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Abstract: Performing tasks with a robot hand often requires a complete knowledge of the manipulated
object, including its properties (shape, rigidity, surface texture) and its location in the environment,
in order to ensure safe and efficient manipulation. While well-established procedures exist for the
manipulation of rigid objects, as well as several approaches for the manipulation of linear or planar
deformable objects such as ropes or fabric, research addressing the characterization of deformable
objects occupying a volume remains relatively limited. The paper proposes an approach for tracking
the deformation of non-rigid objects under robot hand manipulation using RGB-D data. The purpose
is to automatically classify deformable objects as rigid, elastic, plastic, or elasto-plastic, based on
the material they are made of, and to support recognition of the category of such objects through
a robotic probing process in order to enhance manipulation capabilities. The proposed approach
combines advantageously classical color and depth image processing techniques and proposes a
novel combination of the fast level set method with a log-polar mapping of the visual data to robustly
detect and track the contour of a deformable object in a RGB-D data stream. Dynamic time warping is
employed to characterize the object properties independently from the varying length of the tracked
contour as the object deforms. The proposed solution achieves a classification rate over all categories
of material of up to 98.3%. When integrated in the control loop of a robot hand, it can contribute
to ensure stable grasp, and safe manipulation capability that will preserve the physical integrity of
the object.

Keywords: deformable objects; robotic hand manipulation; contour tracking; RGB-D imaging; level
sets; log-polar transform; classification

1. Introduction

Object manipulation is one of the fundamental capabilities of autonomous robot systems, yet
the design and development of autonomous robotic systems able to manipulate objects, in particular
deformable objects, without human intervention is still a challenging area of research. In order to
achieve efficient and safe manipulation, a complete knowledge of the manipulated object is often
required. In contrast to the manipulation of rigid objects which is extensively studied in the literature,
and for which well-established procedures exist, the investigation of the manipulation of deformable
objects represents a more recent undertaking. Several 1D and 2D solutions have been proposed to
tackle the issue of grasping and manipulation of soft objects [1–3] such as pieces of fabric or ropes.
On the other hand, researchers have only recently addressed the manipulation and grasping of
fully shaped 3D objects [4–10] and mostly focused on modeling the behavior of the deformation, or
detecting and ensuring stable grasp. Limited solutions yet exist for the automated classification of
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deformable objects in accordance with different materials they can be made of, forming classes of
elastic, plastic, elasto-plastic, or rigid objects, each category calling for different handling strategies.
The characterization generally involves the approximate identification of elastic parameters of a formal
model, often a mass-spring model [6,11], a finite-element (FEM) representation [6,12,13], or an elaborate
surface mesh model [14,15]. Parameters are typically estimated by comparing the real and simulated
object subject to interaction and aiming to minimize the differences between the two. However, these
approaches require that assumptions are made on the object material, such as linearity, homogeneity
or isotropy, which are inadequate for several real-world materials (e.g., foam, rubber) for which the
elastic parameters are difficult to define properly. This motivates the development of methods that do
not attempt to formally model the material of the object, but rather employ a data-driven approach
to make decisions based on the observed properties of the object, capture implicitly its deformation
behavior, and support adaptive control of a robotic hand.

In this context, the main goal of this paper is to present the development and implementation of a
framework that enables the characterization of generic deformable objects by visually observing their
interaction with a robotic hand. Generic objects considered here are objects that physically occupy a 3D
volume, rather than planar fabric or one-dimensional ropes. This work represents a first step toward a
model-free characterization of the deformation behavior of objects under robot manipulation. As such,
assumptions are for now made on the availability of a 2D contour surrounding the object as perceived
from the camera point of view, in order to develop the technology and prove its feasibility. The expected
use of the solution is for a robot hand to probe an unknown and unmodeled deformable object and
then automatically adapt the hand behavior, such as the grasping strategy and the magnitude of
applied forces, according to the object’s characteristics. When integrated in the control scheme for
a robotic hand, the solution contributes to ensure stable grasp and precise manipulation capability
without a priori knowledge of the shape and material of the object. This technology can contribute to
enable autonomous robots to handle and interact efficiently with unknown objects. This paper does
not investigate the problem of object manipulation in a comprehensive manner, but rather focuses on
the experimental determination of deformation characteristics for objects made of different materials,
without making use of formal modeling. Questions related to object’s pose determination, contact
points distribution [16], and manipulator path planning are not addressed here, as numerous solutions
already exist in the literature about these issues.

The proposed procedure makes use of the depth and color image data returned by a Kinect
sensor properly positioned to observe the robotic hand that performs the deformable object probing.
Segmentation and background removal are conducted with the well-known random sample consensus
(RANSAC) [17] and k-d tree search [18] algorithms applied over the depth point cloud. The
corresponding points from the color image are encoded in the YUV color space and mapped in the
log-polar domain [19]. The fast level set method [20] for contour detection and tracking is then applied
on the log-polar map. The original combination of level sets with log-polar domain representation of
visual data enables a robust contour identification and subsequently the tracking of the deformations in
the data stream. Capitalizing on the behavior of the contour during the probing phase, the object gets
classified as belonging to the rigid, elastic, plastic or elasto-plastic class of deformable objects, using a
solution based on dynamic time warping [21]. The purpose of this characterization is to enable better
manipulation capabilities for a robot hand by dealing efficiently with deformable objects composed of
different materials that impact their physical behavior.

The contributions of the paper provide an original framework for characterizing deformation
properties (and stages of deformation) of an object under interaction with a robot hand using RGB-D
data. The original application of the fast level set method in the log-polar representation of the color
map to capture and track the object contour during deformation proves robust and efficient. Also, a
decision system based on dynamic time warping to characterize the object’s deformation properties
independently from the length of the contour, and possible movement of the object under manipulation,
provides a complete solution for the characterization of a variety of deformation behaviors.
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2. Literature Review

This section summarizes the most relevant related work on object material characterization and
on robotic manipulation of deformable objects. The work of Petit et al. [5] considers RGB-D sensor
data for tracking of 3D elastic objects. The approach assumes that a prior visual extraction of the object
of interest is available, and the ICP algorithm is applied on the resulting point cloud to estimate a
rigid transformation from the point cloud to a linear tetrahedral FEM model representing the object.
Linear elastic forces exerted on vertices are computed from the point cloud to the mesh based on
closest point correspondence and the mechanical equations are solved numerically to simulate the
deformed mesh. This work is restricted to elastic objects. Zaidi et al. [6], without capturing visual
data, model a linear isotropic 3D deformable object in interaction with a three-fingered robot hand
as a mass-spring system based on a tetrahedral mesh. The estimation of contact points and object
deformations is based on tracking the node positions and solving the dynamic equations of Newton’s
second law. In [10], the stiffness of a 3D planar elastic object is measured by the curvature of surface
points from the object geometry. The local deformation is described in terms of a level curves set. The
work is further expanded in [22] to supervise the grasping of a non-rigid object and provide the robot
controller with signals when deformation is detected. The process is interesting in that it does not
require a formal model of the object deformation or of its material. However, it is not meant to provide
differentiation between various categories of deformable objects. Elbrechter et al. [11] model a piece
of paper in interaction with a robot hand as a 2D grid of nodes connected by links that specify the
bending constraints, namely a resting distance between two nodes, and use a stiffness coefficient. The
parameters are tuned manually. Markers are inscribed on the surface of the paper to track its folding
in the visual input. Choi et al. [23] track the global position of moving deformable balls, painted in red
against a blue background, in a video stream and adjust the elasticity parameters of a mass-spring
model of the ball by optimizing the differences with the real object. In Kraft et al. [24], sparse sets of
oriented 3D points along contours of objects manipulated by a robotic manipulator are monitored using
a stereo camera and then predicted based on the motion induced by the robot. Schulman et al. [13]
track deformable objects from a sequence of point clouds by identifying the correspondence between
the point cloud and a model of the object composed of a collection of linked rigid particles, governed by
dynamical equations. An expectation-minimization algorithm aims at finding the most probable node
positions for the model given the measurements. Tests are performed in a controlled environment,
against a green background that limits its applicability to normal conditions. In [25], a solution is
proposed for the robot manipulation of elastic objects that allows controlling simultaneously the
object’s final position (i.e., interest points over the object and its centroid) and its deformations. The
latter are represented as the compression distance between points of interest, the folding angle and the
normalized curvature of the object, as estimated by the curve passing through three interest points.
The solution is however limited to elastic deformations only. An approach that does not assume a
prior model or template for the object is proposed by Hur et al. [26]. They introduce a 3D deformable
spatial pyramid model to find the dense 3D motion flow of deformable objects in RGB-D data. The
point cloud is corrected with a depth hole-filling algorithm and treated with a Gaussian filtering
prior to the computation of a series of perspectively normalized descriptors. The 3D deformable
spatial pyramid finds dense correspondences between instances of a deformed object by optimizing
an objective function, in form of an energy corresponding to a Markov random field, taking into
consideration factors such as translation, rotation, warping costs and descriptors matching costs.

