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Abstract: Nowadays, engineering is working side by side with medical sciences to design and create
devices which could help to improve medical processes. Physiotherapy is one of the areas of medicine
in which engineering is working. There, several devices aimed to enhance and assist therapies are
being studied and developed. Mechanics and electronics engineering together with physiotherapy
are developing exoskeletons, which are electromechanical devices attached to limbs which could
help the user to move or correct the movement of the given limbs, providing automatic therapies
with flexible and configurable programs to improve the autonomy and fit the needs of each patient.
Exoskeletons can enhance the effectiveness of physiotherapy and reduce patient rehabilitation time.
As a contribution, this paper proposes a dynamic model for two degrees of freedom (2 DOF) leg
exoskeleton acting over the knee and ankle to treat people with partial disability in lower limbs.
This model has the advantage that it can be adapted for any person using the variables of mass
and height, converting it into a flexible alternative for calculating the exoskeleton dynamics very
quickly and adapting them easily for a child’s or young adult’s body. In addition, this paper includes
the linearization of the model and an analysis of its respective observability and controllability,
as preliminary study for control strategies applications.

Keywords: exoskeletons; lower limbs; rehabilitation; dynamics; knee; ankle

1. Introduction

Currently a new concept of a human-machine robot is being studied and developed; different
from traditional robots, exoskeletons are intelligent robot systems used widely around the world
in many areas. Exoskeleton applications involve using them to increase human strength, speed,
and performance in areas such as the military [1]; in medicine, they are used to train humans on surgery
devices [2], to help humans perform surgeries [3], to increase the effectiveness of gait rehabilitation
therapies [4] and for general physical therapies [5,6]. The entertainment industry employs them in
video games as controllers, and manufacture industry applications include teaching movements to
robot arms tele-operated by exoskeletons [7], heavy load lifting, and many others. In this paper,
we propose a dynamic model to design a two degrees of freedom leg exoskeleton for the rehabilitation
of knee and ankle injuries. Several methods for exoskeleton modeling have been employed, some of
which independently model the human leg and the exoskeleton frame [8]. Among the different
proposals, there are, for instance, developments that use Denavit-Hartenberg parameters to model the
exoskeleton leg and the use of PID (Proportional-Integral and Derivative) controllers to control the
angular position of each joint [2,9]. Others use parallel robots instead of rigid structures coupled to
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the body [10], while still other kinds of models, like the one presented in [11], use basic mechanical
and dynamical data to create a simple representation of the exoskeleton aiming to control purposes or
virtual models to implement a dynamic and cinematic model using software such as OpenSim [12].
Most of these proposed models for exoskeletons use Euler-Lagrange equations to determine the system
dynamics, as this allows them to design robust controllers with gravity compensation and virtual joint
torque control [13,14]. However, in most of these cases some variables are assumed, which are not
described by their respective studies. Other works consider the mathematical modelling of elements
to be added to existent exoskeletons, for instance, the development of a hand crank generator for
powering lower-limb exoskeletons [15]. In this paper, a model for a two degrees of freedom (2 DOF)
exoskeleton is developed using Euler-Lagrange mechanics where the exoskeleton structure and the leg
are considered as one body, which is modeled as a two-link pendulum combined with a biomechanics
model in order to include leg kinematics and dynamics as described in [16]. This paper is organized as
follows: Section 2 describes the model development and its linear approximation; Section 3 shows
the simulation process as well as the simulation results of the nonlinear and linear model with a
controllability and observability analysis; and finally, Section 4 shows the description of the exoskeleton
considered. Conclusions are discussed with considerations for future research at the end of this paper.

2. Methods

This section shows the development of the proposed model to describe the dynamics of the
exoskeleton attached to the leg acting over two joints (knee and ankle); it involves double pendulum
dynamics combined with a popular biomechanical model.

2.1. Model Description

The proposed model for the exoskeleton is a variation of a two-link pendulum dynamic
model, where biomechanical and anthropometric models are added to create a generalized, versatile,
and flexible dynamic model which can describe the dynamics of a human leg performing movements
in the sagittal plane. In addition, the model can be calculated and altered for use with a patient’s
individual characteristics.

