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Abstract: In this work, a new combined vision technique (CVT) is proposed, comprehensively
developed, and experimentally tested for stable, precise unmanned micro aerial vehicle (MAV)
pose estimation. The CVT combines two measurement methods (multi- and mono-view) based on
different constraint conditions. These constraints are considered simultaneously by the particle filter
framework to improve the accuracy of visual positioning. The framework, which is driven by an
onboard inertial module, takes the positioning results from the visual system as measurements and
updates the vehicle state. Moreover, experimental testing and data analysis have been carried out to
verify the proposed algorithm, including multi-camera configuration, design and assembly of MAV
systems, and the marker detection and matching between different views. Our results indicated that
the combined vision technique is very attractive for high-performance MAV pose estimation.

Keywords: micro aerial vehicle (MAV); triangulation; perspective-three-point (P3P); pose estimation;
particle filter

1. Introduction

In recent years, micro aerial vehicles have shown amazing capability in performing certain
difficult tasks and movements, such as exact landing [1], team cooperation [2], building blocks [3], etc.
In performing these tasks, state estimation for the aerial vehicles must be precisely obtained and be
carried out in a real-time format because any small error or delay may lead to a complete failure.
Therefore, the perception of environment and pose of MAVs is important for precise and real-time
control. However, in a conventional GPS (Global Position System)-Inertial system, GPS is not reliable
enough to deal with the task due to signal blockage or multi-path scattering. The inertial measurement
unit (IMU) is able to offer nice pose measurements but suffers from accumulative error over time.
Therefore, it needs frequent correction [4]. Although Light Detection and Ranging (LIDAR) can be
used to explore the surrounding environment and calculate the relative pose of a MAV, its size and
weight are out of the range of the load capacity of a micro aerial robot.

In comparison, the most-adopted method follows a vision-based approach, which is able
to provide enough accuracy to satisfy the needs for these MAV tasks, such as take-off, landing,
indoor navigation, etc. State estimation for the MAV can be defined as the process of tracking the
three-dimensional (3D) pose of the vehicle. The vision-based approach has been intensively studied
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and recently developed into many different methods categorized by different state estimation methods.
According to the arrangement of cameras, the vision-based state estimation can be roughly divided
into two categories: onboard navigation and on-ground navigation. Onboard navigation refers to a
MAV that tracks some structured or natural object to achieve self-state by using onboard vision, such as
relative target and landmark navigation [5–7], visual odometry (VO) [8,9], simultaneous localization
and mapping (SLAM) [10,11], etc. In the early stage of onboard navigation, relative target and landmark
navigation were used to estimate the relative MAV pose via onboard vision [5–7], where the structure
of the reference targets/landmarks is known. Then methods based on structure from motion (SFM),
SLAM, and VO have been proposed one by one. Using the methods, the MAV pose can be estimated
by tracking some typical features from the natural scene. Without the transformation from image plane
to 3D space, bio-inspired optical flow techniques have been also applied to directly infer the MAV pose
and motion depending on only the information in images [12,13]. Alternatively, a MAV calculates its
pose by an external visual measuring system, which is usually called on-ground navigation. In such a
system, one or more cameras are distributed in the surrounding and have the ability to capture the
image data about MAVs in real time. Normally as a testbed, on-ground navigation is applied to test
the algorithms of robot global positioning, control, and planning. In this situation, either carrying
load or computation capacity is no longer considered to be a problem. Even though current studies
mainly focus on onboard vision, like the above-mentioned methods, on-ground navigation is worth
studying as well [14–18]. However, these systems used only the triangulation method in stereo camera
configuration or the PNP (perspective-n-point) method in single camera configuration.

For the on-ground navigation method, we have developed a new combined vision technique to
significantly enhance the real-time MAV pose estimation, and built an on-ground visual system to
test it. In this CVT, two positioning strategies with different constraints have been integrated by a
particle filter framework at the same time: multi-view triangulation and monocular perspective-3-point
(P3P) algorithms. The multi-view triangulation algorithm is based on the intersection of different
views, while the monocular P3P technique is based on the shape change of a rigid body in the image.
The visual system is expected to have a more stable performance when these two location methods
(mono-view P3P and multi-view triangulation) are considered simultaneously by a PF framework.