3. Proposed Approach for Deformation Tracking and Material Classification from RGB-D Data

The proposed system for object deformation monitoring and classification from RGB-D data is
illustrated in Figure 1. It takes as inputs the RGB image and the corresponding depth point cloud
collected by a Kinect sensor, and a user selected 2D fixation point in the RGB image that guides the
system towards the location of the object of interest. Based on the provided inputs, in the initial
step only, a 3D fixation point is calculated from the 2D fixation point provided by the user, using
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2D-3D mapping in the RGB-D data. The depth point cloud recuperated from the Kinect is subject to a
background removal operation using the RANSAC algorithm [17]. The main purpose of this operation
is to remove from the scene any undesirable elements (e.g., measurement table or robot hand mounting
plate, and other measuring equipment visible in the RGB-D data stream) in order to better identify the
object shape and thus reduce the processing time. Then, a cluster representing the object is extracted
based on the computed 3D fixation point from the remaining part of the point cloud after background
removal. The identified 3D object cluster is projected back to 2D and the resulting projection is used to
compute a bounding window in the color image around the identified object. The region within the
bounding window is encoded in the YUV color space before being further processed. This YUV coded
area of interest is projected in the log-polar domain to create a cortical image before a fast level set
method is applied on it to extract or track the contour of the object. The cluster from the color map
resulting from the 3D-2D projection serves for the first initialization of the level set contour tracking
method. The resulting object contour is then converted back to the RGB image Cartesian coordinates
for visualization. After the initial frame is processed, the region extracted from the last processed
image replaces the initial cluster in the color map and provides the level set re-initialization data for the
following frame in the sequence to be processed with the level set method. The process then repeats
over the entire sequence, within the YUV encoded window that is captured from the current image,
with the same size as the first bounding window, and which gets mapped in the log-polar domain.
The initial fixation point selection, background removal, and clustering operations are not performed
on successive images.
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Figure 1. Framework for object detection, contour tracking and material classification from RGB-D data.

In a separate step, after all frames have been processed, three representative frames and their
corresponding contour maps are extracted from the sequence and the object material is classified based
on the behavior of the contour during the manipulation with the robot hand. Four categories can be
identified: rigid, elastic, plastic, or elasto-plastic objects. A dynamic time warping (DTW) approach is
applied to perform this classification task.

3.1. Initialization Stage

Upon analyzing a sequence of RGB-D data, a user-selected point is fed in the system to initially
guide the algorithm towards the location of the object of interest. This selection is only required
in the first frame of the data stream and allows the system to rapidly locate the deformable object
independently from its color, shape, location or orientation in the workspace, and also independently
from the complexity of the background or from the relative configuration of the robot hand and Kinect
sensor. Such user guidance is common in the current feature tracking literature, but in many cases is
more extreme than what is required in the proposed solution. For example, a prior selection of the
object of interest is assumed to be available in [5], or the user is asked to crop the object in the initial
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frame in [23]. In our case, a single fixation point is needed and it can be selected randomly over the
object of interest. Its coordinates are used by the system to indicate the general location of the object.
Experiments demonstrated that while the algorithm works regardless of the position of this point
over the surface of the object of interest, a 2D fixation point, p2D, chosen roughly at the centre of the
object leads in general to more accurate contour estimation. The idea of using a central fixation point is
inspired by the work of Mishra and Aloimonos [27]. The authors suggest that human retina fixates an
interesting object with a high resolution captured by the fovea and the rest of the visual information at
lower resolution. In the current work, this process is replicated by the use of a log-polar mapping to
perform contour detection and tracking. In the log-polar map, the 2D fixation point represents the
centre of the transformation, where the precision of the log-polar image is maximal.

A 2D-3D mapping that takes into consideration the intrinsic calibration parameters of the Kinect
sensor [28] is applied to estimate the 3D fixation point, p3D, in the point cloud corresponding to the
2D fixation point, p2D, in the color image. The initial goal is to separate the points representing the
object of interest from the background in the RGB-D data stream. During experimentation the object is
placed in a robot hand situated over a table (Figure 1) and pointing upward while manipulating the
deformable object, and a Kinect sensor is positioned above the scene. Under the current assumptions,
an efficient way to remove most of the background is to locate the planar surface representing the table
and to extract that surface from the RGB-D data. This surface is the one closest to the object and its
identification improves the definition of the area in which the object lies. In a more general context
where the robot hand would reach to manipulate an object in any location in space, an equivalent
background removal procedure could consist of applying a threshold on the distance map to remove
all surfaces located behind the object of interest. However, this would also impose strategically
positioning the RGB-D sensor according to the object location, which remains beyond the scope of the
current research.

Under the consideration of a planar surface behind the manipulated object, the planar surface
identification is viewed as a plane-fitting problem which can be resolved with the RANSAC
algorithm [17]. The approach, implemented as per the “plane model segmentation” and “extracting
indices from a point cloud” algorithms of the Point Cloud Library (PCL) [29,30], is applied over the 3D
point cloud in the RGB-D data stream. Given that at least three non-collinear points are required to
estimate the plane model, the minimum size of the sample set, s, is set to 3. The distance threshold
is chosen empirically and set to t = 1 cm to ensure a good balance between the background table
removal and processing time. An example of the reduced point cloud, C∗, after removal of the table
and background visible in Figure 2a, is shown in Figure 2b.

Robotics 2017, 6, 5 5 of 24 

 

object. Experiments demonstrated that while the algorithm works regardless of the position of this 

point over the surface of the object of interest, a 2D fixation point, 𝒑2𝐷, chosen roughly at the centre 

of the object leads in general to more accurate contour estimation. The idea of using a central fixation 

point is inspired by the work of Mishra and Aloimonos [27]. The authors suggest that human retina 

fixates an interesting object with a high resolution captured by the fovea and the rest of the visual 

information at lower resolution. In the current work, this process is replicated by the use of a log-

polar mapping to perform contour detection and tracking. In the log-polar map, the 2D fixation point 

represents the centre of the transformation, where the precision of the log-polar image is maximal. 

A 2D-3D mapping that takes into consideration the intrinsic calibration parameters of the Kinect 

sensor [28] is applied to estimate the 3D fixation point, 𝒑3𝐷, in the point cloud corresponding to the 

2D fixation point, 𝒑2𝐷, in the color image. The initial goal is to separate the points representing the 

object of interest from the background in the RGB-D data stream. During experimentation the object 

is placed in a robot hand situated over a table (Figure 1) and pointing upward while manipulating 

the deformable object, and a Kinect sensor is positioned above the scene. Under the current 

assumptions, an efficient way to remove most of the background is to locate the planar surface 

representing the table and to extract that surface from the RGB-D data. This surface is the one closest 

to the object and its identification improves the definition of the area in which the object lies. In a 

more general context where the robot hand would reach to manipulate an object in any location in 

space, an equivalent background removal procedure could consist of applying a threshold on the 

distance map to remove all surfaces located behind the object of interest. However, this would also 

impose strategically positioning the RGB-D sensor according to the object location, which remains 

beyond the scope of the current research.  