For this purpose, a Hanavan biomechanical model was used, which describes human limbs as
geometrical forms, specifically, truncated cones for legs and feet [17]. To make sure that the model can
be calculated for every kind of person, a generalized Hanavan model was calculated by a geometrical
analysis of the truncated cone (see Figure 1) and its kinematics were combined with the anthropometric
model of Drillis and Contini [18]. To calculate the lower radius Rl of the truncated cone, according to
Figure 1, consider that:

h = h1 − h2
h1
Rh

= h2
Rl

= h
Rh−Rl

(1)

replacing it into the cone mass equation:

m =
ρπr2h

3
(2)

Thus, the resulting expression for the lower truncated cone radius is:√√√√ 3M

ρ π h
(

R2

RR2 +
R

RR + 1
) = RR (3)

where Rl and Rh are the lower and higher radius of the truncated section, l the truncated cone height
(all in meters), ρ is the density of the piece, and m its mass. As the lower radius is function of itself,
the ratio Rh/Rl was calculated using direct measurements with a sample of 50 Colombians aged
between 18 and 45 years. The length of each section of the leg was calculated using the Drillis and
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Contini model illustrated in Figure 2. From Equation (3), density (ρ) is calculated using the Drillis and
Contini equation for average density (human body density), which is shown in Equation (4) [19].

c = h
w1/3

ρ = 0.69 + 0.9c
[

Kg
L

] (4)
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body height, where h is the size or height of the person in meters and w is the mass of the person
in kilograms.

Mass and distance to the center of mass are calculated using tabulated data shown in [19];
to simplify calculations, the center of mass distance of each limb segment was considered to be located
at 50% of each cone length, resulting in the generalized Hanavan model of the human leg illustrated in
Table 1.

Table 1. Generalized Hanavan model of the human leg.

Limb Section Parameters

Thigh

Lt = 0.245 ∗ HT
Rt = 1.53 rt

Mt = 0.1 MT

rt =
√

3Mt
ρ π Lt 4.8709

Leg

L1 = 0.246 ∗ HT
Rl = 1.54 rl

Ml = 0.0465 MT

rl =
√

3Ml
ρ π L1 4.9116

Foot

L2 = 0.152 ∗ HT
R f = 0.5 ∗ 0.039 ∗ HT

M f = 0.0145 MT
r f = 0.77 Rp

where
{

rt, rl , r f
}

are the corresponding lower radii,
{

Rt, Rl , R f
}

are the higher radii, L is the limb length, and HT is
the height of the person (all in meters); ρ is the density of the body in

[
Kg/m3], mi is the segment mass, and MT is

the person mass in [Kg].

Once the Hanavan model is generalized, it is necessary to calculate its kinematics. To do that,
the moment of inertia across the “X” axes (see Figure 1) is calculated and is expressed as follows:

IXX = m

 9m
20πρh

(
1 + Rl

Rh
+

R2
l

R2
h
+

R3
l

R3
h
+

R4
l

R4
h

)
(

1 + Rl
Rh

+
R2

l
R2

h

)2 +
3h2

80

(
1 + 4 Rl

Rh
+ 10 R2

l
R2

h
+ 4 R3

l
R3

h
+

R4
l

R4
h

)
(

1 + Rl
Rh

+
R2

l
R2

h

)2

 (5)

This generalized biomechanical model is combined with the double link pendulum model to
enhance it and describe the behavior of the exoskeleton coupled to the human leg. According to this,
each link of the pendulum is considered as a truncated cone; the kinematics for the proposed model is
described in Figure 3.
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The displacement of the center of mass is defined as:

xCM1 = L1
2 cos(θ1)

yCM1 = L1
2 sin(θ1)

xCM2 = xCM1 +
L2
2 cos(θ1 + θ2)

yCM2 = yCM1 +
L2
2 sin(θ1 + θ2)

(6)

where θ1,2 is the angular position of each link, L1,2 represents each link length. The angular position of
the second link is referenced to the first link, so it will be zero if it is aligned with it.

