
robotics

Article

Building a ROS-Based Testbed for Realistic
Multi-Robot Simulation: Taking the Exploration as
an Example

Zhi Yan 1,* ID , Luc Fabresse 2, Jannik Laval 3 and Noury Bouraqadi 2

1 Le2i Laboratory, University of Technology of Belfort-Montbéliard (UTBM), 90010 Belfort, France
2 CAR Team, IMT Lille Douai, 59500 Douai, France; luc.fabresse@mines-douai.fr (L.F.);

noury.bouraqadi@mines-douai.fr (N.B.)
3 DISP Laboratory, University Lyon 2, 69007 Lyon, France; jannik.laval@univ-lyon2.fr
* Correspondence: zhi.yan@utbm.fr

Received: 9 August 2017; Accepted: 11 September 2017; Published: 12 September 2017

Abstract: While the robotics community agrees that the benchmarking is of high importance to
objectively compare different solutions, there are only few and limited tools to support it. To address
this issue in the context of multi-robot systems, we have defined a benchmarking process based
on experimental designs, which aimed at improving the reproducibility of experiments by making
explicit all elements of a benchmark such as parameters, measurements and metrics. We have also
developed a ROS (Robot Operating System)-based testbed with the goal of making it easy for users to
validate, benchmark, and compare different algorithms including coordination strategies. Our testbed
uses the MORSE (Modular OpenRobots Simulation Engine) simulator for realistic simulation and a
computer cluster for decentralized computation. In this paper, we present our testbed in details with
the architecture and infrastructure, the issues encountered in implementing the infrastructure, and the
automation of the deployment. We also report a series of experiments on multi-robot exploration,
in order to demonstrate the capabilities of our testbed.

Keywords: multi-robot systems; benchmarking; testbed; software engineering for robotics

1. Introduction

Many robotic applications can benefit from using a fleet of robots instead of relying on a single
robot [1]. Indeed, having multiple robots means an increase of robustness through redundancy.
Besides, multiple robots can perform tasks in parallel and thus speed up the execution time, which can
ultimately improve system performance. The latter is extremely important for some applications
such as search and rescue after earthquakes, fire searching inside buildings, and humanitarian
mine clearance.

However, the use of multi-robot systems raises the coordination challenges [2]. To truly benefit
from the potential parallelism of a robotic fleet, we need some strategies to organize robot activities in
a way that ensures robust, long-term highest-performance operation. Unfortunately, building optimal
or near-optimal coordination strategies is not straightforward. This is why there is substantial effort
put by the research community to address instances of this problem such as the multi-robot exploration
and mapping [3–13].

This paper also takes the exploration and mapping of an unknown environment (see Figure 1) as
a specific instantiation, with which we can test our solution in an actual application. A coordination
strategy of such application may be to assign to each robot, a set of areas to explore in a way that tends
to minimize both the time required to build an environment map and the total energy consumed by
the robotic fleet [14]. Nevertheless, there are many other possible strategies and it is a curse when

Robotics 2017, 6, 21; doi:10.3390/robotics6030021 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0001-8251-9786
http://dx.doi.org/10.3390/robotics6030021
http://www.mdpi.com/journal/robotics


Robotics 2017, 6, 21 2 of 21

people need to choose the most appropriate one for a specific application in a given environment and
with some particular set of robots. Moreover, strategies were usually evaluated with different robots,
simulators, environments and conditions, leading to quantitatively incomparable of results presented
in different papers.

Figure 1. MORSE 3D simulator (left) and collaborative generated map derived from one robot (right).
In the left half, the red areas represent the laser scans. In the right half, the blue blocks indicate the
potential targets, the green block indicates the current target, the red lines indicate the loop closures,
and the green line represents the path planning from robot current position to the target position.

Comparing different approaches is a facet of the broader issue of evaluating and benchmarking
robotic systems [15–17]. Regarding benchmarking of multi-robot systems, realistic simulations have
many advantages over experiments with actual robots. On the one hand, simulations are repeatable,
faster to deploy, and can be fully automatic, which enable a wide comparison of different algorithms
with different setups (e.g., robots types, fleet sizes, environments). On the other hand, experiments run
on actual robots can be very expensive, especially in the case of large-scale fleets.