Under the consideration of a planar surface behind the manipulated object, the planar surface 

identification is viewed as a plane-fitting problem which can be resolved with the RANSAC 

algorithm [17]. The approach, implemented as per the “plane model segmentation” and “extracting 

indices from a point cloud” algorithms of the Point Cloud Library (PCL) [29,30], is applied over the 

3D point cloud in the RGB-D data stream. Given that at least three non-collinear points are required 

to estimate the plane model, the minimum size of the sample set, s, is set to 3. The distance threshold 

is chosen empirically and set to t = 1 cm to ensure a good balance between the background table 

removal and processing time. An example of the reduced point cloud, 𝐶∗, after removal of the table 

and background visible in Figure 2a, is shown in Figure 2b. 

  
(a) (b) 

  
(c) 

Figure 2. (a) Raw point cloud from Kinect with registered color information; (b) table extraction result; 

and (c) identified cluster representing the object of interest.  Figure 2. (a) Raw point cloud from Kinect with registered color information; (b) table extraction result;
and (c) identified cluster representing the object of interest.



Robotics 2017, 6, 5 6 of 25

The next step consists of narrowing down the search area to the object of interest in the reduced
point cloud, C∗. The purpose of this step is to extract a single cluster containing the nearest elements to
the fixation point identified by the user in a Euclidean sense and that represents the object of interest.
The solution capitalizes on a k-d tree structure and the use of the fixed-radius near neighbors search
algorithm. Because an estimation is used to approximate the location of the 3D fixation point from the
2D-3D mapping described previously, and also due to the errors on depth that characterize the Kinect
sensor, the estimated 3D coordinates, p3D, may not exactly correspond to an existing point in the point
cloud. Moreover, because the point cloud recuperated is unstructured, in order to find the neighbor of
each point, the k-d tree data structure supports a faster nearest neighbor search. Therefore, a k-nearest
neighbors search [18] is applied to identify the k-nearest points, inX, in the reduced point cloud, C∗,
to the estimated 3D fixation point, p3D. An empirically chosen value of k = 100 is used to accelerate
the computation of the clustering approach while also guaranteeing that the cluster of the object of
interest contains at least 100 points. Beginning with these 100 points, the neighborhood of each is
further researched for extra points located within a maximum distance, dth, which can be integrated
in the object cluster. A value of dth = 5 mm was empirically determined. The resulting object cluster
is therefore composed of the initial 100 points augmented by any other points discovered within the
distance threshold, dth. The merging condition for the clustering is the Euclidean radius. The algorithm
used slightly differs from that available in the PCL library [30] in that it concentrates on a single cluster
located around the user-determined fixation point. Algorithm 1 summarizes the process.

Algorithm 1. 3D cluster extraction algorithm.

Input:

Point cloud C∗, C∗ = {pi} representing the point cloud after table removal
inX = set of k-nearest-neighbors to the estimated 3D fixation point, p3D (with k = 100)
dth = spatial distance threshold for a point to be considered as a neighbor (set to 5 mm)

Output:
The object cluster, cluster

function ClusterExtraction (C∗)
if C∗.empty() then

return ∅
else

Build k-d tree representation of C∗

Set up priority queue Q of the points that need to be checked, Q← inX
for every pi ⊂ Q do

if all the points in Q have been processed then
cluster ← Q

else
search the neighbors set Pk

i of pi in a sphere with radius r < dth
for every pk

i ⊂ Pk
i do

if pk
i has not been processed then
Q← pk

i
end if

end for
end if

end for
end if

end function

Once the object cluster in 3D is identified, the corresponding 2D object cluster in the color image is
identified with the inverse 2D-3D mapping in order to initialize the level set contour tracking method.
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For the case of the yellow object shown in Figure 2a, the final object cluster is shown in Figure 2c. The
bounding window with which the level set is initialized to process the first RGB-D frame and initiate
the contour tracking represents the bounding box of the 2D points (the farthest left, right, up and down
locations) enlarged by 50 pixels in all directions. This tolerance of 50 pixels introduces robustness to
cases where the object slightly shifts or rotates during manipulation. This initialization also contributes
to the acceleration of the contour detection since the initialization area is close to the object of interest.

3.2. Fast Level-Set Method in Log-Polar Domain for Object Contour Tracking

3.2.1. Log-Polar Transform

The log-polar transform simulates some aspects of the human visual model, in which a
high resolution around the fovea allows the eye to fixate on an object of interest, while the
rest of visual information is encoded at a lower resolution [31]. Given the polar coordinates
(ρ, θ) = (

√
x2 + y2, arctan(y/x)), calculated from the (x, y) Cartesian coordinates of an image of size

M × N pixels, the discrete log-polar transformation to a discrete cortical image of R rings and S sectors
is given by [19]:  u =

⌊
loga(

ρ
ρ0
)
⌋

v =
⌊

Sθ
2π

⌋ (1)

where b.c denotes the integer part, a = eln(ρmax/ρ0)/R is a parameter representing the non-linearity
of the mapping, with ρmax = 0.5min(M, N), and ρ0 represents the radius of the central blind spot
such that all pixels in the radius of ρ0 are ignored. In the equation above, u ∈ [1, R] and v ∈ [1, S]
and the most favorable relationship between R and S is to optimize the pixel aspect ratio close to 1.
In particular, the optimal S can be obtained as S = 2π/(a− 1) [32] for a given R, and typically R = ρmax.
Figure 3a shows a template for the mapping of an image from the Cartesian domain to the log-polar
domain for R = 12 and S = 31. The fuchsia ring, the cyan sector and the yellow receptive field (RF) in
the Cartesian domain correspond to the fuchsia column, the cyan row, and the yellow cell, respectively,
in the log-polar domain. The center of the round template represents the area of maximum resolution
(the fixation point), with the central blind spot marked as a black circle.
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Figure 3. (a) Cartesian to log-polar domain transformation; (b) RGB image (187 × 200 pixels)
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and initial contour shown in green; and (d) RGB image with Cartesian contour (187 × 200 pixels)
obtained by inverse mapping from the log-polar image.

Figure 3b shows an example of a Cartesian image, with the user-selected 2D fixation point shown
in green, while Figure 3c represents its equivalent discrete log-polar representation. The advantage of
using this transformation is that the object of interest gets to fill a relatively large area of the log-polar
image compared to the remaining background area, as can be observed in Figure 3c. Provided that the
fixation point is selected relatively centered over the object of interest, the percentage of space occupied
by the object of interest in the log-polar map is proportionally larger than in the Cartesian image, as
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the log-polar map is centered on the fixation point, therefore implementing the suitable mapping at a
higher resolution over the region of interest. Moreover, the use of the log-polar mapping simplifies the
search for contour points along a somewhat vertical direction for objects that are generally symmetrical,
as illustrated in Figure 3c. Finally, the log-polar mapping typically reduces the size of the representation
with respect to the original image (e.g., from 187 × 200 pixels to 93 × 167 pixels in the case shown
in Figure 3), based on the resolution of the log-polar mapping that optimizes the pixel aspect ratio
(as defined above). This further contributes to accelerate the contour retrieval procedure.

3.2.2. Color Space Encoding to Support Level Sets

Instead of directly using RGB color values in the log-polar image (as shown Figure 3c),
a transformation to the YUV color space is performed, where Y is the luminance of a color, and
U and V represent the two chromatic components. The simplified UV plane offers a more compact
and therefore faster solution to process color information. In the current work, either the U or the
V component is selected as the feature for the contour detection. As highlighted in Figure 3c, in the
log-polar image, the leftmost columns are the ones that are close to the 2D fixation point and the object
of interest occupies a large part on the left side of the image. The proposed algorithm for the color
space selection therefore initially computes the mean value of each column in the U component and
the V component, respectively. Then, standard deviation values of all the mean values are calculated
in the U and V components, respectively, over the entire log-polar map. The component (U or V) with
the largest standard deviation is selected as the color feature for the level set method. This choice is
justified by the desire to work with higher contrast to enable more accurate segmentation. The fact
that the luminance component, Y, is not considered in the process also reduces the dependence of the
solution on the local intensity of colors due to different illumination conditions and shading effects.