The speed of center of mass is defined as:

vCMx1 =
.
xCM1 vCMy1 =

.
yCM1

vCMx2 =
.
xCM2 vCMy2 =

.
yCM2

(7)
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The moment of inertia across the center of mass of each segment is defined using Equation (5):

ICM1 = m1

 9m1

20πρL1

(
1 + rl

Rl
+

r2
l

R2
l
+

r3
l

R3
l
+

r4
l

R4
l

)
(

1 + rl
Rl

+
r2

l
R2

l

)2 +
3L2

1
80

(
1 + 4 rl

Rl
+ 10 r2

l
R2

l
+ 4 r3

l
R3

l
+

r4
l

R4
l

)
(

1 + rl
Rl

+
r2

l
R2

l

)2

 (8)

ICM2 = m2

 9m2

20πρL2

(
1 +

r f
R f

+
r2

f

R2
f
+

r3
f

R3
f
+

r4
f

R4
f

)
(

1 +
r f
R f

+
r2

f

R2
f

)2 +
3L2

2
80

(
1 + 4

r f
R f

+ 10
r2

f

R2
f
+ 4

r3
f

R3
f
+

r4
f

R4
f

)
(

1 +
r f
R f

+
r2

f

R2
f

)2

 (9)

To find the dynamic model of the double pendulum enhanced with the biomechanical model,
Lagrange equations of the second kind or Euler-Lagrange equations were used. Those are a
reformulation of classical mechanics where the constraints are incorporated directly by the selection of
generalized coordinates for the system being studied. Instead of forces, Lagrangian mechanics use the
energies in the system, described using the Lagrangian; the nonrelativistic Lagrangian for a system of
particles can be defined by:

L = T − V (10)

where T and V are the kinematic energy and potential energy of the system, respectively.
The Euler-Lagrange equation is obtained from Equation (10) and, establishing that, if not all the

forces acting on a system are derivable from a potential, those can be written as [20]:

d
dt

(
∂L
∂

.
qj

)
− ∂L

∂qj
= Qj (11)

where L contains the potential of conservative forces (Equation (10)), qj represents the generalized
coordinates of the system, Qj denotes the generalized forces acting outside the system, and j represents
each particle or body analyzed. According to this, external forces acting over the exoskeleton coupled
to the leg are considered; those external forces are torque and viscous friction at each joint, and the
Euler-Lagrange equation for the system will be:

d
dt

(
∂L

∂
.
θ j

)
− ∂L

∂θj
= τj − bjθj (12)

where j represents links 1 and 2 of the pendulum, which denotes the leg and foot. The angle θ represents
the position of each link, τj is the applied torque, and bj is the viscous friction coefficient.

To calculate the Lagrangian, it is necessary to define the kinetic and potential energy of the system;
kinetic energy is defined as follows [21]:

TT = ECT + ECR
TT = 1

2 mv2
CM + 1

2 ICMω2 (13)

where ECT is the translational kinetic energy and ECR is the rotational kinetic energy; v is the linear
speed and ω is the angular speed of the center of mass, m represents bodies mass and ICM is the
moment of inertia at the center of mass. Since there are two joints to be considered, the total kinetic
energy TTS of the system will be expressed as:

TTS = TT1 + TT2

TTS = 1
2 m1v2

CM1 +
1
2 ICM1ω2

1 +
1
2 m2v2

CM2 +
1
2 ICM2ω2

2
(14)
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Potential energy is defined as:
V = mgh (15)

so total potential energy VTS for the system will be:

VTS = V1 + V2

VTS = m1gy1 + m2gy2
(16)

where m1,2 is the mass of each segment, g is the gravity used as 9.8 m/s2, and y1,2 is the center of mass
altitude calculated using the y coordinate of Equations (6) and (7).

