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Abstract: A customizable anthropomorphic telepresence robot (CATR) is an emerging medium that
might have the highest degree of social presence among the existing mediated communication
mediums. Unfortunately, there are problems with teleoperating a CATR, and these problems
can deteriorate the gesture motion in a CATR. These problems are the disruption during
decoupling, discontinuity due to the unstable transmission and jerkiness due to the reactive collision
avoidance. From the review, none of the existing interfaces can simultaneously fix all of the
problems. Hence, a novel framework with the perception-link behavior model (PLBM) was proposed.
The PLBM adopts the distributed spatiotemporal representation for all of its input signals. Equipping
it with other components, the PLBM can solve the above problems with some limitations. For instance,
the PLBM can retrieve missing modalities from its experience during decoupling. Next, the PLBM
can handle up to a high level of drop rate in the network connection because it is dealing with gesture
style and not pose. For collision prevention, the PLBM can tune the incoming gesture style so that the
CATR can deliberately and smoothly avoid a collision. In summary, the framework consists of PLBM
being able to increase the user’s presence on a CATR by synthesizing expressive user gestures.

Keywords: gesture synthesis; unsupervised modeling; online association; vector space model;
distributed representation; spatiotemporal features

1. Introduction

Interpersonal communication is a common way for people to exchange information, and Figure 1a
shows the various mediums for transmitting that information. Naturally, face-to-face communication
(FTFC) is the golden standard because it has richer social cues, which make the communication process
more efficient. These social cues, e.g., facial expression and gestures, can show the degree of intimacy
and immediacy towards a person or a topic. Despite the advantages in FTFC, computer-mediated
communication (CMC) devices are still essential mediums for the future because the CMC devices have
many advantages. For instance, most of the CMC devices support distant communication. However,
they have a lower level of social presence when compared to FTFC. Among the emerging CMC devices,
the customizable anthropomorphic telepresence robot (CATR) should have the highest level of social
presence. The CATR, e.g., EDGAR-1 (Expression Display & Gesturing Avatar Robot) [1] (Figure 1b),
has an upper anthropomorphic structure and customizable head module so that it can perform realistic
interactive motions and facial expression. With this appearance, the CATR should be the closest to the
FTFC in terms of social presence. However, this anthropomorphic appearance must be paired with
a lifelike behavior to be efficient.
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(a) (b)

Figure 1. The different mediums for interpersonal communication. (a) Various mediums for
interpersonal communication ranging from FTFC to CMC; (b) an instance of a customizable
anthropomorphic telepresence robot, EDGAR-1 (Expression Display & Gesturing Avatar Robot).

For this paper, the gesture modality is the central focus because it has many functions and
effects on a conversation. For example, the punctuation gesture, also known as the baton gesture [2],
can emphasize the important segment of speech. There are also the interactive gestures that regulate
and organize a spoken dialog [3]. Furthermore, Neff et al. [4] have shown that the intensity of the
gesture correlates with the perception of extroversion. In conclusion, a gesture has many effects and
functions during a communication process. Unfortunately, its motion might be affected during the
transmission process.

When an operator controls a CATR, there are different situations that might corrupt his/her
synthesized gesture motion. They include decoupling, intermittent network connection and reactive
collision avoidance (Figure 2). Decoupling [5] happens when the operator commits a part of his/her
nonverbal modalities for another task instead of the conversation. An example is when the operator is
typing on the keyboard instead of gesturing, and the typing motion is irrelevant to and undesirable
for the conversation. Next, the second scenario occurs when the network condition is inconsistent.
An intermittent connection might cause jerky and uncanny synthesized gestures. For the last scenario,
this happens when there is a lack of situational awareness, and the existing solution [5] is to clip off
any out-of-bound motion. This reactive method might affect the smoothness of the motions. In short,
an ideal interface must handle the above issues so that the operator can operate the CATR without
compromising the conversation.

As a result, the aim of the paper is to study and develop a supporting framework using the
perception-link behavior model (PLBM) that is capable of handling the teleoperating issues (Figure 2),
which are mentioned in [5,6]. The objectives are as follows:

1. The CATR must imitate the operator’s personal gestures.
2. The CATR must have an intuitive and easy to use control interface.
3. During decoupling, the CATR will generate the operator’s behavior according to the

surrounding contexts.
4. If the connection is unstable, the CATR will continue to gesticulate smoothly and congruently.
5. If the operator motions an out-of-bound gesture, the CATR will

• not pose any danger to the audience.
• not distort the intent of the gesture.
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Figure 2. The three possible teleoperating issues while operating a CATR using a natural interface.

2. Related Work

This section presents works related to gesture reconstruction, gesture transmission
and multimodal association. Firstly, it will cover the fundamental components that include the
input interface, the encoder, the decoder and the associator. Subsequently, it will present the various
data representations. The last part will point out the best attribute of the components and a desirable
data representation to meet our goals.

First of all, most existing models have four components, and they are the input interface,
the encoder, the decoder and the associator. The input interface is the acquisition component
that acquires the gesture information from the operator. An example of the input interface is the
master-slave system from the MeBot [5]. For this interface, the operator controls the master manipulator,
and the slave manipulator imitates the motion. The next component is the encoder that transforms
a single/series of joint states into another representation. For instance, the gesture classification
module in Park’s model [7] is an encoder. The module can classify the operator’s motion into one
of the 13 predefined actions. On the contrary, the decoder extrapolates the future joint state using
the new representation. From the same example, Park’s model [7] had a motion generator with 13
predefined motions. The motion generator would execute one of the motions depending on the
predicted class. The last component is the associator that learns the relationships between different
modalities. None of the telepresence robot interfaces have this component. For instance, the MeBot [5]
could display different modalities, e.g., neck, arms, video and audio, but each of the modalities worked
independently from the another. In conclusion, the four components cover various processes, such as
the acquisition, transformation and association process, which is important in teleoperation. Especially
for the transformation process, it remaps the input into another representation that has different
properties, which might affect the transmission and the association process.