The remainder of this paper is organized as follows: Section 2 reviews the related work of visual
measurement in MAV navigation. A summary of the visual system including hardware and software is
presented in Section 3. In the hardware part, the MAV and camera configurations are introduced. In the
software part, the feature point detection and multi-camera calibration are also described. Section 4
illustrates the proposed CVT visual algorithm which is used to calculate MAV poses by integrating the
two different methods. Finally, experiment testing results are demonstrated and conclusions will be
drawn in Sections 5 and 6, respectively.

2. Previous Research in On-Ground Visual Navigation for MAV Pose Estimation

MAV pose estimation in different applications and many advanced strategies to achieve this task
have been intensively studied for the past two decades. On-ground visual navigation is a commonly
used strategy for motion capture, which employs a set of external cameras with known camera
parameters to track and locate MAV. These cameras are usually installed around to observe the flight
in space simultaneously. This strategy is usually applicable to a limited space but with good accuracy.

For example, the VICON system (Vicon Motion Systems Ltd., Oxford, UK), a commercial product,
is able to track and locate more than one robot at the same time. The system exhibits a good performance
of positioning accuracy and processing rate. Based on this system, MAV control and navigation have
been well demonstrated in [19–21], where MAVs are controlled by the feedback of the visual system to
dance, play musical instruments, build houses, etc. However, such a configuration requires multiple
high-speed external IR cameras and is too expensive. An indoor test-bed named RAVEN (Real-time
indoor Autonomous Vehicle test ENvironment), based on VICON system, has been developed by the
Aerospace Control Lab [22] for autonomous navigation of multiple rotorcrafts, where vision is the
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only manner used for MAV pose estimation. The test-bed acquired pose information by detecting and
locating markers installed around MAV. The markers are usually beacons or reflection spheres which
are easy to recognize by infrared camera. Therefore, such a system has a high resolution for location
positioning and has been used to perform complicated tasks, such as autonomous landing, charging,
fancy flying, and multi-MAV motion planning.

Martínez et al. [14] proposed two visual manners including onboard vision and on-ground vision
to enable MAV automation. One detects and tracks the planar structure by an onboard camera.
The other one is a 3D reconstruction of the position of MAV by an on-ground camera system.
The on-ground camera system consists of three visible light cameras, by which the color markers
attached to the flying vehicle can be tracked and located. However, the results are rough because
the markers on the aircrafts are too large and the view is limited. In the work by Faessler et al. [15],
the MAV pose estimation was done with the P3P algorithm. An infrared camera is used as the major
sensor in such a system to assist detection. However, it takes a certain calculation time to distinguish
markers attached to different positions of the aerial body, as they look the same in the infrared image.
Different from the above, Hyondong et al. [16] employed a visible light camera instead of an infrared
camera to detect and track indoor MAV pose with color balls as the markers. Since onboard markers
are attached to the pre-defined location and have different color features, the position and attitude
of MAV could be recognized by color feature and triangulation. In addition, an extended Kalman
filter (EKF) framework integrated with MAV dynamic was introduced to improve the performance
of the visual measurement system. For example in [17], two stationary and upward-looking cameras
were placed on the ground to track four black balls attached to the helicopter. The errors between
the positions of the tracked balls and pre-specified references are taken as the visual feedback control
input. A pair of ground and onboard cameras was employed for the problem of quadrotor pose
estimation [18]. The two cameras were set to face each other to estimate the full 6-degrees-of-freedom
(DOF) pose of MAVs.

Different from the above-mentioned works, this paper did not pay too much attention to the
system configuration, but focused on how to make use of the image data from a visual system to
archive a stable pose estimation. In this work we will try to consider the two kinds of location methods
(mono-view P3P and multi-view triangulation) simultaneously by a PF framework.

3. Description of the Visual Measurement System

The on-ground visual measurement system is designed to test the proposed CVT and includes
the cameras, image grabber, PC processor, and self-built MAV with markers. The major focuses in this
study are calibration of the multi-camera system, MAV system design, and MAV detection.