Using Matlab-MuPAD, dynamic equations which describe the exoskeleton are calculated by
replacing Equations (8) and (9) into Equation (14) to calculate the total kinetic energy of the system;
after calculating the kinetic and potential energy, the Lagrangian (10) is calculated and replaced into
Equation (12). Once all the parameters are established, Equation (12) is solved and simplified for

..
θ1

and
..
θ2, resulting in two nonlinear equations, one for each link describing the dynamic behavior of the

proposed system. The resulting dynamic model is:

2m2

(
L2

2

..
θ2

2 + L1L2 cos(θ2)
..
θ2 − L1L2 sin(θ2)

.
θ

2
2 − 2L1L2 sin(θ2)

.
θ1

.
θ2

)
− 4τ1

..
θ1 = −

+4b1
.
θ1+2gm1L1 cos(θ1)+4gm2L1 cos(θ1)+2gm2L2 cos(θ1+θ2)+

12m2
..
θ2P1

80πL2ρP3

m2(4L2
1+4L1L2 cos(θ2)+L2

2)+
3m2P1

20πL2ρP3
+

m1P4
20πL1ρP5

(17)

m2
2

(
L2

2

..
θ1

2 + L1L2 cos(θ2)
..
θ1 − L1L2 sin(θ2)

.
θ1

.
θ2

)
− τ2

..
θ2 = −(80πL2ρP3)

+b2
.
θ2+

gm2 L2 cos(θ1+θ2)
2 +

m2 L1 L2
.
θ1 sin(θ2)(

.
θ1+

.
θ2)

2 +
3m2

..
θ1P1

80πL2ρP3
m2P2

(18)

where:

P1 = πρR4
pL3

2 + 12m2R4
p + 4πρR3

prpL3
2 + 12m2R3

prp + 10πρR2
pr2

pL3
2 + 12m2R2

pr2
p + 4πρRpr3

pL3
2 +

12m2Rpr3
p + πρr4

pL3
2 + 12m2r4

p

P2 = 23πρR4
pL3

2 + 36m2R4
p + 52πρR3

prpL3
2 + 36m2R3

prp + 90πρR2
pr2

pL3
2 + 36m2R2

pr2
p + 52πρRpr3

pL3
2 +

36m2Rpr3
p + 23πρr4

pL3
2 + 36m2r4

p

P3 =
(

R2
p + Rprp + r2

p

)2

P4 = 23πρR4
r L3

1 + 36m1R4
r + 52πρR3

r rrL3
1 + 36m1R3

r rr + 90πρR2
r r2

r L3
1 + 36m1R2

r r2
r + 52πρRrr3

r L3
1 +

36m1Rrr3
r + 23πρr4

r L3
1 + 36m1r4

r

P5 =
(

R2
r + Rrrr + r2

r
)2

Those constants are calculated by using Table 1 parameters where Rl is the leg higher radius,
rl the leg lower radius, R f the foot higher radius, R f the foot lower radius, L1 the leg length, and L2

the foot length.
This model can be represented as the general form of the Euler-Lagrange equations, such that:

M(q)
..
q + V

(
q,

.
q
)
+ G(q) = τ (19)

where M is the inertial properties matrix, V the coriolis and centripetal vector, and G the gravity vector
of the system. According to the generalized coordinates, the generalized equation for our system is:[

M(1,1) M(1,2)
M(2,1) M(2,2)

][ ..
θ1..
θ2

]
+

[
V(1,1)
V(2,1)

]
+

[
G(1,1)
G(2,1)

]
=

[
τ1

τ2

]
(20)
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where the parameters of Equation (20) are:

M(1,1) =
m2(2L2

1+2 cos(θ2)L1L2+
L2

2
2 )

2 + 3m2P1
πL2ρP380 + m1P4

πL1ρP580

M(1,2) = M(2,1) =
m2(2 cos(θ2)L1L2+

L2
2

2 )
2 + 3m2P1

πL2ρP380

M(2,2) =
m2L2

2
4 + 3m2P1

πL2ρP380

V(1,1) = −m2L1L2 sin(θ2)
.
θ1

.
θ2 +

m2L1L2 sin(θ2)
.
θ

2
2

2 + b1
.
θ1

V(2,1) =
m2L1L2 sin(θ2)

.
θ

2
1

2 + b2
.
θ2

G(1,1) =
gm1L1 cos(θ1)

2 + gm2L1 cos(θ1) +
gm2L2 cos(θ1) cos(θ2)

2 − gm2L2 sin(θ1) sin(θ2)
2

G(2,1) =
gm2L2 cos(θ1) cos(θ2)

2 − gm2L2 sin(θ1) sin(θ2)
2

(21)

2.2. Linear Approximation of the Model

To perform a comparison between the nonlinear model and a linear model suitable to design
controllers, the system is linearized.

