seeded
examples enables the testing of examples of the same predicate for instances not previously seen, as
examples of the same predicate share the “context” in which they are referred to in the web. Basically,
we expect that objects physically present in a location will frequently be found together on the web.
For example, one of the top search results for the object “paper” and the location “printer room” is,
“There is no more paper in the printer room, where can I find some more?” For objects unrelated to the
location, such as “papers” and “elevator” there are fewer pages which often describe less sensical events
such as, “Call for Papers, The International Space Elevator Consortium (ISEC) invites you to join us
in Washington State.” Therefore, we expect that the word patterns for related terms will be predictive,
while un-related terms will be less predictive.

In terms of the two predicates of KnoWDiaL, the hope is that OpenEval returns high confidence on
valid pairs of objects and locations, as well as on appropriate locations themselves. As an example,
OpenEval returns high and low confidence, respectively, on queries about locations “kitchen” and
“kitten,” where this latter could have been incorrectly generated by a speech interpreter. KnoWDiaL
uses the confidence values returned by OpenEval in two core ways: To decide whether to ask for further
information from the user, and to update its Knowledge Base on grounding information. We provide
details on the Knowledge Base updates in our Examples Section below.

3.6. Dialog Manager

Our Dialog Manager uses each of the modules described in the previous sections to interpret
commands and to come up with a single complete grounding. The Dialog Manager takes as input the
speech-to-text candidates S and tries to ground the command received to one of the tasks the robot
can execute and all of its parameters by using the Knowledge Base. If some of the groundings cannot
be retrieved from the Knowledge Base, the Dialog Manager tries to fill the missing fields either by
asking specific questions or by querying the Web via OpenEval. Once all of the groundings have been
retrieved, the Dialog Manager asks for confirmation, updates the Knowledge Base and schedules the
task. Algorithm 1 shows all of the steps described.

Algorithm 1 dialog_manager(S)
F ←parse_and_frame(S)
Γ←ground(F)
Γ∗ ←fill_missing_fields(Γ)
ask_confirmation(Γ∗)
update_knowledge_base(Γ∗, F)
schedule_task(Γ∗)

Figure 5 shows a typical dialog for a user who asks CoBot to deliver a pencil to the meeting room.
The speech recognizer returns three text-to-speech candidates (Figure 5b). These are parsed (Figure 5c)
and then grounded by using the Knowledge Base. Given the current Knowledge Base, not shown here,

Robotics 2015, 4 234

KnoWDiaL is able to ground the action required by the command to BringObject, that the object to be
delivered is pencil and that it should be delivered to room 7502. The information missing to completely
ground the command is where the object can be found (Figure 5d); to retrieve it, KnoWDiaL queries the
Web and, after receiving confirmation from the user (Figure 5e), executes the task.

USER: “Go deliver a pencil to the meeting room.”
(a) Spoken Command

s1 = “go deliver a pencil to the meeting rooms”
s2 = “good liver pen still in the meeting room”
s3 = “go to live for pencil to the meaning room”

(b) Speech to Text Candidates

f1 = [go deliver]act [pencil]objElse

[meeting rooms]toLoc

f2 = [good liver]act [pen still]objHere,
[meeting room]toLoc

f3 = [go]act [live]toPer

[pencil meaning room]toLoc

(c) Parsing and Framing

Γ = [a = BringObj, esource = NULL,
edestination = 7502, eobj = pencil]

(d) Action / Parameter Grounding

CoBot: “You want me to deliver the object pencil,
is that correct?”

USER: “Yes”
CoBot: “I am querying the web to determine where

the object pencil is located.”

Location-references with high count and web fitness
are extracted from the Knowledge Base: “kitchen,”
“office,” and “lab.” OpenEval is evaluated for these
expressions.

Γ∗ = [a = BringObj, esource = 7602,

edestination = 7502, eobj = pencil]

CoBot: “I have found that object pencil is most likely
to be found in location office. I am going to
get object pencil from location office and
will deliver it to room 7502, is that correct?”

USER: “Yes”

(e) Dialog

Figure 5. A dialog example. Given the command the robot is able to ground, using its
Knowledge Base, the action, and two of the frame parameters (“destination” and “object”).
The third parameter needed to completely ground the command (“source”) is grounded
using OpenEval.

Additionally, in order to make KnoWDiaL easier to use, we added to the Dialog Manager a small set
of keywords. If the words “cancel” or “stop” are detected, the current dialog is canceled, and the user
can give a new command to the robot. If the words “wrong action” are recognized, KnoWDiaL asks
explicitly for the task it needs to perform and then resume its normal execution. The Dialog Manager
also recognizes keywords, such as “me” and “this”, to handle commands involving the current location
as one of the action parameters (e.g., “Bring me a cookie” or “Bring this paper to the lab”). In this case, a
temporary location here is created to ground the location and, during execution, is converted to the room
nearest to the position where the robot received the command.

Robotics 2015, 4 235

4. KnoWDiaL: Detailed Examples

We now illustrate the complete KnoWDiaL approach with two examples to show the details of the
accesses and computations underlying the updates to the Knowledge Base. In the two examples, the new
groundings come from the dialog with the human, and from the access to the Web, respectively.

4.1. Example 1: Accessing and Updating the Knowledge Base from Dialog

When receiving a spoken command, in this example the sentence “Go to the small-size lab”, the
first step is to process the audio input and get a set of multiple transcriptions from the ASR. The speech
recognizer used (for our experiments we used the Google ASR) returns an ordered set of interpretations,
S = [S1, ..., Sn], but only provides a confidence score, CS1 , for the first one. In order to obtain a
confidence score for each of the interpretations we used the following formula:

CSi
= max(CS1 − α · CS1 · i, α · CS1) (6)

where i is the rank of each interpretation and α is a discount factor; Figure 6a shows all
of the transcriptions obtained from the Automated Speech Recognition (ASR) together with the
confidence scores computed.