In this review, there are three representations. They are the local spatiotemporal, distributed
spatial and distributed spatiotemporal representation, and their features can be manually coded or
automatically extracted. The local spatiotemporal (manual) representation is a list of manually-coded
gesture styles, where the winner will take all. For instance, Park’s model [7] has 13 local gesture
actions, e.g., lift right, lift left and lift both arms. At any time, the model will select only one of them.
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On the other hand, the distributed spatial (manual) representation is a set of predefined features that
only captures the spatial information. An example is the transmitted signal in MeBot [5], and it is
the immediate information of the joints. Lastly, the distributed spatiotemporal (auto) representation
is a set of self-extracted features that capture the spatiotemporal information. For Lau’s model [8],
a probabilistic model, the dynamic Bayesian network, models an input sequence into a probability
distribution, which is the spatiotemporal features. In short, different representations have various
properties, such as spatial or spatiotemporal properties. These properties can either solve or impose
problems in a teleoperation.

Table 1 shows the various components and their attributes (refer to Supplementary Material 1 for
a more detail), and the shaded cells are the preferred attributes to overcome the problems. The first
property is the spatiotemporal representation with the automatic decoding function. These two
components can become a deliberate safety mechanism. With it, a system can tune incoming gestures
to avoid any collision; concurrently, it can uphold the gesture expressiveness. Secondly, a good
spatiotemporal representation should have distributed and self-extracted features. Unlike local
representation, distributed representation can represent new signals and hold more information [9].
Additionally, the automatic feature extractor can produce more consistent and richer distributed
features. For satisfying the above requirements with low cognitive load, the system must use the
natural interface and the automatic encoder. As a result, the operator directly motions his/her
gestures, and the system will encode the sequences into the distributed output for transmission.
Finally, the system should have an automatic associator to form rules between different modalities.
With the associator, it can substitute inappropriate signal to match the other modalities.

In conclusion, the following configurations, (1) distribution spatiotemporal representation,
(2) automatic encoding, decoding and associative module and (3) natural interface, can meet the
objectives. Hence, the proposed supporting module, the perception-link behavior model, has the
above attributes.
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Table 1. Comparison of the existing models with their components and effects, where the gray boxes are the desired attributes and effects. For a detailed description
of the attributes, please refer to Supplementary Material 1.

Components Effects

Input Interface Representation Encoder Decoder Associator Expressivity Cognitive Load Decoupling Obstacle Avoidance

TTR(>100 Traditional Local spatiotemporal Manual - High Yes (idle) Deliberative
predefined gestures) input device (>100 predefined gestures) Auto High and Reactive

TPR(<10 Traditional Local spatiotemporal Manual - Low Low Yes (idle) Deliberative
predefined gestures) input device (<10 predefined gesture) Auto (require remapping) and Reactive

Telepresence robot
MeBot [5] Master-slave Distributed spatial (Manual) Direct Direct - Low Yes (idle) ReactiveHigh (require remapping)

Hasegawa [10] Natural interface Distributed spatial (Manual) Direct Direct - High Low No Reactive

Park [7]
Local spatiotemporal - Low Yes (idle) DeliberativeNatural interface (13 predefined gestures) Auto Auto Auto and Reactive

Virtual agent

Hartmann [11] Traditional Distributed Manual Manual High Deliberative
and Neff [12] input device spatiotemporal (Manual) Auto High Yes (associate) and Reactive

Lau [8] Distributed - Yes (idle) Deliberative
Natural interface spatiotemporal (Auto) Auto Auto High Low and Reactive

Taylor [13] (FCRBM) Natural interface and Distributed Manual - High Yes (idle) Deliberative
and Xia [14] Traditional input device spatiotemporal (Manual) Auto High and Reactive
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3. Materials and Methods

3.1. Perception-Link Behavior Model

The name of this model is the perception-link behavior model (PLBM) because the conversation
partners might react according to what they see during a conversation, and this is the concept behind
role negotiation [15] and the chameleon effect [16]. Alternatively, the perception-link behavior model
(PLBM) is also an online associative multimodal model with encoding and decoding capability
(Figure 3a). It can be implemented into a CATR’s framework to associate multiple modalities, as shown
in Figure 3b. Primarily, it has three components: encoders, decoders and associator.

(a) (b)

Figure 3. The perception-link behavior model. (a) Block diagram of the perception-link behavior model;
(b) the perception-link behavior model in the CATR’s framework.

The following descriptions are the function of each component with a simple example.
The encoder transforms the input signal into distributed output, and it groups similar signals nearer
to each other. For example, let us assume that there exists a motion generator (Figure 4, Row 1) with
two degrees of freedom: linear lt and rotation θt. During the training process, the motion generator
only generated four signals, A, B, C and D, by varying lt and δθt/δt. The encoder should learn
the distributed features α and β using the training signals. Subsequently, the encoder can map any
signal, including (A + B)/2, into the new space, as shown in Figure 4, Row 2, where the signals
with similar dynamics are grouped nearer to each other. From the distributed output, the decoder
should extrapolate the gesture motion without losing its expressiveness. Once the encoder has mapped
a signal to its distributed output, the decoder can take the distributed output and transform it back
to its originals dynamic (Figure 4, Row 3). Lastly, the associator can learn relationships between
multiple modalities. If necessary, it can retrieve the missing signal from its knowledge base. Figure 4,
Row 4, left, shows the relationship of a motion v1 and the two other signals u1 and u2. If these
relationships are consistent, then the associator can leverage this knowledge and create a list of rules
of these relationships. In a different situation (Figure 4, Row 4, right), if there were a missing channel
v1, the associator could exploit the knowledge base and retrieve a synthesized signal v′1 given the
observable signals u1 and u2.
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Figure 4. The functions of each component in a PLBM.

With the above functions, the framework with PLBM can obtain the first objective of the paper,
because it adopts an unsupervised learning model and a contextual generative model. The encoder
utilizes an unsupervised learning model so that the extracted features are more thorough and
comprehensive. In an unsupervised approach, e.g., Fourier transformation, the distributed features
are the amplitude α and angular frequency β (Figure 4). However, there is no assurance of the
completeness of the features if they are manually selected. Secondly, the model produces distributed
features. The distributed representation encompasses more information given the same amount of
memory size. For a memory size of N capacity, a system with the distributed binary representation
can hold up to 2N classes. On the other hand, the local representation can only group up to N
classes. Lastly, the decoder is a contextual generative model that reconstructs the signals given a
contextual information, e.g., encoded data. A decoder model predicts a sequence of future time steps
i′t:(t+T) given the encoded data zt ∈ RN and the boundary conditions i(t−p):(t−1). With extensive
training, the decoder model should figure out the intrinsic dynamics encompassed in the encoded data
zt, and it should be capable of generating output i′t:(t+T) similar to the training data it:(t+T). In short,
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the framework with the PLBM can imitate the operator’s personal gestures because the encoding
process preserves expressiveness, and the decoding process is capable of generating personal gestures
given the encoded data.