Since Equations (17) and (18) are second order, it is necessary to transform them into a pair of
first-order differential equations, therefore the following variables are introduced:

x1 = θ1
.
x1 =

.
θ1 = x2

x2 =
.
θ1

.
x2 =

..
θ1

x3 = θ2
.
x3 =

.
θ2 = x4

x4 =
.
θ2

.
x4 =

..
θ2

u1 = τ1 u2 = τ2

(22)

Those equations are linearized around an equilibrium point based on the Taylor series
expansion [22]. Thus, the Equations in (22) can be represented as:

F1(X, U) = x2

F2(X, U) = (17)
F3(X, U) = x4

F4(X, U) = (18)

so, the linear approximation of the system will be calculated as follows:

.̃
x =


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4


(X,U)

x̃ +


∂ f1
∂u1

∂ f1
∂u2

∂ f2
∂u1
∂ f3
∂u1
∂ f4
∂u1

∂ f2
∂u2
∂ f3
∂u2
∂ f4
∂u2


(X,U)

ũ (23)

The equilibrium point was selected at the point where the system has lost all its energy; according
to the reference settled in Figure 3 it is:

X =


x1 = 90◦

x2 = w
x3 = 0◦

x4 = w

, U =

[
u1 = 0
u2 = 0

]
(24)
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Finally, the linear approximation of the system in state-space is:

.̃
x =


0 1 0 0

− 4A
α1

− 4b1
α1

− 2gm2L2
α1

0
0 0 0 1

−α2 0 −α2 −πb2L2ρP380
m2P2

 .
x +


0 0
4
α1

0
0 0
0 πρL2P380

m2P2

ũ

ỹ =

[
1 0 0 0
0 0 1 0

]
x̃

(25)

where P2 and P3 are the same as in Equations (17) and (18), so:

A =
(

gm1L1
2 + gm2L1 +

gm2L2
2

)
α1 = m2

(
4L2

1 + 4L1L2 + L2
2
)
+ 3m2P1

πρL2P320 + m1P4
πρL1P520

α2 =
πρgL2

2P340
P2

3. Simulation Results

The aim of the experiments is to validate the developed model by simulation. In this sense,
the dynamic models (nonlinear and linear) are implemented to validate the results in the linearization
process and the equivalence with the nonlinear model, after which the controllability and observability
analysis are performed to the linearized model as a further step to verify the feasibility of
control implementation.

3.1. Dynamic Model Simulation

This section describes the developed process to simulate the linear and nonlinear dynamics of the
proposed model; for this purpose, Matlab-Simulink was used. Proposed linear and nonlinear models
were simulated, calculating its parameters by considering a person with a height of 1.90 m and weight
of 90 Kg. Viscous friction at each joint was assumed as b1 = b2 = 0.3 and applied torque as τ1 = τ2 = 0,
to obtain a lightly damped response of the system. To simulate the exoskeleton, motors and structure
weights were added to each link mass; the motors to be used are flat brushless DC motors coupled
to a reduction gear capable of generating a maximum torque of 15 Nm. Those motors coupled with
the reduction gear box weigh around 0.57 Kg, and the exoskeleton structure was assumed to weigh
0.13 Kg, amounting to a total of 0.7 Kg. These values were added to the second link mass; as the motor
acting over the knee at the first link is not going to lift its own weight over the first link, only the
structure weight was added.

3.2. Nonlinear Model Simulation

For simulating the nonlinear model, the ordinary differential equation (ODE) system composed
by the generalized Euler-Lagrange equation was solved by using its explicit form:

..
q = M−1(q)

(
−V

(
q,

.
q
)
− G(q) + τ

)
(26)

where M is the inertial properties matrix, V the coriolis and centripetal vector, and G the gravity vector
of the system. According to the generalized coordinates, the generalized equation for our system is:[ ..