Next, each transcription is parsed. The result of this step is shown in Figure 6b and consists of a set of
parses P = [P1, ..., Pn] where each parse Pi contains a set of labeled chunks together with a confidence
score, CPi

for the whole sentence.
Since the goal is to completely fill a semantic frame representing one of the tasks the robot can

perform, we first need to identify the frame invoked by the command received that is to ground the action
of the command. To do so, we query the Knowledge Base (KB) for all the labelsGroundTo predicates
whose first argument matches any of the label sequence in P and for all the actionGroundsTo predicate
whose first argument matches any of the chunks labeled as action in [P1, ...Pn]. This query returns a
set of j possible groundings γ, in this example [GoTo, BringObject]. To select the correct grounding,
we use Equation (5) for the actionGroundsTo predicate and compute the probability for each of the j
groundings returned. We select the grounding with the highest value as correct, which in this example,
is the task GoTo with a probability of 0.994 .

Once the action has been grounded, the corresponding semantic frame shows which parameters are
needed. For the GoTo frame, the only parameter needed is the destination. To ground the destination, we
query the KB for all the locationGroundsTo predicates, whose first argument match the chunks labeled
as toLocation. Similarly to what happened for the action, j possible groundings are returned, and for
each of them, we compute its probability by using Equation (5) for the locationGroundsTo predicate.
The one with the highest probability is then selected as the final grounding; in our example, room 7412
is selected with probability 1 as it is the only locationGroundsTo predicate available.

At this point, the semantic frame representing the command received has been completely filled.
Before executing the corresponding task, KnoWDiaL engages in a short dialog with the user, and if
everything is confirmed, lets the robot execute the task.

Robotics 2015, 4 236

Go to the small size lav 0.85

go 2 small sized lab 0.425

goto the small size lab 0.2125

get the small sized love 0.2125

(a) Speech recognition results

[Go to]action [the small size lav]toLocation 0.8

[go 2]action [small sized lab]toLocation 0.1

[goto]action [the small size lab]toLocation 0.3

[get]action [the small sized love]objectHere 0.7

(b) Parses

actionGroundsTo(‘go to’, GoTo) 5.0

actionGroundsTo(‘goto’, GoTo) 2.3

actionGroundsTo(‘goto’, BringObject) 0.3

actionGroundsTo(‘get’, BringObject) 2.15

locationGroundsTo(‘the small size lab’, 7412) 7.9

(c) Initial Knowledge Base

Figure 6. Multiple transcriptions (a) and parses (b) for the command “Go to the small-size
lab”. (c) Shows the initial Knowledge Base with the count for each predicate.

actionGroundsTo(‘go to’, GoTo) 5.68

actionGroundsTo(‘goto’, GoTo) 2.36375

actionGroundsTo(‘go 2’, GoTo) 0.0425

actionGroundsTo(‘goto’, BringObject) 0.3

actionGroundsTo(‘get’, BringObject) 2.15

locationGroundsTo(‘the small size lab’, 7412) 7.96375

locationGroundsTo(‘small sized lab’, 7412) 0.0425

locationGroundsTo(‘the small size lav’, 7412) 0.68

Figure 7. Update KB with in blue the predicates that have been added or updated.

Finally, while the robot is executing the task KnoWDiaL updates its KB; for each of the chunks of all
of the parses in P , the count of the corresponding predicate is increased by CSi

· CPi
; in particular, the

chunks labeled as action increase the count of the actionGroundsTo predicate, while the chunks labeled
as toLocation increase the count of the locationGroundsTo predicate. If, for any of the predicates, an

Robotics 2015, 4 237

instance is not already present in the KB a new one is simply added. Figure 7 shows the updated KB
after the command has been executed.

4.2. Example 2: Accessing and Updating the Knowledge Base from Accessing the Web

For this second example, we will consider the command “Bring coffee to the lab”. Similarly to what
happened in Example 1, the audio input is processed by the ASR, and its output is parsed. The result, a
set of speech interpretations S and a set of parses P , are shown together with the initial KB in Figure 8.

Briggs coffee to the lav 0.85

bring the cofee to the lab 0.425

Rings coffe the lab 0.2125

(a) Speech recognition results

[Briggs]action [coffee]objectElse [to the lav]toLocation 0.23

[bring]action [the cofee]objectElse [to the lab]toLocation 0.88

[Rings]action [coffe]objectElse [the lab]toLocation 0.18

(b) Parses

actionGroundsTo(‘bring’, BringObj) 2.1

actionGroundsTo(‘rings’, BringObj) 0.3

locationGroundsTo(‘to the lab’, 7412) 4.3

locationGroundsTo(‘kitchen’, 7602) 1.62

locationGroundsTo(‘kitcheen’, 7602) 0.34

locationGroundsTo(‘kitchenette’, 7602) 1.35

locationGroundsTo(‘office’, 7004) 2.8

locationWebFitness(‘office’, 0.98)

locationWebFitness(‘kitchen’, 0.92)

locationWebFitness(‘kitcheen’, 0.34)

locationWebFitness(‘kitchenette’, 0.93)

locationWebFitness(‘to the lab’, 0.88)

(c) Initial Knowledge Base

Figure 8. Multiple transcriptions (a) and parse (b) for the command “Bring coffee to the
lab”. (c) Shows the initial Knowledge Base with the count for each predicate.

Again, the first step is to ground the action of the command, i.e., to identify the corresponding
semantic frame. To do so, we query the KB for actionGroundsTo predicates and then use Equation (5)

Robotics 2015, 4 238

to compute the most likely action corresponding to the command received. Given the KB for this second
example the only action matching is also the only action in the KB and is therefore selected with a
probability of 1.