From the review, the framework with the PLBM and natural interface (NI) should result in
minimum cognitive load and be easier for the operator to use because they require minimal remapping
and less memorization. The NI is the user interface that directly acquires the conversational gesture.
For example, Hasegawa [10] chose the NI, instead of the passive model controller [5], because it
could capture both conscious and subconscious gestures. From the review, the NI can capture the
subconscious gesture because it does not require much remapping. Secondly, the NI also requires less
memorization. For our case, we chose the NI because any operator can just make his/her gestures
as if it were a face-to-face conversation. Furthermore, all of the modules in the PLBM are automatic.
The encoder will automatically encode the user gesture to its distributed output. Next, the system will
transmit all of the data to the remote system. Upon reaching the remote system, the associator will
update its parameters. Concurrently, the decoder will synthesize the current poses. In summary, all of
the processes require minimal human intervention, except for the gesticulation process.

Finally, the PLBM can be incorporated into the CATR’s framework to handle the three
teleoperation issues (Figure 2). In the first scenario, the PLBM can conceal and replace the unwanted
user gesture because of the intrinsic properties of the feature space and the proposed algorithms in
the associator. Firstly, each modality should be encoded to its space so that the signals with the same
dynamics are grouped closer together. When talking, if the operator and audience react consistently,
then some clusters, which capture co-occurrence of the modalities, might emerge. At every time step,
the associator updates its knowledge base. This update process ensures that the clusters’ parameters,
e.g., mean and hit-rate, are up to date. In the recall mode, the associator can clean up its knowledge
base. For instance, it can remove low hit-rate clusters, which might be outliers or transition data points.
Subsequently, the associator will receive remaining modalities less the concealed modalities. From the
unobservable channels, the associator can look up its knowledge base to find the closest cluster based
on their parameters, e.g., mean. Once the associator finds it, the associator then evokes the missing data
and passes it to the decoder. In conclusion, the PLBM can associate multiple modalities and retrieve
corresponding missing data because of the feature space and the learning model in the associator.

For the second scenario, the PLBM can insert similar data when there is a poor network
connection, which results in packet loss, because the encoded data encompass the spatiotemporal
information. When network disruption or congestion occurred, the incoming data might be dropped
to reduce latency. For this instance, the framework can feed the last received data, e.g., αt−1 and βt−1,
to the decoder. The lost data can be replaced by the last known data because the last known data
encapsulate the gesture style, α and β, rather than the pose information, v1. With the gesture style, the
decoder can infer the next pose, v′1,t. In brief, the PLBM should be capable of reconstructing a smooth
and expressive gesture even when the packets are lost.

For the last scenario, the CATR can deliberatively and smoothly avoid a collision because of the
intrinsic properties of the feature space. Since the encoded data with similar dynamics are close to
one another, a searching algorithm can find a good candidate in that region. A list of criteria can be
chosen to measure the fitness of the candidate depending on the problem. In our case, the searching
algorithm, e.g., the evolutionary algorithm, can be activated when the decoder projects a collision
trajectory given the original encoded data. It starts by generating a group of candidates using the
seeds. The seeds can be the original encoded data for the first iteration or a list of the highest scoring
candidates for the subsequent iteration. Next, the candidates will undergo the evaluation processes
to determine their fitness; for example, a collision criterion measuring the number of points that lie
outside the desirable boundary or a similarity criterion measuring the degree of similarity between the
original’s and the candidate’s projected trajectory. The algorithm then selects a list of the candidates
and continues the above processes. It will continue until it finds a good candidate. In short, the PLBM
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with a searching algorithm exploits the inherit properties from the encoder to find a good candidate,
which is collision-free and expressive.

In conclusion, the framework with PLBM and NI should meet the objectives of the paper. First of
all, the encoder can remap any gesture into its features space without losing its expressiveness because
the features are comprehensive and distributed. The decoder can reconstruct the personal gesture
onto the CATR because it can generate the desired gesture given the encoded data. Next, a framework
with NI and PLBM is preferred because they require minimal human intervention, remapping
and memorization. Lastly, the PLBM can handle the teleoperating issues because of the intrinsic
properties of the features space. In the following sections, we will provide the implementation for
each component.

3.2. Model for the Encoder

Inspired by the vector space model, the restricted Boltzmann machine [17,18] and the convolution
neural network, the concept of the encoder model is to remap a non-stationary signal into a distributed
and phase-free vector space.

The proposed encoder model (Figure 5) has four layers. The first layer is the input layer, and the
data are a list of unit upper-limb vectors î from (27). Next, the second layer is the spatial transformation
layer, which is optional. It transforms the data of the joints î into the distributed spatial data:

h(1) = fes(î; θes) = Wes · î + bes , (1)

where θes = {Wes ∈ RN(1)×18, bes ∈ RN(1)} are the model parameters, which were trained using
contrastive divergence [19], and N(1) is the number of feature maps in the second layer. The third
layer is the convolution layer. Initially, this layer pulls out a T sequence of spatial data h(1)

(t−T+1):t.
Sequentially, it pulls out a subset of c size from the above sequence for every k step, and k ranges from
0, . . . , T − c. In each k step, the model calculates the convoluted output:

h(2)
t,k = get(h

(1)
(t−k−c+1):(t−k); θet)

= σ(Wet · h
(1)
(t−k−c+1):(t−k) + bet),

(2)

where θet = {Wet ∈ RN(2)×cN(1)
, bet ∈ RN(2)} are the parameters, which were also trained using

contrastive divergence [19], and σ(z) = max(0, z) is a rectified function [20]. The last layer is the
element-wise pooling layer. This layer merges the sequence from the previous layer h(2)t,0:(T−c) to form:

h(3)
t = pool(h(2)

t,0:(T−c)), (3)

where the pool() can either be the mean or max operation. To simplify the encoding process from (1)
to (3), the encoder function is reduced to:

zt = h(3)
t = fe(î(t−T+1):t; θes , θet). (4)

Once the encoder can transform the input signal into the new vector/gesture space, the next
step is to find a decoder to extrapolate the future joint states î′(t):(t+∗) given the boundary condition

î(t−p):(t−1) and the encoded data zt.
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Figure 5. Four-layer encoder model. For the detailed description of the selection of this model and its
parameters, please refer to Supplementary Material 2, Section 1.