3.1. Multi-Camera System Calibration

Before starting the measuring work, the multi-camera system should be calibrated to acquire
a mapping between the features in the real 3D space and the 2D image. By considering the basic
pinhole camera model, the calibration setups are separated into two setups. The first setup is for
intrinsic parameter calibration where each camera is individually calibrated with the Bouguet camera
calibration toolbox [23]. The second setup is for extrinsic parameter calibration carried out by the
multi-camera self-calibration toolbox [24].

In our measurement system (see Figure 1), four analog CCD (Charge Coupled Device) cameras are
connected to a PC station via a general 8-channel image grabber. So the data source from the
cameras can be captured synchronously and processed in real-time with the help of the OpenCV
library. At first, we use several image chessboards from different camera views and calibrate the four
intrinsic parameters of every camera, including the focal length (fx, fy) and principal point (µ0, ν0).
These parameters constitute the internal matrix (K-matrix) in the imaging model, which can be
written as:
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sx̃image = K[R|t]X̃world = PX̃world, where K =

 fx 0 u0

0 fy v0

0 0 1

 (1)

where x̃image is the 2D image point represented by a homogeneous vector (µ, ν, 1)T , X̃world is the 3D
world point represented by a homogeneous four-vector (X, Y, Z, 1)T , and s is a scalar representing the
depth information. R is the rotation transform matrix and t is the translation transform matrix from
the world frame to camera frame. R, t, and K-matrix constitute the mapping between the 3D world
and 2D image, which can be called the Projective matrix (P-matrix).
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Figure 1. Structure diagram of the multi-camera measurement system.

Once K-matrix is acquired, only seven parameters remain unknown for every camera,
including the scalar s, 3-vector r, and 3-vector t, respectively, in the P-matrix. All the image points,
3D-world points, and camera projectives from all the cameras can be put into the following equation:
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Based on the equation above, Ws can be factorized to recover the projective motion P and the
projective shape X if enough noiseless points (µi

j, νi
j) can be collected. During the calibration of

extrinsic parameters, the bright spots will be waved through the working volume of the camera system,
as shown in Figure 2a. Besides intrinsic parameters, the coordinates of the bright spots in all images
are the known information. The detailed computation and calibration processes have been previously
explained [24]. With the multi-camera self-calibration toolbox, not only the extrinsic parameters of
all cameras but also the coordinates of bright spots in the 3D space can be recovered. This is shown
in Figure 2b.
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Figure 2. Multi-camera extrinsic calibration. (a) The waving bright spot in the camera view is detected;
(b) recovery results of the camera structure and spot motion.

3.2. MAV Design and Detection

As shown in Figure 3, the MAV system is built with only one airframe, four speed controllers
and rotors and propellers, onboard microcontroller, communication module, and IMU sensor.
In the system, the main part for control and information processing is operated by a computer (PC)
on the ground. The onboard microcontroller, STM32F103 (STMicroelectronics, Shanghai, China),
is in charge of receiving speed command from the ground PC to generate corresponding Pulse-Width
Modulation (PWM) for the speed controllers to control the four motors. Also, the microcontroller
can be utilized to capture the inertial information from the IMU sensor and send it to the ground
PC in real time. The IMU, MPU9150 (InvenSense, San Jose, CA, US), is a unique sensor on the
drone, which is continuously sending measurements of the attitude angle, acceleration, and angular
velocity to the microcontroller at 100 Hz. The module Xbee PRO 900HP S3B is responsible for the
communication between the onboard and ground PC, which is able to work in full-duplex mode.
A joystick is connected to the ground PC by a simulator and is used to change the flight state of the
MAVs. In order to conveniently and efficiently test the control system in the lab, the quadrotor is
mounted on a plank via a cardan joint so that its state can be flexibly adjusted without flying far away.
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Figure 3. The MAV (micro aerial vehicle) system (a) and ground PC station (b).