3.2.3. Fast Level Set Method in Log-Polar Domain

The primary objective being to track the contour of an object submitted to external forces in
order to differentiate in between rigid, elastic, plastic, and elasto-plastic objects, this study considered
various contour representations, either parametric or geometric. Parametric contour models (i.e.,
active contour models, or snakes) represent the contour in a parametric form. This representation
allows direct interaction with the model and can lead to a compact representation suitable for fast
implementation [33]. However, snakes tend to be attracted by spurious edges; they sometimes
degenerate the shape by shrinking and flattening; the convergence and stability of the contour
deformation by minimization may be unpredictable, and they may yield intersecting boundaries
in some situations [34]. Finally, they have difficulty in dealing with splitting or merging model
parts, a useful property for extracting objects with unknown topology [35], as those aimed for in this
work. This difficulty is caused by the fact that a new parameterization must be constructed whenever
topology changes occur. Level set (geometric) contour representation partially overcomes the problems
associated with parametric models by representing contours using partial differential equations. The
main difference with respect to parametric models is that the curves are evolved using only geometric
computations, independent from any parameterization, in an implicit manner. However, computing
partial derivatives can be time consuming, from where the interest in simplifying the problem of curve
evolution by employing the idea of switching elements between two linked lists representing the inner
and outer contours in order to control the splitting or merging of objects in the image [20].

The method proposed in this paper to detect and track the object contour builds on the fast
implementation of level sets proposed in [20], while also drawing inspiration from the works
of [27,31,36] that find the contours around a fixation point mapped in the log-polar domain and based
on the YUV color coding. The combination of these strategies has however not been experimented
before and represents an original contribution from the current work to tackle the challenging case of
deformable objects made of materials with considerably different characteristics.
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In the log-polar domain, the curve C̃, represented as the zero level set of the level sets method is
not an enclosing contour of the object, but rather an open boundary line in the vertical direction, as can
be observed in Figure 3c. Following the idea of the fast level set implementation, the proposed fast
level set method in the log-polar domain, or cortical image, employs two neighboring lists, denoted
by L̃in and L̃out. Each represents the inside and outside neighboring pixels of the curve (Figure 4),
respectively, and is defined as follows:

L̃out = {x|φ̃(x) > 0 and ∃y ∈ Ñ4(x) such that φ̃(y) < 0}
L̃in = {x|φ̃(x) < 0 and ∃y ∈ Ñ4(x) such that φ̃(y) >0}

(2)
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In Figure 4a, the green line represents the initial curve C̃, which splits the cortical image into two
parts: the object of interest on its left and the background to its right. The list L̃in contains the pixels
located on the left side of the curve, shown in dark gray, while the list L̃out contains the pixels located on
the right side of the curve, shown in light gray. Ñ4(x) represents a 4-connected discrete neighborhood
of a pixel x = (x, y) in a two-dimensional cortical image. Ñ4(x) contains the four neighboring pixels of
x, that is xup, xdown, xle f t, xright, as illustrated in Figure 4c. The use of a 4-neighbor mapping is inspired
from the original work of Shi and Karl [20]. φ̃ is the level set function, and the sign of φ̃ is used to
distinguish the object (initially located by the 2D fixation point) from the background. In particular,
φ̃ is negative for pixels belonging to the object of interest and positive for pixels belonging to the
background. It is defined as follows:

φ̃(x) =


3, if x is an exterior pixel;

1, if x is in L̃out;
−1, if x is in L̃in;

−3, if x is an interior pixel.

(3)

To illustrate the movement of switching pixels from list L̃in to list L̃out and vice versa during the
tracking of the object, Figure 4b shows an example in which the curve C̃ moves outwards relative to
the object at pixel B and inwards at pixel D. This behavior is represented as a switch of pixel B from list
L̃out to list L̃in and a switch of pixel D from list L̃in to list L̃out. The functions for switching pixels from
one list to the other [20] are described in Listings 1 and 2:

Listing 1. Switch_in procedure

switch_in (x)

1: Remove x from L̃out and add it to L̃in. Set φ̃(x) = −1.
2: For ∀ y ∈ Ñ4(x) with φ̃(y) = 3, add y to L̃out. Set φ̃(y) = 1.
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The function switch_in(x) is employed for a curve moving outwards at a pixel x ∈ L̃out. Specifically,
it switches the pixel x from L̃out to L̃in and adds all its neighboring exterior pixels to L̃out. In a similar
manner, switch_out (x) is employed for a curve moving inwards at a pixel x ∈ L̃in.

Listing 2. Switch_out procedure

switch_out (x)

1: Remove x from L̃in and add it to L̃out. Set φ̃(x) = 1.
2: For ∀ y ∈ Ñ4(x) with φ̃(y) = −3, add y to L̃in. Set φ̃(y) = −1.

The curve is evolved according to the speed function [20], which is separated into two parts: the
data-dependent speed function, F̃ext, and the curve smoothness regularization speed function, F̃in,
where the data-dependent speed function, F̃ext, is computed as in [37]:

F̃ext =

{
−λ1(I(x, y)−ml)

2 + kλ1(I(x, y)−mr)
2, if

∣∣∣F̃ext

∣∣∣ < th

−(I(x, y)−ml)
2 + (I(x, y)−mr)

2, otherwise
(4)

where I(x, y) is the color information at pixel (x, y), coming from either the U or V component, and
th denotes the threshold that weighs the internal and external speed functions. The parameters ml
and mr are the mean intensities of the images on the left and right side of the curve, C̃, respectively,
as defined by [38]:

ml(φ̃) =
∫

I(x,y)H(φ̃)dxdy∫
H(φ̃)dxdy

mr(φ̃) =
∫

I(x,y)(1−H(φ̃))dxdy∫
(1−H(φ̃))dxdy

(5)

where H(φ̃) is Heaviside function such that H(φ̃) =

{
1, φ̃ < 0
0, φ̃ > 0

.

The curve smoothness regularization speed function, F̃in, is approximated by:

F̃in = µ∇ · ( ∇φ̃

|∇φ̃|
) = µκ (6)

where κ is the curvature of the evolving curve, µ is a regularization parameter, and ∇ represents
the derivative function. The curvature calculation is computationally expensive and therefore the
Laplacian of φ̃ is used instead as a simplified expression of the curvature. Furthermore, the evolution
of the Laplacian of a function is equivalent to Gaussian filtering this function. A Gaussian filter, G,
is employed as the smoothness regularization term to accelerate the fast level set implementation.
The Gaussian filter is applied only on the pixels of L̃out and L̃in in order to smooth out the zero level
set. With the speed function, F̃ext, the evolution of curve, C̃, follows Algorithm 2.

For the initialization in line 1, the group of 2D pixels corresponding to the 3D points in the
identified cluster (containing the object of interest) found during the initialization stage are labelled as
(−3) and all other pixels within the bounding window defined previously are labelled as (3). The L̃in
and L̃out lists defined in Equation (2) are obtained on the log-polar transformed level set function based
on a Ñ4 neighbour search. Conversely, for all subsequent frames, the group of pixels that are within
the contour retrieved in the previous frame are labelled as (−3), and the ones outside the latest contour
as (3). The lists, L̃in and L̃out, are updated accordingly, using Equation (2), as part the initialization step.
This permits continuous tracking over successive frames in the sequence with the level set method in
the log-polar domain. F̃ext is initialized to 0. The two-cycle algorithm stops whenever either of the two
conditions defined in Listing 3 is satisfied.
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Algorithm 2. Log-polar domain contour tracking algorithm with level sets.