3.3. Model for Decoder

3.3.1. Long Short-Term Memory for Decoding

The aim of this section is to find a suitable recurrent neural network for the gesture modality.
Many models, such as the temporal RBM (TRBM) [21], factored conditional RBM (FCRBM) [22], long
short-term memory (LSTM) [23,24] and echo state network (ESN) [25], have been proven to generate
various signals, such as motion, voice and handwriting. One of our preliminary experiments has
shown that LSTM performed better for our case.

As a result, the proposed decoder architecture has four layers (Figure 6), and they are the input
layer, LSTM layer, output layer and normalization layer. The input layer only assembles the necessary
information for each iteration, that is:

xi,t =
[
î(t−p):(t−1) zt ỹi,t−1

]T
, (5)

where î(t−p):(t−1) is the p number of previous upper-limb states, zt is the gesture style either from
the encoder using (4) or the associator using (24), ỹi,t−1 = (ycell,t−1, . . .) is the previous LSTM states
and i ∈ {in, gin, g f or, gout}.
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Figure 6. Decoder model with rollout with time.

The second layer is the LSTM layer (Figure 7). It has many activation channels, like the input,
gates, internal states and cell output. Each activation channel has two parameters: Wi ∈ RNgate×N(i)

and
bi ∈ RNgate

, where Ngate is the size of the cell. The following will describe the computation sequence.
First of all, it concurrently computes the activation for the input and all of the gates. The activation for
the input is:

yin,t = σ[−αin ,αin ]
(Win · xin,t + bin), (6)

while the activation for the gates is:

yi,t = σ[0,1](Wi · xi,t + bi), (7)

where σ[a,b](z) = a + [(b− a)/(1 + e−z)] is a modified generalized logistic function ranging from [a, b]
and i ∈ {gin, g f or, gout}. Next, it computes the activation for the internal state:

scell,t = yin,t ◦ ygin ,t + yg f or ,t ◦ scell,t−1. (8)

Lastly, it calculates the output cell:

ycell,t = ygout ,t ◦ σ[−αcell ,αcell ]
(scell,t). (9)

After completing the LSTM layer, the third layer transforms the cell output ycell,t into an instant
of the joint state:

yout,t = σ[−αout ,αout ](Wout · ycell,t + bout). (10)

Finally, the last layer is a series of normalization processes so that the inferred joint state
yout,t is equivalent to the constrained joint state î′t. The following steps are the breakdown of the
normalization processes. First of all, it denormalizes the inferred joint state yout,t to the concatenated
unit vectors:

ì = σyout,t + ī, (11)
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where ī is the mean of the data and σ is the standard deviation of the data. Because the constraints
from (26) are valid, the second step repeats the same process:

i′t =
[

ìT
1:3
‖ì1:3‖

· · · ìT
16:18
‖ì16:18‖

]T
. (12)

The above process ensures that the upper-limb orientations are indeed the concatenated unit
vectors. Finally, it scales the concatenated unit vectors i′t back to the normalized joint state î′t using (27).
The input layer from the next time step will then receive this result as one of its data. For simplification,
the whole process from (5) to (12) is shortened to a decoder function:

î′t = fd(î
′
(t−p):(t−1), zt; θd), (13)

where p is the number of previous state, zt is the encoded data either from (4) or (24) and θd is the
optimized parameters for the model.

Figure 7. Forward pass of an LSTM cell with input, output and forget gates. For the detailed description
of the selection of its parameters, please refer to Supplementary Material 2, Section 2.

In conclusion, the decoder can extrapolate the future joint states î′(t):(t+∗) given the boundary

condition î(t−p):(t−1) and the encoded data zt. However, the decoder, alone, cannot produce
an expressive collision-free gesture. Instead, it must work with a searching algorithm to find suitable
encoded data z′t that create collision-free motion.

3.3.2. Evolutionary Algorithm for Collision Avoidance

In this paper, the PLBM has an evolutionary algorithm (EA) to find a good candidate in the
collision avoidance scenario, and there are three steps in this algorithm.

During initialization, the algorithm generates a pool of candidates Z(o)
1 = {z(o)1 , . . . , z(o)M }1.

This process involves mutation and crossover from a sample Z(x)
1 = {zt, z′t−1, . . . , z′t−p}, where zt is

the original encoded data and z′t−∗ are the winning data from the previous time steps. In mutation,

it randomly selects a specimen from the sample z(x)
i ∈ Z(x)

1 to reproduce a new candidate:

z(o) ∼ N (z(x)
i , σ), (14)

where σ is a constant variance of a Gaussian distribution. On the other hand, the crossover randomly
selects two specimens z(x)

i and z(x)
j to spawn a new candidate:

z(o) = m ◦ z(x)
i + ¬m ◦ z(x)

j , (15)
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where m ∈ [0, 1] is a binary mask with a 0.5 mixing ratio. Once it has populated a pool of candidates
Z(o)

1 , the second step is to evaluate all of them and select a list of them.
The evaluation process computes the score for each candidate, and the selection process picks a

few of them for the next iteration. Firstly, the evaluation process computes the cost of each candidate
with this fitness function:

Fi = S
(

fd(z
(o)
i ), fd(zt)

)
+ C

(
fd(z

(o)
i )
)

, (16)

where S(X, Y) ∈ R measures the degree of similarity between X and Y and C(X) ∈ R counts the
numbers of points outside the boundary. The fd(z

(o)
i ) is the decoded signals from the candidate

z(o)i over a time span, and fd(zt) is the decoded signals from the original encoded data zt.