As color is one of the most distinct features in the environment, we set three different color balls
around the airframe as markers for detection. Firstly, Gaussian filtering is done with a five-by-five
patch for every image to remove some sharp and unnecessary information. Because of different colors,
the three balls could be well segmented from the scene in HSV (hue, saturation, value) space. However,
the measurements in the images from different views (cameras) are not independent with each other
in the multi-camera configuration. It should be noted that there is an epipolar geometry constraint
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between every two fixed views. The constraint allows the correspondence of image point x from one
view and image point x’ from the other view, which can be written as:

x̃′Fx̃ = 0 (3)

where F is the fundamental matrix that contains the information of the two cameras’ intrinsic and
extrinsic parameters and can be acquired in advance according to Equation (4),

F = K′−T RKT
[
KRTt

]
×

(4)

where K′ and K are the intrinsic matrices of the two cameras, while R and t represent the 3× 3 rotation
matrix and the 3 × 1 translation matrix. From this equation, we can determine the corresponding x′

in the other view along the epipolar line
→
l = F

→
x once the point x in one view is found. As a result,

the detection in all views takes less processing time and improves noise immunity. The results of the
marker detection are shown in Figure 4a–e, showing that the detection is steady and the mean error is
less than one pixel.
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Figure 4. Detection of one marker in two views. (a) marker detection and the corresponding epipolar
line in one view; (b) marker detection and the corresponding epipolar line in the other view;
(c) the image coordinates by continuous detection for the three markers in (a); (d) the image coordinates
by continuous detection for the three markers in (b); (e) amplification of the green marker detection in (a).

4. Pose Estimation

4.1. Marker Location and MAV Pose Computation

It is noted that there is a unique solution to determine the position of a 3D point in the two-view
geometry by triangulation. Given the parameters of one camera, every point in the image can be used
by the two equations to determine the three unknown coordinates of the corresponding point in 3D
space according to the projection model (Equation (2)). Therefore, in the case of two or more than
two views, there are more than enough equations to obtain the solution. The more equations that are
considered, the higher accuracy the solution has. The fundamentals of the triangulation method are
shown in Figure 5a. In this method, the color marker represented by point X can be located in the 3D
world based on the knowledge of the corresponding positions in the image planes taken by Camera
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1–Camera N. The detailed computation is shown in Equation (5), which is a combination of all the
projective equations, [

s1→x
1
· · · sN→x

N
]T

=

 P1

...
PN


3N×4

→
X (5)

where
→
x

i
denotes the homogeneous coordinate of the marker in image plane i,

→
P

i
denotes the projective

matrix of camera i, and
→
X denotes the homogeneous coordinate of the marker in the 3D world.
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At the same time, by using the known relative relations among the three color markers on the
rigid body, the marker position and the rigid body pose relative to the camera frame can be derived.
This method is a so-called P3P problem, where the only given information is the actual distances
between each two markers. The details of the P3P method are shown in Figure 5b. The image point
mi(µi, νi) with focal normalization is calculated with Equation (6). The side lengths of the triangle
structured from the markers M1, M2, and M3 are denoted by a, b, and c, respectively. In fact, the vector
[xci, xci, 1]T has the same direction with the unit vector

→
e i, which is expressed in Equation (7).[

xci yci 1
]T

= K−1
[

ui vi 1
]T

(6)
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→
e i =

1√
x2

1ci + y2
1ci + 1

[
xci yci 1

]T
(7)

Consequently, the cosine of the angles between the three unit vectors could be determined by
Equation (8). Therefore, the three equations about the distance d1, d2, and d3 between the points M1–M3
and the center of camera can be obtained according to the cosine law, as described in Equation (8).
The equations can be solved by linear iteration with two real solutions of d1–d3.

cos α = eT
2 e3

cos β = eT
1 e3

cos γ = eT
1 e2

(8)


d2

2 + d2
3 − 2d2d3 cos α = a2

d2
1 + d2

3 − 2d1d3 cos β = b2

d2
1 + d2

2 − 2d1d2 cos γ = c2
(9)

Finally, the positions of the three markers M1–M3 relative to the camera reference frame can
be determined by Equation (10). Since the camera orientation in the 3D world frame has been
calibrated in advance, the positions of the three markers M1–M3 relative to the 3D world frame can be
also calculated. →

Mi = di
→
e i, i = 1, 2, 3 (10)