Having grounded the action, means the semantic frame corresponding to the command has been
identified; the next step is therefore to ground all of the parameters of the frame. For the BringObject
frame, we need three parameters: the object, the location where it can be found, and the location where
it has to be delivered. First, we check for the object. That is, we see if, in any of the Pi parses, we
can find a chunk labeled as objectHere or objectElse. KnoWDiaL simply selects as the object the first
chunk whose combined speech and parse confidence is greater than a given threshold, Ci ·CPi

≥ τ with
τ = 0.15. In our example the chunk selected to represent the object is “coffee”.

Next, we need to figure out where the object can be found. To do so, we first check if the command
explicitly mentions it, and we see if, in any of the parses in P , we can find a chunk labeled as
fromLocation. If this is the case, for each fromLocation chunk i we query the KB for a matching
locationGroundsTo predicate. This operation returns a set of j possible groundings γ and, again, to
compute the more likely we use Equation (5).

If the location from where the object has to be retrieved is not explicitly mentioned, we query the KB
for all of the objectGroundsTo predicates, whose first argument matches any of the objectElse chunks
and compute the more likely grounding applying Equation (5) to the objectGroundsTo predicate.

Unfortunately, in our example there is no chunk labeled as fromLocation inP and no objectGroundsTo
predicate in the KB. When this happens, to figure out where we can find the object, we resort to
OpenEval. In order to query OpenEval, we need a specific object, which we have already identified
as “the coffee” and a set of possible locations L. To build the set L, we first query the KB for all of
the locationGroundsTo predicates and add their first argument to L. Next, we make a second query
to the KB and filter out all of the elements in L having a locationWebFitness score below a threshold
of 0.9. Finally, we make sure that all of the elements left in L refer to different physical locations by
checking the groundings of the locationGroundsTo and selecting, among the ones referring to the same
room number, the reference with the highest count. This whole process, for the KB of our example, is
shown in Figure 9.

<‘to the lab’, 7412>

<‘kitchen’, 7602>

<‘kitcheen’, 7602>

<‘office’, 7004>

<‘kitchenette’, 7602>

(a) Initial L

<‘kitchen’, 7602>

<‘office’, 7004>

<‘kitchenette’, 7602>

(b) L after checking for
webFitness

<‘kitchen’, 7602>

<‘office’, 7004>

(c) Final L

Figure 9. The set of possible locations used to query OpenEval.

Querying OpenEval returns a score, CO, for finding “the coffee” in each of the locations in L;
KnoWDiaL then asks the user to select the correct location between those with a score above 0.8. In our
example, out of the two locations in L, only kitchen is above the threshold and the user is simply asked
to confirm if it is the correct location.

Robotics 2015, 4 239

Finally, we need to find out where the object needs to be delivered. To do so, we look in all of the
parses in P if there are chunks labeled as toLocation. If we find at least one such chunk, we query
the KB for all of the matching locationGroundsTo predicates and compute the more likely grounding
by using Equation (5). In our example, we find multiple chunks labeled as toLocation but only one
locationGroundsTo predicate matching them. Therefore, the grounding 7412 is selected with a score
of 1. In general, if there is no toLocation chunk or the grounding cannot be retrieved from the KB,
KnoWDiaL engages in a short dialog with the user asking for the location explicitly.

Now that the semantic frame has been completely filled, the robot can execute the corresponding
task. While this happens, KnoWDiaL updates its KB; as in the previous example, for each chunk, the
corresponding predicate is increased by the combined score of the speech recognizer and the parse.
Moreover, a new predicate, objectGroundsTo is added to the KB with, as a first argument, the object
used to query OpenEval, “the coffee”; as second argument, the grounding associated to the location with
highest CO score and as count the product of the three confidences CO · CSi

· CPi
.

5. Results

The performance of our system is determined by the performance of each of the five subsystems.
Therefore, in this section, we describe three experiments, gradually increasing the number of subsystems
involved. First, we describe an experiment involving GoTo commands only. Performance is measured in
terms of the amount of required interactions (i.e., number of questions our participants need to answer),
and we compare the ways people refer to different types of locations. Second, we show that, given
a set of location references, OpenEval generally comes up with a reliable clue to look for a certain
object. Hereafter, another dialog experiment is conducted, where the dialog system as a whole is tested,
involving both GoTo and BringObj commands. Finally, we implement our dialog system on CoBot itself.

5.1. Learning Location References

Nine different people were asked to command the robot for about ten minutes, sending it to different
locations on its map (in simulation). The subjects were both native and non-native English speakers,
which made speech-to-text more challenging. Although the task itself was fixed, people could use
the language that was natural to them. In order to prevent priming our participants with location
references, we used a printed map of the building CoBot operates in. Six locations were marked on
this map and annotated with a room number. Our aim here was to test the ability of our algorithm to
learn referring expressions for different locations through dialog alone. Therefore the initial Knowledge
Base was empty.

A total number of 57 “go to” location commands were given by our subjects. These contributed to
a Knowledge Base with 177 predicates, grounding either a location reference or phrases referring to
a person. We compared our algorithm to a non-learning baseline that directly asks to spell the room
number of the robot’s destination. Measured over the entire experiment, our method requires only 79%
of the questions that the baseline system would need. Since this is a percentage measured over the entire
experiment, it does not guarantee that we will outperform the baseline system in each specific dialog.
A particularly bad scenario would be a case in which we find a strong grounding, ask for confirmation,

Robotics 2015, 4 240

but turn out to have found the wrong grounding. This worst-case scenario involves one extra question,
compared to the baseline. Given that on average, we clearly outperform the baseline system, we consider
this to be acceptable.