θ1..
θ2

]
=

[
M(1,1) M(1,2)
M(2,1) M(2,2)

]−1(
−
[

V(1,1)
V(2,1)

]
−
[

G(1,1)
G(2,1)

]
+

[
τ1

τ2

])
(27)
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where each matrix parameter is shown in Equation (21). After calculations with selected personal
characteristics, they are defined as:

M(1,1) = 0.2706 cos(θ2) + 0.8133
M(1,2) = M(2,1) = 0.1353 cos(θ2) + 0.0616

M(2,2) = 0.0616

V(1,1) = −0.1231 sin(θ2)
.
θ1

.
θ2 + 0.1353 sin(θ2)

.
θ

2
2 + 0.3

.
θ1

V(2,1) = 0.1353 sin(θ2)
.
θ

2
1 + 0.3

.
θ2

G(1,1) = 19.0664 cos(θ1) + 2.8373 cos(θ1) cos(θ2)− 2.8373 sin(θ1) sin(θ2)

G(2,1) = 2.8373 cos(θ1) cos(θ2)− 2.8373 sin(θ1) sin(θ2)

(28)

Once the system of ordinary differential equations (ODEs) is defined, it is necessary to reduce
it from two second-order equations to four first-order equations; this is done by applying the same
process employed for linearizing the model. This time, for the nonlinear functions described by
Equation (27), the following variables must be introduced:

x1 = θ1
.
x1 =

.
θ1 = x2

x2 =
.
θ1

.
x2 =

..
θ1 = f2(x, u)

x3 = θ2
.
x3 =

.
θ2 = x4

x4 =
.
θ2

.
x4 =

..
θ2 = f4(x, u)

u1 = τ1 u2 = τ2

(29)

where fi(x, u) corresponds to each
..
θi expression given by solving Equation (27):

f2(x, u) = M−1
(1,1)

(
−V(1,1) − G(1,1) + τ1

)
+ M−1

(1,2)

(
−V(2,1) − G(2,1) + τ2

)
f4(x, u) = M−1

(2,1)

(
−V(2,1) − G(2,1) + τ1

)
+ M−1

(2,2)

(
−V(2,1) − G(2,1) + τ2

) (30)
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Simulink “ode15s” solver was selected to solve this ODE system, and as a nonlinear model
reference uses horizontal axes as 0◦ degrees and the gravity vector (G(q)) is used, no initial conditions
were needed. The simulation block diagram is illustrated in Figure 4 and the dynamic behavior of the
model is shown in Figure 5.Robotics 2017, 6, 20  11 of 25 
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and (0, 0); this is what allowed us to define and apply the linearization method mentioned before. 
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After applying this vector to the system, is clear that this input modifies the model steady state 
value, which is as expected for control purposes. Furthermore, it also affects the oscillation behavior 
of the system, making it slower and decreasing its amplitude (see Figure 8). 

Figure 5. Non-linear model positions response.

The model behavior was as expected; the first link falls and moves describing a damped sine
wave, which loses energy due to friction causing it to stabilize in −90◦, and the second link movement
is induced by the movement of the first link—as its angle is referenced to the first link, it stabilizes on
line with it, which is why it reaches 0◦. The model speed response is illustrated in Figure 6.

Using Figure 7, it is easy to see that the nonlinear system has two equilibrium points at (90, 0)
and (0, 0); this is what allowed us to define and apply the linearization method mentioned before.

As the purpose of the proposed model is to be controlled, to check if the input variable of the
system affects its stabilizing point for a possible position control, different torque values were applied
to each link. Tests were done by applying torques to the first link in between 0 and 18 Nm while the
applied torque to the second link was 0 Nm; for the second link, due to its low mass, torques between
0 and 2.5 Nm were applied while the applied torque to the first link was 0 Nm. Results are shown in
Figures 8 and 9.
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For the first link, the test torque vector is defined as Equation (31); each element in the vector
corresponds to an applied torque at each joint:

τ1 =
[

0 2 4 6 8 10 12 14 16 18
]

τ2 = 0
(31)

After applying this vector to the system, is clear that this input modifies the model steady state
value, which is as expected for control purposes. Furthermore, it also affects the oscillation behavior of
the system, making it slower and decreasing its amplitude (see Figure 8).Robotics 2017, 6, 20  13 of 25 
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Figure 9, due to its nonlinearities, it is possible to observe that different answers are obtained with 
different behaviors, but after 1.2 Nm the system becomes completely unstable (see Figure 9). 
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Figure 8. Link 1 position response (Non-linear).