Initialize the array φ̃, F̃ext, and the two lists L̃in and L̃out.
for i = 1 : Na do // Cycle One

Compute F̃ext, for pixels in L̃in and L̃out;
For every pixel x ∈ L̃out, apply switch_in(x) if F̃ext(x) > 0;
For every pixel x ∈ L̃in, remove x from L̃in and set φ̃(x) = −3 if φ̃(y) < 0 for ∀y ∈ Ñ4(x);

For every pixel x ∈ L̃in, apply switch_out(x) if F̃ext(x) < 0;
For every pixel x ∈ L̃out, remove x fromL̃out and set φ̃(x) = 3 if φ̃(y) > 0 for ∀y ∈ Ñ4(x);
Check the stop condition and if satisfied, go to Cycle Two

Else continue this cycle.
end for
for i = 1 : Ng do //Cycle Two

For every pixel x ∈ L̃out, compute G⊗ φ̃(x). Apply cortical_switch_in(x) if G⊗ φ̃(x) < 0;
For every pixel ∈ L̃in , remove x from L̃in and set φ̃(x) = −3 if φ̃(y) < 0 for ∀y ∈ Ñ4(x);
For every pixel x ∈ L̃in, compute G⊗ φ̃(x). Apply cortical_switch_out(x) if G⊗ φ̃(x) > 0;
For every pixel x ∈ L̃out, remove x from Lout and set φ̃(x) = 3 if φ̃(y) > 0 for ∀y ∈ Ñ4(x);

end for
If the stopping condition is satisfied in Cycle One, terminate the algorithm; otherwise, go back to Cycle One.

Listing 3. Stop conditions

1: The speed at every neighboring pixel satisfies:

F̃ext(x) ≤ 0, ∀x ∈ L̃out
F̃ext(x) ≥ 0, ∀x ∈ L̃in

2: A pre-specified maximum number of iterations, Na, is reached.

In this algorithm, Na is the number of iterations of the data dependent speed, F̃ext, and Ng is the
size of the Gaussian filter, G, applied over the contour in order to smooth it. The parameter Na is set
higher than Ng to minimize the side effect of the smoothness regularization which is to weaken the
sharp corners of the contour. In this work, the two parameters are set empirically such that Na = 80
and Ng = 3. The high value of Na guarantees that the contour of the object can be detected accurately
when the first stopping condition is fulfilled. If not, it should ensure that Algorithm 2 does not take a
long time to achieve the second stop condition. The value of Ng cannot be large since it affects the size
of the Gaussian filter, which is Ng × Ng, and it should also be odd according to the properties of the
Gaussian filter. As the size of the Gaussian filter gets larger, the processing time becomes longer. From
the point of view of efficiency, Ng should therefore be small.

3.3. Object Classification

In order to characterize objects and classify them into different categories related to the material
they are made of, and therefore recognize their deformation behavior, an automated measurement
procedure is designed that uses a three-finger robotic Barrett hand. The hand applies a series of forces
over predefined points distributed all around the object to be characterized, while the contour of the
object is visually monitored with the solution described in the previous sections. The object contour
obtained at different deformation stages using the fast level set method applied in the log-polar space
is remapped into the RGB image coordinates, as shown in Figure 3d. A subset of the contours is then
used to automatically identify the type of object the robot hand is manipulating. The original, not
deformed, shape of the object does not influence the classification, and neither the choice of points over
which force is applied. This is a benefit of the proposed method that monitors the relative deformation
of the object only, while no formal model of the object is involved. Separate methods exist for optimal
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selection of contact points for the application of force to ensure stable grasp, and this aspect is beyond
the scope of the present research.

Elastic objects are known to return to their initial shape once the forces applied on them are
released. Therefore, in order to detect if the object is elastic, the final deformation contour, after
forces are removed, is compared to the initial deformation profile, collected in the beginning of the
characterization procedure, that is before any force is applied, as well as to the contour obtained when
the largest deformation takes place. If the initial and the final contours are almost identical, within a
certain tolerated noise margin, and different from the contour under the largest deformation, the object
is classified as elastic (Figure 5a).
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The comparison between the initial, largest deformation and final object contours is also exploited
to detect plastic and elasto-plastic deformations. If these three contours are different, beyond a
predefined tolerance of a few pixels in order to cope with the noise in the measurements, it means
that either a plastic or an elasto-plastic behavior occurred. The differentiation between the plastic
and elasto-plastic behaviors is achieved by comparing the final deformation contour with the contour
under largest deformation. Given that an object made of plastic material memorizes the largest
deformation experienced, if the final contour and the contour under largest deformation are almost
identical, as shown in Figure 5b, it means that a plastic deformation occurred. On the other hand,
elasto-plastic material has the property to partially, but not totally, recover from the deformation when
the external force is released. This property is recognized by comparing again the final contour with
the contour under largest deformation. If they are significantly different, as shown in Figure 5c, but
not identical to the initial contour, then the material is considered to be one exhibiting elasto-plastic
properties. Finally, if all three contours are identical, as shown in Figure 5d, the object is considered
rigid, as no deformation is perceived by the contour tracking system under any amount of force.

In the current implementation, the three contours of interest (initial, largest deformation and final)
are selected out of the sequence of contours under manual guidance to ensure proper evaluation of the
classification algorithm. However, contour tracking also allows automatic extraction of these contours
from the sequence. The frame prior to first deformation detection represents the initial contour; the
frame in which the deformation changes direction is selected as the contour with largest deformation;
and the frame after deformation stops is considered to be the final contour. Continuous contour
tracking over the entire manipulation procedure also allows the detection of a special case of rigid
objects that would break under the forces applied by the robot hand fingers. Close monitoring of the
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obtained contours in order to detect any abrupt changes, or definitive loss of contour, can be exploited
to identify this sub-category of rigid objects.

In order to perform the classification, the object contours are compared using dynamic time
warping (DTW) to detect changes in the various stages of the object deformation. Dynamic time
warping is a commonly used technique to align two sequences that may vary in length [21,39,40].
DTW is selected here because the number of pixels forming a contour can significantly vary in between
successive frames, as a result of the deformation of the object. As such, DTW does not require extraction
of features from the contours. It provides a robust distance-based method to compare contours of
variable length, which also eliminates the need for explicit point-to-point matching of contour pixels or
subsampling of the contours, and therefore allows full usage of the information available. In particular,
starting from a contour, principal component analysis is applied to identify the center pixel of the
contour, defined as follows [41]:

cntr =
∑K

k=1 ck

K
(7)

where cntr(xcntr, ycntr) represents the center pixel of contour, C̃, the latter being composed of K pixels,
c1, c2, . . . , ck(xck , yck ). The first pixel belonging to the contour (p1 in Figure 6a) is identified as being
the pixel that satisfies the two conditions defined in Listing 4.
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calculation; and (d) contour deformation comparison.

Listing 4. First pixel conditions

1: tan
ycntr−yck
xcntr−xck

= 0

2: ck is located on the right side of cntr.

Once this pixel is identified, the contour sequence is filled up with the remaining contour pixels
in the counterclockwise direction (along the arrow in Figure 6a).

Figure 6a shows an example of two consecutive contours C1 = p1, p2, . . . , pm, . . . , pM and
C2 = q1, q2, . . . , qn, . . . , qN at time t and t + 1, respectively. In order to compare the differences
between C1 and C2, the local cost matrix, d, is used to evaluate the similarity of each pair of pixels in the
sequences C1 and C2. In this matrix, each element d[m, n] represents the Euclidean distance between
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the pixel pm from the first contour and the pixel qn from the second contour. The value of d[m,n] in
the matrix is low (low cost) if pm and qn are similar to each other in their relative location, or high
otherwise. The warping matrix is computed with an additional locality constraint [42]. This means
that for the contour sequences C1 and C2, instead of calculating the DTW distance over all pairs
of pixels, the DTW distance is only calculated for the part of warping matrix where the condition
|M− N| ≤ v is satisfied. With this locality constraint, the computed DTW distance is restricted to a
band (shown in white in Figure 6b), along the diagonal of the warping matrix, which speeds up the
DTW distance calculation. As such, in Figure 6b, the black areas are eliminated from the calculations in
order to accelerate the computation time. The DTW algorithm with locality constraint is summarized
in Algorithm 3:

Algorithm 3. Conditional DTW algorithm with locality constraint.