Entropy provides a good measure to evaluate whether or not different people refer to a location
by using very different expressions. When calculating statistical entropy over the set of referring
expressions for a specific location, we find the lowest entropy (2.8) for the location “the elevator”.
The highest entropy (3.3) was found for “the meeting room” and “the atrium”. For the latter location,
people were using references like “the open area”, or “the place with the large windows”. On average,
entropy was 3.0.

For the lowest and highest entropy location, the Knowledge Base count corresponding to each
reference is plotted (Figure 10a,b). Since speech-to-text is not always perfect, “the atrium” was often
translated into “the 8 gym”. Our dialog system does not see a difference between the two translations
and will learn to understand commands involving an inaccurate speech-to-text translation just as quick
as ones involving the right translations. As long as speech-to-text is consistent, it does not have to be
perfect to allow our dialog system to learn.

(a) Low-entropy location “the elevator” (b) High-entropy location “the atrium”

Figure 10. For two different locations, the six location references that were most frequently
encountered are shown.

5.2. Predicting Object Locations with OpenEval

To measure the accuracy of OpenEval, first, we have to train it. We have collected a corpus
of 1350 unique instances for predicate locationHasObject and 250 unique instances for predicate
locationWebF itness. Instances for the has-object predicate were acquired by asking subjects on
Amazon’s Mechanical Turk to name a set of objects for 40 different location types; using Amazon’s
mechanical Turk made it easy to collect a large number of such instances. On the other hand, instances
of the locationWebF itness predicate were acquired by manually extracting a set of expressions that
were used to refer to locations in previous dialogs that people had with our robots, and the set
available for testing was therefore more limited. The data is split by randomly choosing 80% of data
for training and 20% for testing. OpenEval was trained by using the first 50 Web pages that are
returned by a search engine.

Robotics 2015, 4 241

Figure 11 shows the results by using precision and recall measures over the test data. As a baseline,
we show the results of Pointwise Mutual Information (PMI), which is a predicate evaluation method
solely based on the number of search engine hits. The PMI score of locationHasObject(e, γ) equals
the normalized number of hits when searching for e and γ together, divided by a multiplication of the
normalized number of hits e and γ have individually.

Figure 11. Precision/recall curve for the locationHasObject predicate (270 test instances).
OpenEval is compared to PMI, which is a web-based predicate evaluation method solely
based on the number of search engine hits.

Table 1 shows the results for a subset of the test objects for four location types in our test
environment. OpenEval is able to correctly determine the most likely location for most objects.
OpenEval chooses “bathroom” as the most likely location for “cup”. Although this is correct in some
environments (e.g., hotels), we generally expect to find “cup” in either a “kitchen” or an “office”.
The results show that by requesting more specific queries such as “coffee cup”, OpenEval will change
its classification to location “kitchen”.

Table 1. The probability that OpenEval assigns to different test objects for each location
type. The location type with maximum probability is shown as bold.

Object Location Types
Bathroom Printer Room Kitchen Office

coffee 0.08 0.02 0.72 0.18
marker 0.33 0.53 0.08 0.06

pen 0.15 0.27 0.23 0.35
toner 0.05 0.87 0.02 0.06

scissors 0.26 0.01 0.61 0.12
whiteout 0.66 0.02 0.24 0.08
laptop 0.1 0.48 0.08 0.34
paper 0 0.17 0.13 0.7
cup 0.42 0.1 0.36 0.12

coffee cup 0 0.01 0.73 0.27
speakers 0.34 0.06 0.25 0.35

Robotics 2015, 4 242

5.3. Learning Object Groundings

A final experiment involving ten people, six of them non-native English speakers, has been conducted.
Our aim here is to test the dialog system as a whole, including the grounding of objects. Participants were
provided with a map that had seven marked locations, annotated with room numbers. As opposed to our
initial experiment, not all participants were familiar with the building this time. Therefore, we also
provided a suggested expression for each of the marked locations on the map. Participants were free to
use this suggested expression or any other synonym or different expression that they found to be natural.
Also, they were shown a sheet with forty pictures of objects that our robot would be able to transport.
We chose pictures as opposed to a list of words to prevent priming our participants with a way to refer
to specific objects.

Each of the participants was asked to command the robot through its speech interface for about fifteen
minutes. The participants were free to choose whether they would ask the robot to transfer one of the
objects, or to simply send it to a specific location. A BringObj command could involve asking the robot
to deliver an object provided by the user to any of the locations on the map or to ask it to deliver an
object that first has to be collected at some other place. In the latter case, the source could either be
explicitly provided in the command (“bring me a cookie from the kitchen”) or not be specified by the
user (“bring me a cookie”). In case the fromLocation is not explicitly provided, the robot had to come
up with a reasonable place to look for the object. It could do so either by doing inference over the
objectGroundsTo predicates in its Knowledge Base (implicit grounding of the fromLocation) or by
using the expression for the object to query OpenEval.

The baseline that we are comparing our system to, is a dialog manager that simply asks which action it
should take, followed by a question for each of the parameters needed to execute this action. In case of a
BringObject command, as shown in Figure 4, three parameters are necessary: (i) the source of the object
(i.e., the location where it can be found), (ii) its destination and, since the robot should ask somebody to
put the object in its basket at the source, (iii) a reference to the object itself. Therefore, the baseline for
a BringObject command is four questions, while the baseline for GoTo location commands is two.

We started the experiment with an entirely empty Knowledge Base. After a total of
91 speech-commands, our system had asked only 67% of the number of questions the baseline system
would have asked. Only in 12% of the commands our system posed more questions than the baseline
system would have done (worst-case was three additional questions).