For the second link, the test torque vector is defined as:

τ2 = 0

τ2 =
[

0 0.1 0.3 0.6 0.8 1 1.2 1.6 1.8 2
] (32)

Making some tests and applying different torque values to the second link, some instability points
were encountered for input u2 (u2 = τ2). The model response for the second link is shown in Figure 9,
due to its nonlinearities, it is possible to observe that different answers are obtained with different
behaviors, but after 1.2 Nm the system becomes completely unstable (see Figure 9).
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To check the behavior of the model when user characteristics vary, several tests were performed
following the simulation scheme used before; a few of those tests are shown below. For this purpose,
we refer to them as test 2 and test 3; test 2 was conducted by simulating a person of 65 Kg, 1.70 m tall,
and test 3 simulated a person of 50 Kg, 1.50 m tall (See Figures 10–13).

Test 2:
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In the above-mentioned tests, many more nonlinearities were encountered when varying the
user characteristics, which could be mitigated by using robust nonlinear controllers. Besides the
nonlinearities, the system behavior was as expected and followed the results shown before.

3.3. Linear Model Simulation

Calculating all parameters and applying them to Equation (25), it is possible to obtain the following
state-space representation of the linear approximation of the model:

.̃
x =


0 1 0 0

−20.2072 −0.2768 −2.6176 0
0 0 0 1

−50.1722 0 −50.1722 −5.3099

 .
x +


0 0

0.9225 0
0 0
0 17.6830

ũ

ỹ =

[
1 0 0 0
0 0 1 0

]
x̃

(33)

Matlab-Simulink was used to obtain the system time response; due to the linear approximation
method used, made around the equilibrium point (Equation 24), the system reference changed.
Thus, the system 0◦ degrees are located at the negative vertical axes so initial conditions were needed,
which were taken as θ1(0) = θ2(0) = 90◦. Results are shown in Figure 14.
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The linear model differs from the nonlinear model response, but behaves as expected following
the dynamics of a double pendulum stabilizing at 0◦ degrees. This because the linear model is merely
an approximation made to work with the nonlinearities present in the original model. This model is
affected in a higher way for the friction factor than the dynamical one; therefore, it loses energy faster
and reaches the steady state faster. The model speed response is illustrated in Figure 15.Robotics 2017, 6, 20  17 of 25 

 

 
Figure 15. Linear Model Speed response. 

With this linear approximation, the phase diagram softens and converges into the steady state 
value more smoothly than the nonlinear one (see Figure 16). 

 
Figure 16. Linear model phase plane. 

To check if the input variable of the system affects its stabilizing point, the same vectors of 
Equations (31) and (32) were applied to the linear model, the results of which are shown in Figures 
17 and 18. 

Figure 15. Linear Model Speed response.



Robotics 2017, 6, 20 18 of 25

With this linear approximation, the phase diagram softens and converges into the steady state
value more smoothly than the nonlinear one (see Figure 16).
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To check if the input variable of the system affects its stabilizing point, the same
vectors of Equations (31) and (32) were applied to the linear model, the results of which are shown in
Figures 17 and 18.
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Figure 18. Link 2 position response (Linear).

For both links, each input produces a significant change in the steady state of the model. It also
reveals that the nonlinearity which produced the uncontrolled increase in the response of the system
was eliminated, making the system proper for control design and tuning.

The results from tests 2 and 3 are shown below (Figures 19–22).

Test 2:
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Figure 22. Link 2, test 3 position response (Linear).

As expected, the linearized model behavior stabilizes at a different rate according to the mass
and length of each segment of the leg. This speed change requires a robust speed control in order to
avoid injuring a person with different characteristics when using the same device; it also could be
configurable to enhance the therapy.