Next, the selection process chooses a subset of the candidates Z(w)
1 ⊂ Z(o)

1 with the lowest F score.
Lastly, the algorithm will end if there ∃i such that Fi < γ, where γ is a predefined threshold; or else,
the algorithm will go to the third step.

The third step repeats 1 and 2 until it finds a good candidate. Similar to the first step, the algorithm
generates a pool of candidates at each iteration. In the k-th iteration, the sample Z(x)

k for populating the

candidates is the selected candidates Z(w)
k−1 from the previous iteration. The next step is the evaluation

and selection processes. In the end, the cycle will only terminate when there ∃i such that Fi < γ or the
loop has reached the maximum iteration.

In summary, the PLBM with EA can deliberately generate a collision-free motion that has
a minimum distortion. In the next section, we present the last module, the associator, which can
solve the decoupling problem.

3.4. Model for Associator

The associator is a modified multi-channel adaptive resonance associative map (ARAM) [26],
which is an extension of the adaptive resonance theory (ART) model [27]. In the PLBM, the channels
of the associator are the encoded nonverbal cues from the operator and the audiences. Ideally,
the associator forms rules across the different channels for future querying. For better illustration,
the following paragraphs will explain the learning and recalling process using three features, and they
are the user’s face feature, the audience’s face feature and the user’s gesture feature.

The learning process has four steps. The function for each step is: (1) preparing the input;
(2) computing the choice activation; (3) finding the best activation; and (4) updating the weight through
fast or slow learning. The first step only assembles the input features. Some existing ART models [28]
have its input xa ranging within [0, 1], but our approach intrinsically restricts the range by using the
encoder. As a result, the input is:

xa =
[

x( fuser)
a x( faud)

a x(guser)
a

]T

=
[
z( fuser)

t z( faud)
t z(guser)

t

]T
,

(17)

where z( fuser)
t , z( faud)

t and z(guser)
t are the encoded data of the user’s face feature, the audience’s face

feature and the user’s gesture feature, respectively. Because the encoded data have no precise limit,
there is also no known upper limit to the distance between two data. Therefore, we proposed a new
choice activation function:

yk
a,j = exp

[
−
√

1
Mk ΣMk

i=1(xk
a,i − wk

a,ij)
2

]
, (18)
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where yk
a,j ∈ [0, 1] is the closeness index between input xk

a and weight wk
a, wk

a,ij is the i-th element

in the j-th node of the k-th channel, Mk is the number of elements in the k-th channel and
k ∈ { fuser, faud, guser}. The third step finds the best activation index J. This process considers the
results from all of the channels by:

J = argmax
j

 ∏
k∈{ fuser , faud ,guser}

yk
a,j

 . (19)

Lastly, there are two update methods, and they are known as the fast learner and slow recoder
(Figure 8). The associator executes the faster learner:

wa,N+1 = xa (20)

if ∀j there ∃k such that yk
a,j ≤ ρk, where ρk is the vigilance threshold of the k-th channel. On the other

hand, if there ∃j such that ∀k satisfy yk
a,j ≥ ρk, then the slow recoding function updates the winner

node wa,J by:

w(new)
a,J := (1− η(ϕJ)) ·w

(old)
a,J + η(ϕJ) · xa, (21)

where η(ϕJ) = (ϕJ + 1)−1 is an adaptive learning rate, which decreases as the weight occurrence
ϕJ increases. In short, the associator will regularly create or update the relationships among all of
the modalities. This process will come to a pause when there is a need to recall or replace one of
the modalities.

The associator will switch to the recall mode (Figure 8) when there is one or more missing
modalities. For this case, the following explanation assumes that the user’s gesture feature z(guser)

t is
missing. Hence, there is a newer and shorter input:

xa =
[

x( fuser)
a x( faud)

a ∅
]T

. (22)

During the initialization, the associator discards any weight wa,j if its frequency ϕj < τ, where τ is
the pruning threshold. Next, the associator computes the choice activation using (18) on the observable
feature fields x( fuser)

a and x( faud)
a . It then finds the best activation:

J = argmax
j

 ∏
k∈{ fuser , faud}

yk
a,j

 . (23)

From the best weight wa,J =
[
w( fuser)

a,J w( faud)
a,J w(guser)

a,J

]T
, the associator can infer the gesture style:

z′t = x′t
(guser) ≈ w(guser)

a,j . (24)

The last process decodes the encoded data z′t using the decoder function fd() from (13) to estimate
next joint state:

î′t = fd(î
′
(t−p):(t−1), z′t), (25)

where î′(t−p):(t−1) is the p number of previous upper-limb states. As a whole, this recalling strategy can
retrieve associated data given a partial context.
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Figure 8. Learning and recalling processes in the associator module. For the detailed description of the
selection of its parameters, please refer to Supplementary Material 2, Section 3.

In theory, the proposed framework can handle the teleoperating issues using its three components,
and they are the encoders, decoders and associator. The next section will discuss the processes applied
to the data to train each component.

3.5. Data and Its Preprocesses

The encoder and decoder should be trained with a diversified dataset because the diversified
dataset can produce a generalized predictor. Therefore, the proposed gesture dataset is a combination
of three datasets. The first source is the Microsoft action gesture [29]. It has three sets of 12 gaming
gestures from ten people. However, only nine out of the 12 gestures were selected because they
have more expressive upper-limb motion. The second source is the 3D iconic gesture dataset [30].
These gestures are speech-dependent, and the speech-dependent gesture is useful for our application.
Furthermore, this dataset covers 29 subjects gesturing 20 different virtual objects. The last dataset is
an in-house dataset, and it consists of deictic gestures and a few speech-dependent gestures (refer to
Supplementary Material 4 for the description). It was noticed that all of the gesture styles in [29,30]
are periodic gestures. Hence, a set of nonperiodic gestures, which are primary deictic gestures, were
acquired and stored in the in-house dataset. In addition, the action and the iconic gestures are very
intensive and dynamic. As a result, the in-house data also have waving and beating gestures, for which
only a few of the joints are moving. Lastly, the combined dataset underwent a mirroring operation
to double up the number of training data to 268,296, where each datum has five frames of poses.
In conclusion, the final dataset has a high variety of gestures, and the next process is to normalize
the data.