Input:

C1 = p1, p2, . . . , pm, . . . , pM : Sequence of length M;
C2 = q1, q2, . . . , qn, . . . , qN : Sequence of length N.
Output:

DTW matrix

1: DTW = matrix [M+1, N+1];
2: v = 1/5×max(M, N)
3: v = max(v, |M − N |)
4: for m do = 0 : M
5: for n do = 0 : N
6: DTW[m,n] = ∞
7: end for
8: end for
9: DTW[0, 0] = 0
10: for m = 1 : M do
11: for n = max(1, m-v) : min(N, m+v) do

12: DTW[m,n] = d[m, n] + min


DTW[i− 1, j]
DTW[i, j− 1]

DTW[i− 1, j− 1]
13: end for
14: end for
15: return DTW[M, N]

The optimal warping path W = w1, w2, . . . , wl , . . . , wL, with wl = (ml , nl), is the one with the
minimal overall cost from the DTW matrix, where max(M, N) ≤ L < (M + N), and L is the length of
the warping path. This warping path must satisfy the three conditions defined in Listing 5.

Listing 5. Warping path conditions

1: Boundary condition: w1= (1, 1) and wL = (M, N);
2: Monotonicity condition: m1 ≤ m2 ≤ . . . ≤ mL and n1 ≤ n2 ≤ . . . ≤ nL;

3: Step size condition: wl+1 − wl ∈ {(1, 0), (0, 1), (1, 1)} for l ∈ [1, L− 1].

It is computed in reverse order of the indices starting with wL = (M, N). Once wl = (m, n) is
calculated, the next elements are defined using the following equation [39]:
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wl−1 =


(1, n− 1), if m = 1
(m− 1, 1), if n = 1

argmin{DTW(m− 1, n− 1), DTW(m− 1, n), DTW(m, n− 1)}, otherwise
(8)

With the above three warping path conditions, the warping path matches the two contour
sequences C1 and C2 by assigning the pixel pm of C1 to the pixel qn of C2 so that an element wl of the
warping path stands for a pair of pixels (pm, qn). The optimal path is shown as a black line over the
white band in Figure 6b.

In order to compute the differences between the initial contour, bw0, the contour under largest
deformation, bw1, and the contour after the force is removed, bw2, we compute a score inspired
from [42]. However, in our case the score is made more robust as it also takes into account shifting and
slight rotation movements that the object could exhibit during manipulation. The proposed score is
calculated as:

score(C1, C2) = e−
∑L

l=1 DISTl
L (9)

where L is the length of the warping path, and DISTl =|Dpl − Dql | with Dpl the Euclidean distance
between the pixel pm and its contour center cntr1, or Dpl =||pm − cntr1||, and Dql is the Euclidean
distance between the pixel qn and its contour centre cntr2, or Dql =||qn − cntr2||. Figure 6c illustrates
the Euclidean distances between a pixel and the center of the contour for the two contours considered
previously. However, because it is desired that the method is robust to noise and fast at the same time,
we impose two conditions in order to consider that a contour has been deformed. In particular, we
verify if a displacement of the contour occurred and that the displacement affects more than three
contiguous pixels over the contour. Considering the sequence of DISTl values, if the value of an
element in this vector is larger than a threshold (e.g., 4 pixels in our work), it is considered that a
movement occurred at that location on the contour, otherwise, the difference is attributed to noise and
it is considered that no movement occurred. In case the contour has moved, we also verify the number
of contiguous pixels affected by the movement. In particular, if the number of contiguous pixels with
movement is larger than 3 pixels, the contour is considered being deformed. An example is shown
Figure 6d. The blue contour represents the contour at time t, and the red one is the contour at time
t + 1. The pairs of pixels (p1, q1), (p2, q2), (p3, q3), (pm, qn) and (pM, pN) from these two contours,
respectively, are matched by the DTW algorithm. DISTl is the distance between two pixels pm and
qn and its value is smaller than 4. Therefore there is no movement at pixel pm. DIST1 is the distance
between pixels p1 and q1 and its value is larger than 4 so that pixel p1 is in movement. The same thing
can be noticed for DIST2, DIST3 and DISTL, meaning that the pixels p2, p3and pL are in movement
as well. As four contiguous pixels have movement, it is considered that the contour at the pixels pL, p1,
p2 and p3 is deformed. Only the deformed contours are evaluated using Equation (9).

If the contour is deformed, based on the scores computed pairwise between the initial contour,
bw0, the contour under largest deformation, bw1, and the final contour after the force is removed, bw2,
using Equation (9), the decision process for classifying the object as rigid, elastic, plastic or elasto-plastic
is illustrated in Figure 7. The value of the threshold thr applied on the score was empirically set to
0.75. Experiments revealed that for larger threshold values (e.g., thr = 1.0), the proposed classification
approach is over sensitive and noise impacts the classification; on the other hand, for lower threshold
values (e.g., thr = 0.5), the approach is insufficiently responsive to slightly different contours.



Robotics 2017, 6, 5 16 of 25

Robotics 2017, 6, 5 15 of 24 

 

where L is the length of the warping path, and 𝐷𝐼𝑆𝑇𝑙 = |𝐷𝑝𝑙 − 𝐷𝑞𝑙| with 𝐷𝑝𝑙 the Euclidean distance 

between the pixel 𝒑𝑚 and its contour center 𝒄𝒏𝒕𝒓1, or 𝐷𝑝𝑙 = ||𝒑𝑚 − 𝒄𝒏𝒕𝒓1||, and 𝐷𝑞𝑙 is the Euclidean 

distance between the pixel 𝒒𝑛  and its contour centre 𝒄𝒏𝒕𝒓2 , or 𝐷𝑞𝑙 = ||𝒒𝑛 − 𝒄𝒏𝒕𝒓2||.  Figure 6c 

illustrates the Euclidean distances between a pixel and the center of the contour for the two contours 

considered previously. However, because it is desired that the method is robust to noise and fast at 

the same time, we impose two conditions in order to consider that a contour has been deformed. In 

particular, we verify if a displacement of the contour occurred and that the displacement affects more 

than three contiguous pixels over the contour. Considering the sequence of 𝐷𝐼𝑆𝑇𝑙 values, if the value 

of an element in this vector is larger than a threshold (e.g., 4 pixels in our work), it is considered that 

a movement occurred at that location on the contour, otherwise, the difference is attributed to noise 

and it is considered that no movement occurred. In case the contour has moved, we also verify the 

number of contiguous pixels affected by the movement. In particular, if the number of contiguous 

pixels with movement is larger than 3 pixels, the contour is considered being deformed. An example 

is shown Figure 6d. The blue contour represents the contour at time t, and the red one is the contour 

at time t + 1. The pairs of pixels (𝒑1, 𝒒1), (𝒑2, 𝒒2), (𝒑3, 𝒒3), (𝒑𝑚,  𝒒𝑛) and (𝒑𝑀,  𝒑𝑁) from these two 

contours, respectively, are matched by the DTW algorithm. 𝐷𝐼𝑆𝑇𝑙 is the distance between two pixels 

𝒑𝑚 and 𝒒𝑛 and its value is smaller than 4. Therefore there is no movement at pixel 𝒑𝑚. 𝐷𝐼𝑆𝑇1 is the 

distance between pixels 𝒑1 and 𝒒1 and its value is larger than 4 so that pixel 𝒑1 is in movement. The 

same thing can be noticed for 𝐷𝐼𝑆𝑇2, 𝐷𝐼𝑆𝑇3 and 𝐷𝐼𝑆𝑇𝐿, meaning that the pixels 𝒑2,  𝒑3 and 𝒑𝐿 are in 

movement as well. As four contiguous pixels have movement, it is considered that the contour at the 

pixels 𝒑𝐿, 𝒑1, 𝒑2 and 𝒑3 is deformed. Only the deformed contours are evaluated using Equation (9). 