From our point of view, a simulation testbed for multi-robot systems is nowadays crucial to rapidly
reproduce experiments. Moreover, simulated environments as realistic as possible are necessary
in order to get reliable results and truly compare different coordination strategies under different
conditions. Some key topics include ensuring robot control software run at the same rate as in the real
world [18], and making the communication in simulation more realistic for networked multi-robot
systems [19]. In any case, simulations are eventually used to prepare the tests in the real world.
The community has been working at developing simulators that can accurately simulate real world
environments. Some representative projects are Stage [20], Webots [21], V-REP [22], Gazebo [23] and
MORSE [24].

In this paper, we report our experience on building a testbed using:

• the ROS middleware [25] to build robot control software,
• the MORSE simulator to provide highly realistic 3D simulation environments,
• and a computer cluster to support large-scale robot simulation.

Our testbed is developed with the intention to provide the community with a reproducible
framework for easily benchmarking different algorithms for multi-robot systems. Specifically,

• ROS is an open-source meta-operating system, which is nowadays acknowledged as a standard
robot software platform and is widely spread throughout the research community,

• MORSE is an open-source simulator and independent of any robot architecture and communication
framework, implemented with a realistic 3D physics engine, and

• computer cluster running open-source Unix-like operating system is available or easy to build in
numerous institutions.



Robotics 2017, 6, 21 3 of 21

We released our simulation scenarios, developed ROS packages, and scripts for autonomous
deployment of the testbed infrastructure and experiments, also as open-source, available at
https://github.com/yzrobot/mrs_testbed.

Moreover, our testbed is simulator-independent. One can use Stage or Gazebo instead of MORSE
without any modifications on the robot side, since the simulator in our testbed is considered to be a ROS
node (http://wiki.ros.org/Nodes). The testbed is also real-world prepared. ROS provides modularity
that uncouples the control software from the drivers of the robot body. This feature allows us to use
exactly the same control software in simulations and in real robot experiments. Two videos, respectively
showing simulation and real robot experiments, are also available on the aforementioned website.

The contributions of this paper are twofold. First, we describe the current architecture of our
testbed for benchmarking multi-robot systems, discuss the trade-offs of this architecture, and report
different design decisions we have made to being able to use the shared computer cluster in our
university. Second, an experiment must be reproducible so we argue that the experimental design
needs to be explicitly and clearly defined, including parameters and metrics. Parameters influence
the experimental results, which must be fixed for a single experimental run. The experimental design
should then define how many runs need to be done and what are the values of the parameters for each
run. On the other hand, a set of metrics needs to be well defined in order to properly evaluate the
performance of the algorithms. For example, in multi-robot exploration experiments, the exploration
time can be served as one of the metrics to evaluate the performance of the coordinated exploration
strategy. However, other metrics related to computer resource consumption (e.g., CPU and RAM) and
communication (e.g., input/output data rate) can also be considered.

The remainder of the paper is organized as follows: Section 2 gives an overview of the related
literature; Section 3 introduces the process we have defined to benchmark multi-robot exploration;
Section 4 presents our testbed for simulated multi-robot fleet benchmarking; Section 5 describes the
experimental design and results obtained with our testbed; Section 6 discusses several important issues
related to benchmarking simulated multi-robot systems; Finally, conclusions and future research are
discussed in Section 7.

2. Related Work

Benchmarking of multi-robot systems is crucial to evaluate and compare different coordination
strategies but it is still a recent topic addressed by our community. For example, the EURON
(European Robotics Research Network) has started to build knowledge through investigation of
different aspects of this topic since 2006 [26]. Recent reported results include [15,16]. The former
presented a survey on multi-robot search and rescue problem and benchmarked five algorithms for
cooperative exploration tasks with different number of robots. The latter proposed a methodology
for evaluating frontier-based multi-robot exploration and also compared five task allocation methods
used in the exploration problem. The proposed methodology includes an exploration framework,
benchmarks and an experimental protocol.