In order to explain this result in more detail, we take a closer look at each of the elements that we are
grounding. Most of the learning with respect to grounding action types takes place during the commands
provided by the first three people in the experiment (Figure 12a). Apparently their way of invoking an
action, generalizes easily. In the remainder of the experiment, starting at command 33, the wrong action
type was recognized only six times.

Roughly two thirds of the commands in this experiment were BringObject commands; the others
were GoTo location commands. In case of a BringObject command, our subjects chose not to provide
the from-location 31 times; out of these, for 19 times, the expression for the object could not be grounded
directly from the Knowledge Base. OpenEval was able to come up with a correct object location 11 times
(Figure 12b). This was done either by returning a single correct location (2 times), by asking the user to

Robotics 2015, 4 243

choose out of two high-probability locations (7 times), or by offering three high-probability locations (2
times). As can be seen in the graph, it takes some commands before OpenEval becomes useful, which is
because first some location references with web fitness scores need to be in the Knowledge Base.

(a) Action recognition (b) FromLocation (c) toLocation

Figure 12. Grounding performance during experiment involving 91 go to location and
transport object tasks. The baseline for these graphs consists of the percentage we would
be able to guess correct by picking a random action type, or a random location from our
Knowledge Base. A fromLocation can be found in three ways: By grounding a location
reference provided by the user (explicit grounding) by grounding the object reference to a
location (implicit grounding) or by using OpenEval.

At the end of the experiment, 41% of the fromLocations are found by grounding a location reference
provided by the user. Taking into account that the user did not always explicitly provide this parameter,
75% of the provided fromLocation references are grounded correctly, slightly better than what has been
achieved when grounding the toLocation (Figure 12c).

Average entropy calculated over the referring expressions for each of the locations in the Knowledge
Base was 3.0, which is equal to what we obtained in our first experiment. Therefore, we conclude the
suggested location reference did not lead to a smaller spread in referring expressions that participants
were using for locations.

Measured over the entire experiment, 72% of the object expressions in BringObject commands were
extracted correctly. Since, in our system extracting the object reference from a speech to text candidate
does not require a Knowledge Base, this percentage remained constant throughout the experiment.

5.4. Demonstration on CoBot

In this section, we demonstrate the different kinds of interaction CoBot can have, depending on the
task assigned and the state of the Knowledge Base. First, we show one of the first interactions we
had with CoBot (Figure 13). The Knowledge Base at this stage is still relatively empty and allows to
correctly ground the action but not the location. Therefore, the robot asks a question to the user, updates
the Knowledge Base, and then correctly executes the command.

Robotics 2015, 4 244

User: Go to the small-size lab.
Cobot: Where should I go?
User: The small-size lab.
Cobot: I don’t know that location, please give me

a four-digit number
User: 7-4-1-2
Cobot: Going to the lab, room 7412

Figure 13. One of the first interactions with CoBot, when the Knowledge Base is in
an early stage.

As the Knowledge Base grows, less additional questions are asked by the dialog system. However,
sometimes, the stored information does not match the intention of the user. Such a situation is shown
in Figure 14. The user asks for the “conference room”. KnoWDiaL grounds this expression to room
7101, but while room 7101 indeed is a conference room, the user is referring to a different one, room
7501. Through a short dialog, the user is able to correct CoBot, and after the new information is added
to the Knowledge Base, the task is executed. Notice how after such an interaction, the Knowledge Base
has now multiple groundings for the same expression with different weights; this does not represent a
problem as KnoWDiaL always selects the more likely grounding.

User: Go to the conference room.
Cobot: I am going to room 7101, is it correct?
User: No.
Cobot: Ok, can you please spell the room number

of my destination?
User: 7-5-0-1
Cobot: I am going to room 7501, is it correct?
User: Yes.

Figure 14. An example of interaction where the user corrects the information retrieved from
the Knowledge Base.

Next we demonstrate an interaction in which CoBot queries the Web by using OpenEval (Figure 15).
The user asks for “a coffee” but does not specify where this object can be found. As a first attempt, the
robot tries to find a match in its Knowledge Base, but nothing is found. Therefore, CoBot queries the
Web and comes up with two alternatives: The kitchen or the office. Before executing the task, the robot
asks the user to choose one of these two options.

Robotics 2015, 4 245

User: Please bring a coffee to the lab.
CoBot: The object is not in my Knowledge Base, I

will search the web using OpenEval to see if
the object is in location “kitchen”, “office”,
“meeting room” or “printer room”.

CoBot: OpenEval returns high probability for object
“coffee” in location “office” and also for object
“coffee” in location “kitchen”. Which location do
you think is the best?

User: Kitchen.
CoBot: I will collect the object “coffee” and deliver

it at the lab. I am going to the kitchen, room
7602.

Figure 15. CoBot queries the web using OpenEval in order to retrieve the information it
needs to execute the required task.

Finally, we show an interaction in which the robot is able to correctly ground every part of the
command (Figure 16). The user asks to bring lunch from the kitchen to the lab; CoBot first asks for
the object that needs to be delivered, and then asks for confirmation for both of the locations involved
in the task. The robot asks for confirmation to make sure it will execute the correct task but it is able to
ground “lunch”,“kitchen”, and “lab” autonomously. Once the robot gets to the kitchen, it asks someone
for help in order to put the lunch in its basket, and finally it goes to the lab and delivers the lunch.

All of the interactions presented in this section are also available in a video [19].

Robotics 2015, 4 246

User1: Bring lunch from the kitchen to the lab.
CoBot: Which object should I deliver? Please give me the name of the object only.
User1: Lunch.
CoBot: You want me to deliver the object lunch. Is that correct?
User1: Yes.
CoBot: I will collect the object lunch at the kitchen, room 7602, and deliver it to the lab, room 7412.