There is a series of processes to normalize the skeleton data. The first operation normalizes
pose data so that the poses P = {p1, . . . , p20} ∈ R3×20 are independent of the torso’s movement.
Subsequently, the second process computes the upper-limb orientations:

i =
[
ô1 . . . ô6

]T
, (26)

where ôj = oj/‖oj‖ is the relatively unit vector. The relative vector is oj = pnj+1 − pnj , where
n = (5, 6, 7, 9, 10, 11) is a list of poses from the skeleton data. The last operation is feature-rescaling,
also known as standardization. Standardization scales all of the features, so that they are zero-mean
and unit variance. As a result, the normalized data are:

î =
i− ī

σ
, (27)
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where ī is the mean of the gesture data and σ is the standard deviation of the gesture data. Up to this
point, the encoder can be trained using the normalized dataset, but more steps are required to train
a decoder.

For training a decoder, there are two additional processes. The first process transforms the gesture
signal into their gesture style zt using the encoder function at (4). Subsequently, the encoded data
zt go through the standardization process. The second step then aligns the encoded data zt with
the corresponding normalized data î(t−T+1):t. In this paper, the encoded data zt have T = 25 frames
(5 FPS) of information, and the number of previous data is p = 5. As a result, the initial condition is
î(t−T+1):(t−T+p). During training, the decoder will generate the remaining T− p = 20 frames, which
is î(t−T+p+1):t. In short, the encoding and alignment processes are the two addition steps for training
a decoder. The next step is to add other modalities so that the associator can be trained and evaluated.

For the associator, there are two simulated datasets. Both the simulated datasets have three
channels, and they are the operator’s facial channel, the audience’s facial channel and the operator’s
gesture channel. The facial channels acquired their facial data from a facial expression dataset, the
CK+dataset [31], while the gesture channel obtained its data from the above gesture dataset. The first
set of data, the identity dataset (Figure 9, left), simulates a situation where an operator is talking to
three different characters in a row. In each sequence, the operator and the audiences only display the
neutral facial expression, but the operator motions different gesture styles towards each audience.
In the second set, the expression dataset (Figure 9, right) simulates the operator talking to the same
person. Each sequence has four parts, and each part has a unique gesture style. In terms of facial
expression, the first part has the operator and audience making a neutral expression. The second and
third have one of them displaying an arbitrary expression, while the others stay neutral. The last covers
both expressing a random expression. In short, these two simulated datasets have three modalities
so that we can observe the learning and recall process in the associator. With the availability of data
for each component, the next section will present the evaluation criterion for training and evaluating
the system.

Figure 9. A sample data from the identity (left) and expression (right) dataset.
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3.6. Training and Evaluation Criteria

First of all, the objective function to evaluate the temporal parameters θet for the encoder is:

θet = argmin
θet

(
e(θet)

d(θet)
+ S(h′(1)1:c , h(1)

(t−c+1):t) + ζ(h(3)
t )

)
. (28)

The first item in the function is the ratio between intra-distance e(θet) to inter-distance d(θet).
It describes the cluster distributions within the new vector space. The intra-distance e(θet) measures the
distance from all of the data to the cluster center within the same style, while the inter-distance d(θet)

measures the distance between the cluster centers of different styles. Next, the similarity function
S(X, Y) measures the error between X and Y , where h′(1)1:c = g−1

et (h(2)
t ; θet) is the reconstruction of

h(1)
(t−c+1):t. Lastly, the ζ() is the sparsity function. It measures the number non-zero elements in the

encoded data h(3)
t , and this promotes a more biased model. In short, the above criteria generate a vector

space where similar gesture styles are closer to one another. Furthermore, the encoder with the sparse
and distributed parameters can also transform unknown data.

Secondly, the evaluation function for the parameters of the decoder θd is:

θd = argmin
θd

(
S(î′dtw, î(t−T+p+1):t)

)
, (29)

where î′dtw is the aligned decoded signals and î(t−T+p+1):t is the training signals. The following steps
compute the aligned decoded signals î′dtw. The first step generates the decoded signal î′(t−T+p+1):t using

(13) and the encoded data zt. The next process arranges the decoded signal î′(t−T+p+1):t into the aligned

decoded signals î′dtw using the dynamic time warping (DTW) algorithm. Lastly, the similarity function
measures the error between the aligned signals î′dtw to the original signals î(t−T+p+1):t. In conclusion,
the goal is to find a suitable parameter θd for the decoder so that the decoder can generate the specific
gesture signal given a gesture style.

For the associator, the objective primarily focuses on reconstructing the user’s gestures given
the user’s and audiences’ facial features. Hence, the initial step learns the relationship between
these modalities using (17) to (21). These operations compute the knowledge-based Wa, which is
parameterized by θa = {ρ( fuser), ρ( faud), ρ(guser)}. Subsequently, the associator retrieves the missing
modalities, that is the encoded gesture z′t using (22) to (24). Using (25), it generates the decoded signals
î′(t+1):(t+T), and it is aligned to form î′dtw. Similar to (29), the aim is to find the best parameters:

θa = argmin
θa

(
S(î′dtw, î(t+1):(t+T))

)
(30)

that minimize the error between the aligned decoded signal î′dtw and the original signal î(t+1):(t+T).
Besides evaluating the components, there are also functions to test the framework for the different

scenarios. The first evaluation function measures the smoothness in a multivariate signal. The jerky index:

J(Y) =

(
T

∑
t=1

M

∑
m=1

δ3ym,t

δt3

)
/(TM) (31)

is the average jerk measurement across a feature, where ym,t is the magnitude of the m feature at
t time. The second evaluation function measures the total points outside the boundaries. The collision
function is:

C(A) = ∑
i∈{x,y,z}

(U(i) + L(i)), (32)
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where U(i) = ∑mi ∑T
t=1[ami,t ≥ ui] and L(i) = ∑mi ∑T

t=1[ami,t ≤ li] are the total points outside the upper
limit ui or lower limit li at the i axis (Figure 10). The m =

(
(1, 4, . . . , 13, 16)x, ((. . .)x + 1)y, ((. . .)x + 2)z

)
is the corresponding skeleton indexes with respect to the axis. Lastly, the similarity function S(X, Y),
which measures the accuracy between two signals, can also measure the degree of expressivity between
the generated signal with respect to the original signal. In this paper, the similarity function S(X, Y) is
the mean square error function:

MSE(X, Y) =

(
T

∑
t

M

∑
m
(xm,t − ym,t)

2

)
/(TM), (33)

where X, Y ∈ RM×T.