If the contour is deformed, based on the scores computed pairwise between the initial contour, 

𝑏𝑤0, the contour under largest deformation, 𝑏𝑤1, and the final contour after the force is removed, 

𝑏𝑤2, using Equation (9), the decision process for classifying the object as rigid, elastic, plastic or elasto-

plastic is illustrated in Figure 7. The value of the threshold thr applied on the score was empirically 

set to 0.75. Experiments revealed that for larger threshold values (e.g., 𝑡ℎ𝑟 = 1.0), the proposed 

classification approach is over sensitive and noise impacts the classification; on the other hand, for 

lower threshold values (e.g., 𝑡ℎ𝑟 = 0.5), the approach is insufficiently responsive to slightly different 

contours. 

 

Figure 7. Flowchart for object material classification. 

4. Experimental Results 

The proposed approach is tested on 9 objects with material properties belonging to 4 categories, 

as illustrated in the first row of Figure 5, to evaluate the performance of the framework. An 

investigation was initially performed to study the impact of the various parameters of the proposed 

approach. It is worth noting that once the internal parameters have been set, as reported in the paper, 

no further tuning was performed. All experiments were conducted with the same parameters, 

independently of the object material, shape of object, location of the Kinect sensor, and amount of 

force applied. This demonstrates the robustness of the proposed approach. 

The tests performed reveal that the minimal distance of the Kinect sensor with respect to the 

surface of the object for which the contour can be reliably extracted and tracked is around 50 cm 

(Figure 8a). The contour can be tracked up to 150 cm separating the Kinect sensor from the object. 

However, the best range of distances to perform contour tracking is between 55 and 75 cm, given the 

resolution of the Kinect sensor. The relative sensor-to-object distance has however an impact on the 

performance of the classification, because a larger distance produces fewer details over the contour 

given that the object of interest appears smaller in the image. As a result, when only light forces are 

Figure 7. Flowchart for object material classification.

4. Experimental Results

The proposed approach is tested on 9 objects with material properties belonging to 4 categories,
as illustrated in the first row of Figure 5, to evaluate the performance of the framework.
An investigation was initially performed to study the impact of the various parameters of the proposed
approach. It is worth noting that once the internal parameters have been set, as reported in the
paper, no further tuning was performed. All experiments were conducted with the same parameters,
independently of the object material, shape of object, location of the Kinect sensor, and amount of force
applied. This demonstrates the robustness of the proposed approach.

The tests performed reveal that the minimal distance of the Kinect sensor with respect to the
surface of the object for which the contour can be reliably extracted and tracked is around 50 cm
(Figure 8a). The contour can be tracked up to 150 cm separating the Kinect sensor from the object.
However, the best range of distances to perform contour tracking is between 55 and 75 cm, given the
resolution of the Kinect sensor. The relative sensor-to-object distance has however an impact on the
performance of the classification, because a larger distance produces fewer details over the contour
given that the object of interest appears smaller in the image. As a result, when only light forces are
applied on the object, the deformation is smaller and may be insufficient in magnitude to be perceived
from contour tracking over the color image. The tests reported in this paper are performed at a 55 cm
distance, for various positions and orientations of the Kinect sensor around the object, as shown in
Figure 8b. Experiments are also conducted for various initial positions and orientations of the object
within the robot hand (Figure 9), and for various grasping forces, in order to evaluate the robustness of
the solution with respect to all these factors.
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Figure 9. Robustness of tracked contours at various stages of the deformation for different positions
and orientations of the object in the robot hand.

Figure 9 shows several testing cases for objects with different shape and color properties and
under various starting conditions where the object is initially grabbed in different ways by the robot
hand. These results illustrate that the contour of the deformed object is correctly detected and tracked
throughout the manipulation regardless of the initial position or orientation of the object in the robot
hand, and under several magnitudes of applied force and levels of deformation. It can be noticed that
the robot hand fingers are covered with white rubber gloves. This proved useful for several reasons,
including the protection of the sensible touch sensors mounted (but not used in this work) on the
robot hand, to ensure the uniformity of color over the entire surface of the fingers, and making them
sufficiently contrasting to the background surface and objects.

Figure 10 illustrates testing scenarios where contour tracking is successfully achieved with various
materials, shapes and textures. Objects with various textures and inserts of different color and material
were tested, as shown in Figure 10c, d, g, to confirm that the contour tracking is not distracted by
colors or lighting effects, and that the level sets applied in the log-polar domain perform reliably under
more challenging situations. It can be observed that the solution tracks only the outside contour and
does not capture the internal details of the objects at any stage.

Figure 11 shows that the contour is also correctly tracked regardless of the position of the Kinect
sensor with respect to the object (see as well Figure 8b). Experimentation also revealed that for a
distance of 55 cm from the Kinect to the object, the tolerance to shifting movements of the object
during manipulation is of about 0.7 cm in any direction, and the rotation of the object as a result of
the manipulation that is tolerated is about 4◦ in order not to impede on the classification performance.
This results from the fact that no registration of the object or contour is performed in between the three
contours that are compared with the DTW technique. However, the contour tracking process itself is
much more robust to translations and rotations of the object.
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distributed over its contour. A light, medium or strong force is respectively applied and then released. 

The confusion tables for the three possible strengths of grasping forces are shown in Figure 13. These 

confusion tables map the detected category of an object against the target category, here considered 

as ground truth from the a priori knowledge that we have of each object. Confusion tables highlight 

correct classifications (green cells) and misclassification cases (red cells), and allow for the calculation 

of average success (green writing) and failure (red writing) rates, by category and overall (blue cells), 

under specific testing conditions, here related to the magnitude of the applied force. 

Figure 10. Robustness of tracked contours for various materials, colors and textures: (a,b) plastic
objects (plasticine dough); (c–e) elastic foam objects with and without inserts; (f) elasto-plastic foam;
and (g,h) rigid objects.
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Figure 11. Robustness of tracked contours with respect to the Kinect position.

Figure 12 demonstrates that the solution is also relatively robust to the location of the user-selected
fixation point, marked by a green dot. One can notice that a more central position of the 2D fixation
point leads to a smoother contour, while the contour is more jagged if the user selected point is closer
to the sides of the object. This is a consequence of the use of a log-polar mapping which centers the
contour extraction on the selected fixation point.
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Figure 12. Initial contour for various positions of the 2D fixation point.

To evaluate the object material characterization with the proposed dynamic time warping
approach, tests are repeated 60 times over nine objects (i.e., 3 plastic, 3 elastic, 1 elasto-plastic and
2 rigid). During each repetition, the object is compressed by the robot hand on three contact points
distributed over its contour. A light, medium or strong force is respectively applied and then released.
The confusion tables for the three possible strengths of grasping forces are shown in Figure 13. These
confusion tables map the detected category of an object against the target category, here considered
as ground truth from the a priori knowledge that we have of each object. Confusion tables highlight
correct classifications (green cells) and misclassification cases (red cells), and allow for the calculation
of average success (green writing) and failure (red writing) rates, by category and overall (blue cells),
under specific testing conditions, here related to the magnitude of the applied force.Robotics 2017, 6, 5 19 of 24 
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Figure 13. Confusion tables for various grasping force strengths applied on the objects: (a) light force;
(b) medium force; and (c) strong force. The material type is denoted as E (elastic), P (plastic), EP
(elasto-plastic), and R (rigid).
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An overall recognition rate of 69.8% over all material types is obtained when a light grasping
force is applied, of 98.3% for a medium force, and of 98.3% for a strong force. These results are
coherent with our expectations because light forces result in relatively small contour deformations.
Moreover, due to the relatively low accuracy of the Kinect sensor, tiny movements cannot be perceived,
leading overall to a lower classification performance under light forces. On the other hand, as the
magnitude of force applied by each finger increases, under the medium and strong forces categories,
the resulting deformation magnitude easily reaches within the detectable range for the Kinect sensor
image resolution, and the contour tracker performs significantly better. This demonstrates the need to
apply sufficiently large forces while attempting to characterize a deformable object.