Is that correct?
User1: Yes.
CoBot: I am now planning my route to specific locations. I am going to the kitchen, room 7602, to

pick up the object
“lunch”. Bye.

CoBot goes to the kitchen
CoBot: Hello, can you please put the object “lunch” in my basket and press “done” when I am ready

to go?
User2: *takes lunch from the fridge, puts it into the basket and presses the button*
CoBot: Thank you, I am going to the lab, room 7412, to deliver the object “lunch”
CoBot goes to the lab
CoBot: Hello I have brought the object “lunch” from the kitchen, room 7602, to your room. Please

press the button
“done” when I can leave.

User3: *takes the lunch and presses the button*

Figure 16. An interaction between CoBot and multiple users. The robot is able to correctly
ground every part of the command.

6. Conclusions

We have presented KnoWDiaL, an approach for a robot to use and learn task-relevant knowledge
from human-robot dialog and access to the World Wide Web. We have introduced the underlying joint
probabilistic model consisting of a speech model, a parsing model, and a grounding model. We focus on
tasks of a mobile service robot, CoBot, involving actions, locations, and objects. Our model is used in a
dialog system to learn the correct interpretations of referring expressions the robot was not familiar with
beforehand. Commands involving different actions, locations and people can be dealt with by adding new
facts to the Knowledge Base and by searching the Web for general knowledge. KnoWDiaL is an integral

Robotics 2015, 4 247

part of the continuously operating CoBot robot. We have presented experiments that show the number
of questions asked by the robot in order to understand a command decreases, as it interacts with more
people, and that our KnoWDiaL approach outperforms a non-learning baseline system. The KnoWDiaL
approach is a general contribution to the challenge of speech interpretation and knowledge processing
for autonomous robots, which we demonstrate within mobile service robots.

Now that we successfully reached this core KnoWDiaL approach, our ongoing and future works
include addressing several upcoming challenges, including handling dynamic knowledge, either
temporary, changing, or incorrect knowledge. For example, currently, if Dana changes her office
after users confirmed Dana’s office to be “room 7008” for some number of times, it would require an
equivalent number of interactions about the new office to overrule this knowledge. Different techniques
can be investigated, such as time-stamping the Knowledge Base updates, and asking or searching
for clues on how confident users are. Confidence scores could be used for non-linear and Bayesian
Knowledge Base updates.

We are also interested in searching for additional features that may be useful in the grounding process,
including the robot’s current position in the building, the time of the day, and features regarding the
person who is interacting with the robot. For example, if the robot does not recognize the person, such
person is likely to be a visitor, and is more likely to be asking for a GoTo command. The nature of
our grounding model makes it straightforward to add such features in our model by including their
count in Equation (5).

Finally, we are actively pursuing the sharing of the learned knowledge base among our multiple
robots in the same building, as well as with other robots in other locations. Our approach could also
be integrated with other dialog systems. We are committed to investigating this knowledge sharing
among robots towards an understanding of common and general representations that can be shared
among multiple learning autonomous robots.

Once a grounding is confirmed, all frame elements of each speech interpretation are added to the
Knowledge Base (Figure 17), allowing the system to learn, and to generalize knowledge acquired from
this dialog to other task assignments that are similar but not the same. For each of the framed actions and
parameters, the corresponding groundsTo relations are added to the Knowledge Base and initialized to
a count equal to its weight (i.e., speech to text confidence multiplied by parser confidence). If a certain
grounding was already present, its count is incremented by the weight.

Waiting for user confirmation before the Knowledge Base is updated does not imply all of this
knowledge makes sense for human readers. An example from our Knowledge Base is “bring me”, which
in some cases incorrectly got parsed as “to-person”. In the resulting dialog, the destination of the robot
got confirmed being the robots current location, so a predicate personGroundsTo(bring me, here) was
added to the Knowledge Base. Another example is locationGroundsTo(kick in, 7602), where “kick
in” is an incorrect translation of “kitchen”. By storing the groundings of such frame elements, we are
able to learn correct interpretations of mistakes in speech to text and parsing.

Robotics 2015, 4 248

labelsGroundTo([act][obj-else][to-loc], BringObj)
labelsGroundTo([act][obj-here][to-loc], BringObj)
labelsGroundTo([act][to-per][to-loc], BringObj)

actionGroundsTo(go deliver,BringObj)
actionGroundsTo(good liver,BringObj)

actionGroundsTo(go,BringObj)
locationGroundsTo(meeting room,7502)
locationGroundsTo(meeting rooms,7502)

locationGroundsTo(pencil meaning room,7502)
personGroundsTo(live,7502)

objectGroundsTo(pencil,7502)
objectGroundsTo(pen still,7502)

locationWebFitness(meeting room,0.58)
locationWebFitness(meeting rooms,0.52)
locationWebFitness(meaning room,0.58)

locationHasObject(kitchen,pencil)
locationHasObject(office,pencil)

locationHasObject(lab,pencil)

Figure 17. Knowledge base updates resulting from the dialog example. Specific weights
have been omitted.

Acknowledgments

This work was generously supported by multiple funding sources, including La Sapienza University,
Eindhoven University of Technology, Zheijang University, and by the National Science Foundation under
awards IIS-1012733 and IIS-1218932. Finally, the work would not have been possible without the
remarkable performance of the CoBot robots, for which we thank Joydeep Biswas, Brian Coltin, and
Stephanie Rosenthal, for their development of the autonomous service mobile robots, and Mike Licitra
for the design and construction of the always-functional and reliable CoBot robot platform.

Author Contributions

The first two authors contributed equally to this work.

Conflicts of Interest

The authors declare no conflict of interest.