Figure 10. The collection wrist positions in various views and the projected boundaries. (a) The top
view: z vs. x. (b) The side view: y vs. z. (c) The front view: y vs. x.

In summary, this section has presented a list of procedures and a list of evaluation functions to
achieve the overall goals. The following section will show the different experiments and their results
in term of these criteria.

4. Results

This section presents four experiments to show the effectiveness of the PLBM (refer to the
links in Supplementary Material 3 for the video of the experiment. The first set of experiments
demonstrates the fundamental functions of the encoder and decoder. The second experiment presents
the associator ability to replace a missing modality during a decoupling scenario. Next, the third
experiment compares the differences between the distributed spatiotemporal and the distributed
spatial representation in various connection conditions. Finally, the last experiment investigates the
differences between the deliberate and the reactive safety mechanism.

4.1. Encoding and Decoding Expressive Gesture

Figure 11a shows a set of spatiotemporal features. The figure on the left displays 30 of encoded
features, where the x-axis is the relative time step, and the y-axis is the input variables. In the same
figure, the brighter intensity indicates a stronger correlation between the variables at the given time step.
On the right, the figure is the three-dimensional view of the fifth spatiotemporal feature. This figure
displays a clearer glimpse of the intensity with respect to time. From this viewpoint, this feature is
smooth with respect to time. In summary, the spatiotemporal features seem to capture the underlying
structure of the signals, and the next paragraph will discuss the characteristics of the activation given
different gesture styles.
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(a)

(b) (c)

Figure 11. Visualization of features and results from the encoder and the decoder. (a) The 30
convolution features (left) and its fifth convolution feature (right) by CNN-RBMusing a 15-FPS dataset.
(b) The encoded output given a segment of gesture with two different styles with specific features.
(c) The LSTM internal states and output, nine gestures, given their encoded data.

Figure 11b shows the differences between the various output layers from a segment of gesture
signals, which has two gesture styles. The following descriptions are the observations from each layer.
For the input layer, the differences in the frequency and magnitude of the signals can separate the
two gesture styles. In contrast, the two gestures, from h(2) and h(3), can be differentiated from the
degree of the activation, alone. However, there is a delay in the transition, about 25 frames, in h(3) as
compared to h(1) or h(2). In short, the encoder successfully maps the gesture signal into its style. In the
next experiment, it will illustrate the generation power of the decoder given the gesture style.

Figure 11c displays nine decoded signals from nine distinctive gesture styles, and the descriptions
below are the observations. Firstly, the dynamics of reconstructed gestures converges over time. All of
the signals converge in less than 1/10 of the duration (100 time steps), which is about two seconds.
Moreover, there is a smooth transition between two gesture styles, which is shown in the detailed
skeleton view. Lastly, the model captures the contextual dynamics. For the decoder, the input is only
the encoded data and previous states, yet the decoder can synthesize the nine distinct gestures without
changing its parameters. In conclusion, the selected decoder model has shown promising results as it
can reconstruct various gesture dynamics given the encoded information. In the next section, were
will show the performance of the PLBM as a whole.

4.2. Coping with Decoupling Using the Associator

Figure 12 displays the output of the associator after the learning process given a sequence in the
expression dataset (Figure 9). For the first observation, there are two possible states: convergence zone
and transition state. The convergence zone is the region where the data are gathered, and there are
four distinct zones in Figure 12. On the other hand, the transition state forms the trail leading from
one cluster to the other. Secondly, the convergence zone holds more data as compared to the transition
state. Given an interval of 100 frames at each state, most of the training data are in the convergence
zone forming a region of interest. Finally, the associator has captured the region of interest, and there is
only a small amount of the generated rules. For instance, the final weight size is 55.6% smaller than the
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initial size, not to mention, most of the final weights are in the convergence zone. Once the associator
gathers all of its rules, the next step is to test the recall process.

Figure 12. The results from learning using the associator module.

The following notes are the observations while we compared the synthesized gesture to the
ground truth. From Figure 13, their dynamics are similar but not the same. The training gesture has
mostly three peaks when the time step is <100, but the recalled gesture has only two peaks in all
instances. Next, the synthesized signal is smoother than the training signal. Specifically, there is noise
in the training gesture when the intensity is more than 0.5. Favorably, the recalled gesture displays less
disturbance in that region. In brief, the PLBM with the associator can evoke a congruent and similar
gesture given the facial features. The next section will look into the performance of the PLBM when
there is a drop rate in the connection.

Figure 13. The operator’s gesture signal and the reconstructed gesture signal.

4.3. Reconstruction in an Unstable Connection

An inserting scenario is a situation when the network connection is unstable. Network congestion
over a wireless network might result in packet loss. Retransmitting a lost packet is a solution, but it
is not an optimal solution for teleoperating because it increases latency. A more optimal option is to
adopt the no retransmission strategy to lower latency, which involves losing data. Thus, the remote
system must find a valid motion when network congestion occurs. In this experiment, the gesture
signal is randomly dropped using Bernoulli sampling at a probability of connection P(connect) ∈ (0, 1).
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The aim of the investigation is to analyze the effects of the connectivity on the accuracy and smoothness
of the different signals.

In this experiment, we observed the characteristics of the signals from five different sources.
The first signal is the training gesture (A). It came from the identity and expression dataset that
has 15 sequences with three to four gesture styles each. The second signal is the fully-connected
PLBM gesture (B). It is the decoded signal from the incoming encoded data when there is no dropout.
The third signal is the decoded gesture using the recalled encoded data (C). Similar to Section 4.2,
this method recovers the gesture style from the remaining modalities, which is the audience’s facial
expression. The fourth signal is the synthesized gesture from the last received data (D). It just inserts
the last received data because the encoder transmits styles and not poses. Finally, the last signal is the
imitated gesture using last received pose (E). Unlike D, it only inserts the last received pose because
the transmitted data have spatial information only.