Because the positions of markers M1–M3 on the MAV are given, the pose of the MAV relative
to the 3D world reference can be determined from the discussion above. The MAV pose contains
both position and attitude, as shown in Figure 5c. The center of the markers M1 and M2 is defined

as the MAV position. In the rotation matrix
→
R =

[→
n ,
→
o ,
→
a
]
, the three vectors,

→
n ,
→
o , and

→
a represent

the
→
x b,

→
y b,

→
z b direction of the body frame in the 3D world coordinates, respectively. As shown in

Equation (11), the MAV body reference frame
{→

x b,
→
y b,
→
z b

}
can be built with the vector from the center

between M2 and M3 to M1 as
→
x b, and the vector from M2 to M3 as

→
y b, and

→
z b to be determined by

the right-hand rule, 

→
n
′
=
→
M1 − 1

2 (
→
M2 +

→
M3)

→
n =

→
n
′

‖→n
′
‖

→
o
′
=
→
M3 −

→
M2

→
o =

→
o
′

‖→o
′
‖

→
a =

→
n ×→o

(11)

where
→
a can be determined by the cross product of

→
n and

→
o following the orthogonality of R. Now,

the rotation and translation relationship between the body frame and the world frame has been derived.
The three attitude angles (roll, pitch, yaw) of the MAV can be solved by the Rodriguez transformation
expressed in Equation (12): [

ϕ θ ψ
]T

= Rodriguez(
→
R3×3) (12)

where ψ, ϕ and θ represent yaw, pitch, and roll angle, respectively. It should be noted that each angle
needs to be adjusted to a different range so that it can be consistent with the IMU output. In general,
for a rigid body (MAV) the three attitude angles (roll, pitch, and yaw) should have a defined range
and change direction. For example, the range of the roll angle is set to [−180◦, 180◦], the range of
the pitch angle is set to [−90◦, 90◦], and the range of the yaw angle is set to [0◦, 360◦]. However, the
computation result acquired directly from the visual system is [0◦, 360◦]. So it is necessary that the two
sets of attitudes are adjusted to be consistent. The adjustment is also called “normalization”.
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4.2. Pose Estimation

As the measurement is taken from the visual system, the MAV pose is continuously calculated
from multi-view triangulation and mono-view P3P, which will be used to correct or update the state
of MAVs in a fusion framework. In general, inertial measurements taken at high rate (100 Hz–2 kHz)
are fused with lower rate exteroceptive updates from vision, or GPS. For the MAV pose estimation,
conventional approaches are based on the indirect formulations of Extended or Unscented Kalman
Filters and Particle Filters (PF). For a multiple-camera measurement of one quantity at an approximate
same time, the framework in this work is based on the indirect formulation of an iterated PF, where the
state prediction is driven by IMU.

With I = {→e 1,
→
e 2,
→
e 3} as a right-hand inertial frame, B = {

→
b 1,
→
b 2,
→
b 3} defines a body-fixed

frame with its center at the center of mass of the vehicle. The ground 3D-world reference in the visual
system is set to be consistent with the inertial frame. The motion model of the rigid body can be
derived based on the kinematic equation of attitude and Newton’s equation of motion, as expressed

in Equation (13).
→
ξ I = (x, y, z) is the position of the center of mass of the vehicle in frame I.

→
v I is

the linear velocity in frame I.
→
Ω = (p, q, r)T is the angular velocity of the airframe with respect to the

frame B. The attitude of the rigid body is given by the rotation matrix RI
B(ϕ, θ, ψ) : B→ I.

.
→
ξ I =

→
v I.

→
v I = g

→
e 3 +

1
m RI

BF
.

R
I
B = RI

B

→
Ω×

I
.
→
Ω = −

→
Ω× × I

→
Ω + τ

(13)

The operator (·)× maps
→
Ω into an anti-symmetric matrix. m represents the rigid object’s mass.