4. Observability and Controllability Analysis

The linear model is planned to be used to design and tune linear control strategies, which is why
it must be analyzed to ensure that it is controllable and/or observable. Defining the controllability
matrix (Co) and observability matrix (O) as:

Co =
[

A AB A2B · · · An−1B
]

O =


C

CA
CA2

...
CAn−1


where n is the range of A matrix. Using the linear state-space of Equation (33), which is in the form:

.̃
x = Ax̃ + Bu

ỹ = Cx̃

it is easy to define that n = 4, so our analysis will be defined as:

Co =
[

A AB A2B A3B
]

(34)

O =


C

CA
CA2

CA3

 (35)
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replacing the matrices of Equation (33) into Equations (34) and (35) will result in a controllability matrix
of dimensions (4 × 8) and an observability matrix of dimensions (8 × 4), as the model is a multi-input
multi-output (MIMO) system with two inputs and two outputs. To obtain the controllability matrix for
each input-output pair, it is necessary to take columns (1–7) of Co to build the controllability matrix for
the first pair (u1 − y1) and to take columns (2–8) to build the controllability matrix for the second pair
(u2 − y2); in the case of observability, is the same process but selecting rows. The controllability and
observability matrices will look like:

Co1 =


0 0.9225 −0.2553 −18.5714

0.9225 −0.2553 −18.5714 10.2993
0 0 0 −46.2861
0 0 −46.2861 258.3534



Co2 =


0 0 0 −46.3
0 0 −46.3 258.4
0 17.7 −93.8 −389.6

17.7 −93.8 −389.6 6773.1



O1 =


1 0 0 0
0 1 0 0

−20.2072 −0.2768 −2.6176 0
5.5926 −20.1306 0.7244 −2.6176



O2 =


0 0 1 0
0 0 0 1

−50.1722 0 −50.1722 −5.3049
−266.1583 −50.1722 266.1583 −22.0303


Nonsingular matrices indicate that the system is fully observable and controllable.

5. Exoskeleton Design Proposal

The model previously described is oriented to describe a simple exoskeleton with 2 DOF.
Figures 23 and 24 show the general idea for the implementation; the exoskeleton consists of active and
passive elements which are attached to the legs in a non-invasive way. The main idea is that the device
can be wearable and adapted to the features of individual patients.
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The structure is intended to work as Master-Slave, where one leg controls the other one. This 
enables the user to use the non-injured leg to perform rehabilitation exercises that can be replicated 
in the injured one. The employed actuators are planned to be brushless DC motors coupled to a 
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The structure is intended to work as Master-Slave, where one leg controls the other one.
This enables the user to use the non-injured leg to perform rehabilitation exercises that can be replicated
in the injured one. The employed actuators are planned to be brushless DC motors coupled to a
reduction gear (see Figures 25 and 26).Robotics 2017, 6, 20  23 of 25 
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6. Conclusions 

The contribution of this paper focuses on extending the exoskeleton line of research by 
proposing a new way of modeling such that the followed objective is to develop a dynamic model 
using a combination of different models which mathematically describe the human body. The 
proposed model is a combination of three models, which, when united, can describe the physical 
behavior of the exoskeleton frame coupled to the human leg. This model has the advantage that it 
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6. Conclusions

The contribution of this paper focuses on extending the exoskeleton line of research by proposing
a new way of modeling such that the followed objective is to develop a dynamic model using a
combination of different models which mathematically describe the human body. The proposed model
is a combination of three models, which, when united, can describe the physical behavior of the
exoskeleton frame coupled to the human leg. This model has the advantage that it can be calculated
for any kind of person given their its mass and height, converting it into a flexible alternative for
calculating the exoskeleton dynamics very quickly and adapting them easily for a child’s or young
adult’s body. As a secondary goal, the paper focuses on showing that the model can be controlled in
different ways to satisfy the different characteristics of each possible rehabilitation therapy for which
the exoskeleton could be used. As the resulting model is a highly nonlinear model, it was linearized
and tested using simulation environments to ensure that it works as expected and its able to design
and test control strategies. The linear representation results were fully controllable and observable,
which fulfills the secondary objective proposed. Since this work was focused in the mathematical
model description, and its validation was performed by software simulation, it is necessary to perform
a validation with the physical device. As future work, tests with the physical device will be conducted
and tests with human patients will then be considered so as to define a medical protocol to evaluate
the device under the supervision of physical therapists. This model is also planned to be extended
to three links, to be used to describe all leg movements in the sagittal plane. Also, control strategies
including force feedback and/or joint virtual torque control with gravity compensation will be tested
with the real equipment.
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