Robotics 2015, 4 249

References

1. Samadi, M.; Veloso, M.; Blum, M. Evaluating correctness of propositions using the web.
In Proceedings of the Workshop on Learning by Reading and its Applications in Intelligent
Question-Answering, Barcelona, Spain, 18 July 2011.

2. Samadi, M.; Kollar, T.; Veloso, M.M. Using the web to interactively learn to find objects.
In Proceedings of the 26th Conference on Artifical Intelligence (AAAI-12), Toronto, ON, Canada,
22–26 July 2012.

3. Biswas, J.; Veloso, M.M. Localization and navigation of the cobots over long-term deployments.
Int. J. Robot. Res. 2013, 32, 1679–1694.

4. Hanheide, M.; Gretton, C.; Dearden, R.; Hawes, N.; Wyatt, J.; Pronobis, A.; Aydemir, A.;
Göbelbecker, M.; Zender, H. Exploiting probabilistic knowledge under uncertain sensing for
efficient robot behaviour. In Proceedings of the Twenty-Second International Joint Conference on
Artificial Intelligence, Barcelona, Spain, 16–22 July 2011; pp. 2442–2449.

5. Porzel, R.; Gurevych, I. Contextual coherence in natural language processing. In Modeling and
Using Context; Springer: Berlin, Germany, 2003; pp. 272–285.

6. Rosenthal, S.; Biswas, J.; Veloso, M. An effective personal mobile robot agent through symbiotic
human-robot interaction. In Proceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems, Toronto, ON, Canada, 9–14 May 2010; pp. 915–922.).

7. Biswas, J.; Coltin, B.; Veloso, M. Corrective Gradient Refinement for Mobile Robot Localization.
In Proceedings of the IROS’11, the IEEE/RSJ International Conference on Intelligent Robots and
Systems, San Francisco, CA, USA, 25–30 September 2011.

8. Kollar, T.; Perera, V.; Nardi, D.; Veloso, M. Learning environmental knowledge from task-based
human-robot dialog. In Proceedings of the International Conference on Robotics and Automation,
Karlsruhe, Geramny, 6–10 May 2013.

9. Jackendoff, R.S. Semantics and Cognition; MIT Press: Cambridge, MA, USA, 1983; pp. 161–187.
10. Landau, B.; Jackendoff, R. Whence and whither in spatial language and spatial cognition?

Behav. Brain Sci., 1993, 16, 255–265.
11. Talmy, L. The fundamental system of spatial schemas in language. In From Perception to Meaning:

Image Schemas in Cognitive Linguistics; Hamp, B., Ed.; Mouton de Gruyter: Berlin, Geramny,
2005; pp. 199–234.

12. Katz, B. Using English for indexing and retrieving. In Artificial Intelligence at MIT Expanding
Frontiers; MIT Press: Cambridge, MA, USA, 1988.

13. Wallach, H. Conditional Random Fields: An Introduction; Rapport Technique MS-CIS-04-21;
Department of Computer and Information Science, University of Pennsylvania: Philadelphia, PA,
USA, 2004; Volume 50.

14. Kudo, T. CRF++: Yet Another CRF Toolkit. 2009. Available online:
http://sourceforge.net/projects/crfpp/ accessed on 12 June 2015).

15. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python; O’Reilly: Sebastopol, CA,
USA, 2009.

Robotics 2015, 4 250

16. Winograd, T. Procedures as a Representation for Data in a Computer Program for Understanding
Natural Language. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA,
USA, 1970.

17. Hsiao, K.; Tellex, S.; Vosoughi, S.; Kubat, R.; Roy, D. Object schemas for grounding language in a
responsive robot. Connect. Sci. 2008, 20, 253–276.

18. MacMahon, M.; Stankiewicz, B.; Kuipers, B. Walk the talk: Connecting language, knowledge,
and action in route instructions. In Proceedings of the 21st National Conference on Artificial
Intelligence-AAAI, Boston, MA, USA, 16–20 July 2006; Volume 2, pp. 1475–1482.

19. Task-Based Dialog on CoBot. Available online: https://www.youtube.com/watch?v=2LojY9gFK5A
(accessed on 16 June 2015).

20. Skubic, M.; Perzanowski, D.; Blisard, S.; Schultz, A.; Adams, W.; Bugajska, M.; Brock, D.
Spatial language for human-robot dialogs. IEEE Trans. Syst. Man Cybern. C 2004, 34, 154–167.

21. Dzifcak, J.; Scheutz, M.; Baral, C.; Schermerhorn, P. What to do and how to do it: Translating
natural language directives into temporal and dynamic logic representation for goal management
and action execution. In Proceedings of the 2009 IEEE International Conference on Robotics and
Automation; Kobe, Japan, 12–17 May 2009.

22. Matuszek, C.; Fox, D.; Koscher, K. Following directions using statistical machine translation.
In Proceedings of the 5th ACM/IEEE International Conference on Human-robot Interaction,
New York, NY, USA, 2–5 March 2010; pp. 251–258.

23. Vogel, A.; Jurafsky, D. Learning to follow navigational directions. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, Uppsala, Sweden,
11–16 July 2010; pp. 806–814.

24. Dantam, N.; Stilman, M. The motion grammar: Linguistic perception, planning, and control.
In Robotics: Science and Systems (RSS); MIT Press: Cambridge, MA, USA, 2011.

25. Shimizu, N.; Haas, A. Learning to follow navigational route instructions. In Proceedings of the
21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009;
pp. 1488–1493.

26. Holzapfel, H.; Neubig, D.; Waibel, A. A dialogue approach to learning object descriptions and
semantic categories. Robot. Auton. Syst. 2008, 56, 1004–1013.

27. Kaiser, P.; Lewis, M.; Petrick, R.; Asfour, T.; Steedman, M. Extracting common sense knowledge
from text for robot planning. In Proceedings of the 2014 IEEE International Conference on Robotics
and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 3749–3756.