I ∈ R3×3 represents the inertia matrix which is a constant. The vectors F and τ ∈ {B} represent the
principal non-conservative forces and moments applied to the rotorcraft airframe by the aerodynamics
of the rotors, respectively. It is difficult for a PF to deal with high dimensional states. This is because
the filter is likely to be divergent as the dimensions increase. The estimated state of a MAV consists of
the linear velocity (

.
x,

.
y,

.
z), the attitude angle (ϕ, θ, ψ) in the inertial frame, the acceleration, and the

angular velocity in the body frame. The acceleration and the angular velocity measured by the IMU
are supposed to be the sum of the real value, a bias noise, and a Gaussian noise. Therefore, the number
of the PF state is 12, as expressed in the following,

→
x k =

( .
x,

.
y,

.
z, ϕ, θ, ψ, abx, aby, abz, p, q, r

)T
(14)

Measurements of the MAV state include its position (x, y, z) and attitude (ϕ, θ, ψ) in the inertial
reference coordinate system. Measurement noises are complicated and mainly come from camera
calibration, marker detection, and varying environmental conditions. A particle filter is applied to deal
with the noises, because it is capable of modeling and canceling the random noise. Such a particle filter
is able to simulate the true state of the MAV and many measurements for one state by using different
testing methods with the large number of particles in the filter. Therefore, it is used to estimate the
state of the MAV in this work.

Similar to other filter frameworks [25–27], our estimation based on PF mainly consists of the
predicting and the updating periods. The detailed process is shown in Figure 6. During the predicting
period, the state of every particle evolves from xk to xk + 1 driven by the IMU based on the motion
model discussed above, with fixed weights for the moment. This is followed by the updating period,
when the weights of all particles are adjusted more than once. The weights are proportional to the
separation of the predicted state and the measurement in every updating step. At first, the weights
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of all particles are adjusted one by one based on the measurement results from each camera. Then,
after the updating period, the particle weights based on multi- and mono-view measurements are
normalized. As a result, the state of each particle is estimated by accumulating the product of the
particle and its weight. In addition, the particles with little weight will be abandoned, while particles
with large weight will be resampled. As a result, the particles to be measured are always enough in
the procedure.
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5. Experiments and Analyses

The vision-based pose estimation algorithm is tested in our laboratory with a small quadrotor
system shown in Figure 7. A visual system is set up with four cameras and a PC with an image
grabber. As shown in Figure 7, the quadrotor is flying in the view of the visual system. Its position and
attitude relative to the ground 3D reference frame can be calculated by the above-mentioned procedure.
The low-cost visible light cameras employed in the system are distributed around a 4 m × 3 m × 3 m
testing room.
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5.1. Pose Computation Results

When the positions of the three markers in the image are available, the location of the MAV can be
calculated by multi- or mono-view geometry. As shown in Figure 8A,B, the position and attitudes of
the testing MAV are calculated by using the two methods, respectively. On account of the P3P method
introduced in Section 4, two set of solutions are obtained and are discriminative with red and blue lines
in Figure 8B. Even though the two solutions of the position calculation are almost similar, the small
disparity would give rise to a large difference on the following attitude angle calculations. It could
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be observed that one of the two solutions is more close to the solution of the triangulation displayed
in Figure 8A. The other solution could be discarded using the triangulation solution as the reference.
As a result, this provides a solving method to distinguish the two solutions from P3P. Then by
calculating the position (x, y, z) and the attitudes (roll, pitch, yaw) continuously, the corresponding
histograms about the multi-and mono-view measurements are shown in Figures 9 and 10, respectively.
This information could help us understand in advance some performance of the two location methods,
such as stability, if the results of the methods are regarded as measurements of the filter framework.
Through the histograms, each measured variable, whether it is position or attitude, is centered on a
fixed value and changes around it.

In Figure 11, we compared the estimated attitude angles with the attitude and heading reference
system (AHRS) to verify the validity of the visual system. The precision of AHRS is 0.5◦–1◦ and the
resolution is 0.1◦. As shown in Figure 11, both the IMU and visual measurements are obtained and
displayed at the same time when the quadrotor is fixed on the plank via cardan lock. The results
indicated that the visual measurements including roll, pitch, and yaw angles are quite consistent with
the IMU data. This comparison indicated that the proposed technique is quite accurate.
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Figure 8. Pose computation when the quadrotor keeps a fixed state. (A) Results of the multi-view
triangulation method. (B) Results of the mono-view P3P method.Robotics 2017, 6, x  12 of 17 
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Figure 9. Histograms of MAV at fixed orientation by the multi-view measurement.
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Figure 11. MAV attitudes from visual (blue) and IMU (Inertial Measurement Unit) (red) measurements.