This section has two figures to demonstrate the effect of dropout on the different signals, and they
are from the same experimental setup. Figure 14 shows a visual segment of the various signals
when the rate of successful connection is 0.5. It provides a visual observation of the smoothness
and accuracy between different signals. On the other hand, Figure 15 displays the statistical results
across a wider range of connections. There is a total of 75 (15 × 5) sequences. Each of them has
a unique connection sequence All of the plots, except for A, show the distribution of the results to
demonstrate the consistency of each approach. In brief, both figures illustrate the outcome from the
same experimental setup. One of them is a visual observation, while the other is the quantitative result.

Figure 14. A segment of the gesture from different approaches when the success of connection is 0.5.

Figure 15 shows the overall performance of the various signals across different degree of
connection using both datasets from Figure 9. From the top figure, D is more accurate than C for most
cases. D is closer to B when the connection is between 0.1 and 0.8. Eventually, D and C converge with
B at 0.9. From the other figure, all of the PLBM signals (B, C and D) are smoother than the other two
signals (A and E). On average, the PLBM signals have their jerk indexes between 0.45 and 0.50. On the
contrary, A has its jerk index at 0.88, and E has most of its index above 0.6. Lastly, the jerk index for E is
higher than A when the connection rate is high. The jerk index of E is above 0.88 when the connection
is from 0.5 to 0.9.
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Figure 15. The distribution (minimum, first quartile, median, third quartile, and maximum) of the
quality for gestures with various connection rates from 0.1 to 0.9. It was conducted over 15 training
sequences with five replicas.

In summary, the PLBM with the last known gesture style (D) has a better overall performance.
It produces smoother synthesized signal than the other approaches, and the accuracy is similar to B, its
uninterrupted counterpart. In the next section, we will look into the performance of the PLBM when
there are boundary constraints.

4.4. Finding a Collision-Free Expressive Gesture

There are two approaches for this experiment, and they are the deliberative and reactive mechanism.
The reactive mechanism replaces any out-of-bound point with its last received data, which have only
spatial information. On the other hand, the deliberative method fits the synthesized motion into the
boundary and preserves the expressiveness of the motion (Figure 16). The goal is to compare the
difference between the reactive and deliberative mechanism in terms of accuracy and smoothness.

Figure 16. Motion points of the wrists with constraints in different spatial views. (a) The ground truth
motion from the data set. (b) The motion generated using PLBM without constraint. (c) The motion
generated using PLBM with EA and constraint.
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Figure 17 shows the comparison between the reactive and deliberative safety planner in terms of
smoothness, accuracy and collision. The first observation is that the deliberative approach produces
a smoother signal than the reactive approach. From Figure 17a, the deliberate approach, the PLBM
with EA, has a degree of jerk near 0.516, while the reactive approach, the imitation with constraints,
has a value of 0.917. Besides, the motion from PLBM with EA has a similar dynamics as the PLBM
without constraint. Figure 17b shows that the deliberate approach has an accuracy of 0.726 compared
to the PLBM without constraints, that is 0.559. Lastly, none of the generated points from PLBM with
EA are out-of-bound. Figure 17c shows that neither the PLBM with EA nor imitation with constraints
have their points outside the boundary. In short, the deliberate approach, the PLBM with EA, has
a better overall performance. It synthesizes a smoother signal than the reactive approach. Even though
the deliberative approach has a higher error rate than the reactive approach, its error rate is still similar
to the PLBM without constraints.

Figure 17. The distribution (minimum, first quartile, median, third quartile and maximum) of the
evaluation criterion over 15 training sequences with five replicas given a fixed boundary. (a) The results
corresponding to the amount of jerk. (b) The degree of accuracy with respect to the training motion.
(c) The total number of collision points.

5. Conclusions

In conclusion, the aim of the research was to study and develop a module that can solve the
teleoperating issues in CATR. From the above experiment, the following items are the summaries of
the PLBM achieving the objectives:

1. For preserving expressiveness, the PLBM automatically encodes gestures into a distributed output.
It can then extrapolate its future joint state using the distributed output, and the generated signal
has similar dynamics to the training gesture.

2. For minimizing the cognitive load, the PLBM has the natural interface to obtain the gesture.
Furthermore, the PLBM uses automatic encoders, decoders and an associator for minimizing
human intervene.

3. If the operator’s hands are not free, the operator can delegate his/her gesturing modality to the
PLBM with the associator.

4. If the connection is not stable, the CATR can continue to gesticulate by generating the gesture
using the last known gesture style.

5. The PLBM can tune the incoming encoded data so that the decoded gesture is collision-free and
has similar expressiveness.

However, the PLBM has a few limitations. Firstly, the completeness and correctness of the features
depend on the training data. The current combined dataset only has three datasets, and these datasets
might not cover all conversations. Secondly, the time consumption for the evolutionary algorithm
to find a candidate to suit the environment is high and inconsistent. The current approach adopted
the evolutionary algorithms, which might take a long time. In the worst case, the time needed might
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disrupt the flow of a conversation. The third limitation lies in the averaging component in the encoder
model, which removes the phase information. Unfortunately, it produces a delay during the transition,
and a significant delay might disrupt the flow of the conversation. In summary, the PLBM has its
advantages, but also has a few limitations using the selected models. Thus, the existing PLBM model
still requires plenty of studies and researches.

The below items are a list of future works to increase the complexity and realism of the dataset.
The first item is to increase the diversity of the training data by integrating more dataset. It is beneficial
to train the model from a diversified dataset because it improves generalization. Other work can focus
on expanding the modalities because nonverbal signals cover a broad spectrum. For instance, there are
other nonverbal cues like vocal cues, gaze and body posture. Some effort can be invested in getting
a realistic dataset by employing a group of communication partners. The control group contains pairs
of friends, and we can randomly match them to create various behaviors. In short, the objectives
for the future works anchor the effort on increasing the realism of the dataset, so that we can better
examine the framework.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/2218-
6581/6/3/16/s1.
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Abbreviations

CATR Customizable anthropomorphic telepresence robot
PLBM Perception-link behavior model
FTFC Face-to-face communication
CMC Computer-mediated communication
TRBM Temporal restricted Boltzmann machine
FCRBM Factored conditional restricted Boltzmann machine
LSTM Long short-term memory
ESN Echo state network
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