In terms of material types, an overall recognition rate (over all magnitudes of force) of 99.4% is
achieved for elastic material (average of E columns in Figure 13, 71.9% for plastic material (average
of P columns), 85.6% for elasto-plastic material (average of EP columns), and 100% for rigid material
(average of R columns). These results show that the approach works very well for most types of
object material, but remains more limited for plastic materials, especially if light forces are considered.
Elastic material is in very few cases (i.e., 3 out of 180 samples or 1.7% of cases) confused with a rigid
material, but only when light grasping forces are applied, which creates insufficient displacement of
the contour. The lower performance for plastic material is related to the use of plasticine packed in a
transparent plastic wrap as sample of plastic objects, which is in fact not a perfectly plastic material.
Moreover, the robot fingers tend to stick to the plasticine dough, especially when medium and strong
forces are applied, impacting on the contour tracking and category recognition. As one can observe in
column P of the table for light forces, Figure 13a, only a few samples are correctly identified as being of
plastic material (25.6%) when a light force is applied, while 95% of the plastic samples are properly
classified under medium and strong force application. The classification performance is significantly
improved under medium and strong forces compared with the light force case, as plastic material tends
to be confused with elasto-plastic, elastic, or even rigid material when insufficient force is applied
to significantly deform it. For elasto-plastic material (columns EP in Figure 13), the percentage of
correctly classified samples varies from 56.7% under a light force, to 100% under medium or strong
force, which is coherent with the previous observation that sufficient force needs be applied to properly
characterize a deformable object composed of any material. Elasto-plastic material is confused with
elastic material when insufficient force is applied to reach a partially remaining deformation. Finally,
rigid objects (columns R in Figure 13) obtain a very high recognition rate regardless of the magnitude
of force applied on them. This is essentially due to the simplicity of their recognition, which relies
on no significant deformation occurring under no circumstances. Given that the proposed approach
mainly aims at recognizing the type of material the objects are made of, rather than generate formal
models, the original shape of the object does not influence the procedure, for the reasons provided in
Section 3.3.

Figure 14 shows an example of a more complex scenario involving an object composed of material
that exhibits multiple deformation stages, and therefore belongs to different categories at various
stages of deformation. Under light forces, the object, consisting of a cardboard cup, exhibits an elastic
behavior (images 1 to 3 in Figure 14), under medium forces and up to a certain limit the object remains
in its elastic stage, and then transfers to the elasto-plastic stage (images 4 to 7 in Figure 14). Finally,
when a larger force is applied, the object further transitions from the elasto-plastic to its plastic stage
(image 8 in Figure 14). In spite of the complex behavior of such an object, the performance of the
proposed contour tracker and deformable object classification remains consistent with the results
reported for elastic, elasto-plastic, and for plastic materials in Figure 13.
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Figure 14. Object with various deformation stages: elastic stage deformation (step 1 to 3); elasto-plastic
stage deformation (steps 4 to 7); and plastic stage deformation (step 8).

In the proposed tracking and classification system, the RGB image and the point cloud are
collected directly from the Kinect sensor with a frame rate of 30 Hz. The processing is performed
off-line after the sequence of RGB-D data is recorded. For each frame, the average contour tracking
time is 44.4 ms. The average classification time is 35.2 ms when the three relevant contours are analyzed
by the classification system, as detailed in Figure 7. The experiments are carried out on a 2.6 GHz Intel
Core i7 with 8 GB of RAM laptop. Figures 15 and 16 present the respective tracking time per frame
and classification time per object. The presented computation time corresponds to the average process
duration, in ms, over the 60 trials performed on each object and over all objects belonging to the same
category of material, or being submitted to the same magnitude of force (light, medium, strong).
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Figures 15a and 16a show that both the contour tracking and classification time remain in the
same range under various magnitudes of force applied to generate the deformation, with light forces
leading to slightly faster results due to very tiny deformations that occur. On the other hand, it is
noticeable in Figure 15b that the contour tracking process for elastic and rigid objects can take slightly
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longer. For elastic objects, this difference is explained by the fact that elastic material exhibits the most
significant deformation over the manipulation process, going from the original smooth contour to a
significantly deformed shape at largest deformation, and then back to the original shape, as exemplified
in Figure 10c,e. For rigid objects, the average result reported in Figure 15b is impacted by the larger and
heavily textured rigid object shown in Figure 10g. In this case, contour tracking takes on average 80 ms,
while for the simpler rigid object in Figure 10h, contour tracking is achieved in about 40 ms. For plastic
objects where the contour only moves toward the interior of the object, the level sets procedure requires
fewer tracking steps to capture the whole deformation process.

Regarding classification computation time, some differences are observed in between testing
cases. Objects probed with only a light force often do not exhibit deformations that are large enough to
support proper classification, as was demonstrated in Figure 13a. The classification process is typically
faster but the accuracy is also impacted. On the other hand, while it may appear that classifying
elastic or rigid objects takes about 10 ms more than recognizing plastic or elasto-plastic ones, a close
analysis reveals that the classification time is also influenced by the relative size that the object of
interest occupies in the processed RGB images, similar to what impacted contour tracking on those
objects. Items shown in Figure 10c,e (elastic), and Figure 10g (rigid) are larger in the image than the
other objects, independently of their material characteristics. These visually larger objects generate
contours with a larger number of points. Therefore, the DTW process (Algorithm 3) must establish
correspondence and estimate distances on a larger number of points to identify a longer, L, warping
path. This explains why the average classification time for elastic (42 ms) and rigid (38 ms) objects are
overall slightly longer than for plastic (28 ms) or elasto-plastic (29 ms) objects, among the set of test
cases examined in this study.

Overall, the contour tracking process supports an update rate of up to 23 Hz, without code
optimization. While this is slightly slower than the available acquisition framerate of 30 Hz from the
Kinect sensor, it compares with the performance reported by other researchers who applied level sets
on color images [43]. Moreover, the robotic hand moves relatively slowly while performing the object
probing, with the closing and reopening of the fingers, while in touch with the object, taking on average
2 s. The achieved contour tracking speed therefore proves sufficient to handle the probing process
that takes place at about 0.5 Hz. Also, this overall procedure is meant to operate as an off-line object
characterization process taking place before the actual manipulation happens. Therefore, real-time
processing is not an absolute requirement for deformable object characterization.

5. Conclusions

The paper proposes a robust approach for non-rigid object deformation tracking in RGB-D data
with the purpose of characterizing the material that deformable objects are made of with the assistance
of a robotic hand. The approach advantageously integrates well-established techniques for background
removal and distance-based clustering from RGB-D data with an original application of the fast level
set method in the log-polar domain in order to detect and track the contour of an object of interest
in the RGB-D data stream while it is manipulated by a robot. Dynamic time warping is employed
with a modified scoring scheme to characterize the object’s material properties based on contour
extracted at strategic stages of the manipulation by the robot hand. The proposed scoring scheme
provides tolerance to translations and rotations that the object may exhibit, beyond its deformation, as
a consequence of the manipulation. The proposed solution achieves an average classification rate over
all material types of 98.3% when a strong force is applied on the object and of 88.8% regardless of the
force magnitude, while supporting an update rate of 23 Hz. The main contributions of this research
consists of an original use of a log-polar map encoded in the YUV color space to actively track contours
with the fast level set method and to refine its performance. It also introduces a classification scheme
that provides accurate material recognition while tolerating object shifts and rotations. It represents a
first attempt to apply these concepts to the complex case of visual deformation tracking and robust
classification of the physical behavior of non-rigid objects undergoing robotic manipulation.
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