5.2. MAV Pose Estimation

It is necessary to model and study the noise in the two measurements from the visual system
in order to finally achieve an accurate design parameter of the filter. The noise model from the
measurements has been obtained by analyzing the histograms shown in Figures 9 and 10. In this
work, the noises of the process and measurement are considered as approximately a zero-mean
Gaussian distribution.

Especially, more particles are required when the estimation is expected to hold an approximate
real state, and disastrous computation also happens with it. So after numerous attempts, the particle
number N is set to 1000. As a result, the cycle time for the visual measurement system is 0.421 s, using
the Matlab platform on a PC with a 1.6 GHz Intel i5 processor. Figure 12 shows the results of state
estimation using the PF measurements from the triangulation module and IMU while the quadrotor
is hovering in the air. The mean value of the state of the quadrotor is thought to be approximately
zero. As a consequence, the standard deviations for the estimated state and the original measurements
are [0.0580, 0.1475, 0.0138, 0.0161, 0.0230, 0.0197, 1.7052, 0.9917, 6.1615, 118.4207, 71.4597, 44.4818]
and [0.3067, 0.8531, 0.2053, 0.0335, 0.0380, 0.0364, 3.5187, 3.2062, 7.7488, 121.5115, 76.2109, 52.0670]
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respectively. The results shown in Figure 12 indicate that the state estimation by the proposed technique
is more stable than the measurement directly obtained by a visual system or IMU.Robotics 2017, 6, x  14 of 17 
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Figure 12. MAV estimated state (blue) and observed measurements (red) from the visual system
or IMU. (a) translational velocity

(
vx, vy, vz

)
in the inertial reference frame; (b) accelerated velocity(

ax, ay, az
)

in the body reference frame; (c) attitude angles (roll, pitch, yaw) in the inertial reference
frame; (d) angular velocities (p, q, r) in the body reference frame.

Meanwhile, another experiment of real-time pose estimation has also been carried out while
the quadrotor is flying freely in a control region of the visual system. In this test, the position and
heading of the quadrotor are remotely controlled by a ground station and its attitude is autonomously
stabilized by the onboard IMU. The result of a part of the recovered flight trajectory estimated by the
PF framework is shown in Figure 13. In order to be observed well, it should be noted that the Z-axis of
the 3D world (inertial) frame has been converted to the opposite direction and points upwards.
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6. Conclusions 

In summary, we have presented a combined vision technique and built a visual measurement 

system for MAV pose estimation. In this work, an indoor visual measurement system has been 
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In our future plan, the proposed system will be assembled into an on-ground navigation platform to 

guide the MAV for safe and precise landing. It can also be considered as a low-cost and 

high-performance flight test-bed, which can be applied to study the dynamics, control, and 

navigation of MAVs.  
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Figure 13. Real time trajectory estimation (blue) and measurement pose (red) of the flying quadrotor in
the 3D reference frame.

From the results and discussion above, the proposed CVT enables a stable estimation when the
flying quadrotor is within the view of the designed vision system. Additionally, the camera view
or image noise may lead to different errors in each location method based on different constraints.
It is helpful to achieve a stable result when the solutions from triangulation and P3P are referred to by
a filter.

6. Conclusions

In summary, we have presented a combined vision technique and built a visual measurement
system for MAV pose estimation. In this work, an indoor visual measurement system has been
developed and introduced, including multi-camera parameter calibration, MAV detection, and design
of a quadrotor. The unique contribution of this paper is the proposed CVT in which two visual
positioning methods can be integrated in a PF framework to obtain a stable estimated pose. With the
designed visual measurement system, some interesting proof-of-concept tests have been carried out.
The results show that the proposed CVT can provide stable pose estimation for MAVs. In our future
plan, the proposed system will be assembled into an on-ground navigation platform to guide the
MAV for safe and precise landing. It can also be considered as a low-cost and high-performance flight
test-bed, which can be applied to study the dynamics, control, and navigation of MAVs.
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