28. Kollar, T.; Tellex, S.; Roy, D.; Roy, N. Toward understanding natural language directions.
In Proceedings of HRI-2010; EEE Press: Piscataway, NJ, USA, 2010.

29. Tellex, S.; Kollar, T.; Dickerson, S.; Walter, M.; Banerjee, A.; Teller, S.; Roy, N.
Understanding natural language commands for robotic navigation and mobile manipulation.
In Proceedings of the National Conference on Artificial Intelligence (AAAI), San Francisco, CA,
USA, 7–11 August 2011.

30. Rybski, P.; Stolarz, J.; Yoon, K.; Veloso, M. Using dialog and human observations to dictate tasks
to a learning robot assistant. Intell. Serv. Robot. 2008, 1, 159–167.

Robotics 2015, 4 251

31. Chen, X.; Stone, P.; Sucar, L.-E.; van-der Zant, T. RoboCup 2012: Robot Soccer World Cup XVI;
Springer Verlag: Mexico City, Mexico, 2012.

32. Mu, Y.; Yin, Y. Task-oriented spoken dialogue system for humanoid robot. In Proceedings
of the IEEE 2010 International Conference on Multimedia Technology (ICMT), Ningbo, China,
29–31 October 2010; pp. 1–4.

33. Lemaignan, S.; Ros, R.; Sisbot, E. A.; Alami, R.; Beetz, M. Grounding the interaction: Anchoring
situated discourse in everyday human-robot interaction. Int. J. Soc. Robot. 2012, 4, 181–199.

34. Breuing, A.; Waltinger, U.; Wachsmuth, I. Harvesting wikipedia knowledge to identify topics
in ongoing natural language dialogs. In Proceedings of the 2011 IEEE/WIC/ACM International
Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT), Lyon, France,
22–27 August 2011; Volume 1, pp. 445–450.

35. Tenorth, M.; Nyga, D.; Beetz, M. Understanding and executing instructions for everyday
manipulation tasks from the world wide web. In Proceedings of the 2010 IEEE International
Conference on Robotics and Automation (ICRA), Anchorage, AK, USA, 3–7 May 2010;
pp. 1486–1491.

36. Gupta, R.; Kochenderfer, M.J. Common sense data acquisition for indoor mobile robots.
In Proceedings of the National Conference on Artificial Intelligence, San Jose, CA, USA,
25–29 July 2004; pp. 605–610.

37. Daoutis, M.; Coradeshi, S.; Loutfi, A. Grounding commonsense knowledge in intelligent systems.
J. Ambient Intell. Smart Environ. 2009, 1, 311–321.

38. Cafarella, M.J.; Halevy, A.; Wang, D.Z.; Wu, E.; Zhang, Y. Webtables: Exploring the power of
tables on the web. Proc. VLDB Endow. 2008, 1, 538–549.

39. Schiff, S. Know it all. The New Yorker, 31 July 2006.
40. Carlson, A.; Betteridge, J.; Wang, R.C.; Hruschka, E.R., Jr.; Mitchell, T.M.

Coupled semi-supervised learning for information extraction. In Proceedings of the Third
ACM International Conference on Web Search and Data Mining, New York, NY, USA,
3–6 February 2010; pp. 101–110.

41. Fader, A.; Soderland, S.; Etzioni, O. Identifying relations for open information extraction.
In Proceedings of the Conference on Empirical Methods in Natural Language Processing,
Edinburgh, UK, 27–31 July 2011; pp. 1535–1545.

42. Nie, Z.; Wu, F.; Wen, J.-R.; Ma, W.-Y. Extracting objects from the web. In Proceedings of the 22nd
International Conference on Data Engineering, Atlanta, GA, USA, 3–8 April 2006; pp. 123–123.

43. Matuszek, C.; Witbrock, M.; Kahlert, R.C.; Cabral, J.; Schneider, D.; Shah, P.; Lenat, D.
Searching for common sense: Populating cycTM from the web. In Proceedings of the National
Conference on Artificial Intelligence, Pittsburgh, PA, USA, 9–13 July 2005; Volume 20, p. 1430.

44. Chen, X.; Xie, J.; Ji, J.; Sui, Z. Toward open knowledge enabling for human-robot interaction.
J. Hum. Robot Interact. 2012, 1, 100–117.

45. Chen, X.; Ji, J.; Sui, Z.; Xie, J. Handling open knowledge for service robots. In Proceedings
of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China,
3–9 August 2013.

Robotics 2015, 4 252

46. Zhou, K.; Zillich, M.; Zender, H.; Vincze, M. Web mining driven object locality knowledge
acquisition for efficient robot behavior. In Proceedings of the International Conference on Intelligent
Robots and Systems (IROS), Vilamoura, Portugal, 7–12 October 2012; pp. 3962–3969.

47. Samadi, M. Facts and Reasons: Anytime Web Information Querying to Support Agents and Human
Decision Making. Ph.D. Thesis, Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA, USA, 2015.

48. Samadi, M.; Veloso, M.; Blum, M. OpenEval: Web information query evaluation. In Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13), Bellevue, WA, USA,
14–18 July 2013.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Related Work
	KnoWDiaL
	High-Level Joint-Probabilistic Model
	Frame-Semantic Parser
	Knowledge Base
	Grounding Model
	Querying the Web with OpenEval
	Dialog Manager

	KnoWDiaL: Detailed Examples
	Example 1: Accessing and Updating the Knowledge Base from Dialog
	Example 2: Accessing and Updating the Knowledge Base from Accessing the Web

	Results
	Learning Location References
	Predicting Object Locations with OpenEval
	Learning Object Groundings
	Demonstration on CoBot

	Conclusions