Testbed can play a vital part in benchmarking process. However, so far only a few are (re-)usable
for the assessment of multi-robot applications. Robotic competitions such as the DARPA (Defense
Advanced Research Projects Agency) Challenge and the RoboCup can be served as an option [27].
It indeed provides an opportunity for researchers to benchmark approaches against each other to
enhance understanding of relative advantages and shortcomings with its clearly defined measures
of success. However, participating in competitions is a costly and long-term effort that requires an
integrated implementation of complete robotic systems. Moreover, competitions lack the possibility to
easily repeat an experiment with different approaches.

Simulation instead, can overcome the above problems, especially for multi-robot applications.
However, only the use of simulator is not enough to achieve the goal of benchmarking multi-robot
systems and quantitatively comparing them. Experiments must be reproducible in order to allow
researchers to compare their approach with existing ones, where the reproducibility implies that

https://github.com/yzrobot/mrs_testbed
http://wiki.ros.org/Nodes


Robotics 2017, 6, 21 4 of 21

there are no hidden assumptions so that people can reproduce the experiments using a different
simulator. Moreover, the simulation should be as realistic as possible, because benchmarks are defined
to evaluate applications prepared for the real world rather than a simplified version. For example,
simulating a large number of robots on a single physical computer hides the fact of network bandwidth
consumption for the communication between robots, that would not be possible in practice. The rest
of this section presents some representative simulation environments.

An experimental testbed for large-scale multi-robot systems is described in [28]. This testbed
aimed at the experimental verification and validation of different distributed robotic applications
in an indoor environment. The authors first reviewed several hardware and software resources,
then chose Scarab and Khepri for the robot models, Player [20] for the robot middleware, and Gazebo
for the 3D simulator. While this work presented an interesting framework, few information is provided
related to the benchmarking process and the challenges that one has to face when building such
a testbed. Moreover, their testbed does not always completely capture the behaviors of the robots
due to differences between reality and the simulated environment. These differences consist of
model inaccuracies, simulation approximations, and local rather than distributed communication
links. In contrast, we have avoided these problems in our testbed thanks to our choices of a realistic
engine for the simulation and distributing robot controllers into a computer cluster. We also provide
an experience report on how to build such a testbed and challenges that one has to face to build
a similar one, and introduce a benchmarking process in which we make experimental design explicit
to help people reproduce the experiments.

Another testbed has been introduced in [29]. This testbed contains about eight hundreds of
PCs which are connected through intelligent switches that enable experiments with various topology
structures. Each PC in the network is assumed to be a mobile robot. However, this work mainly focused
on the network configuration and installation issues for large-scale simulation, while the simulated
robot and world were highly virtualized. In contrast, our testbed addresses more realistic simulations.

A complementary work to ours is the RoboNetSim [19], which is a framework for realistic
simulation of the communication in networked multi-robot systems. It was designed to work with
different simulators and simulate fleets of hundreds of robots. Therefore, this framework can be
integrated into our testbed to enable even more realistic simulations with different networking
configurations and topologies.

3. Benchmarking Process

The key requirement for a testbed is the automation of the benchmarking process (see Figure 2).
It starts with a user defined experimental design, in which the user specifies the value of parameters,
and the data to be collected during the experimental runs. Then, experiments are automatically
performed by the testbed, without any manual intervention. Besides, the experiments are independent
of one another, which can run either sequentially or in parallel, depending on available resources.
Last, collected data are post-processed in order to compute evaluation metrics dedicated to quantitative
benchmarking performed experiments, and compare various settings (i.e., parameter values).

experimental
design (user

defined)
experimental run 2

experimental run 1

experimental run n

metric measurements benchmark results

Figure 2. A full benchmarking process: from experimental design to metric measurements.

Another important requirement is the reusability of the testbed, meaning that the latter should be
as much independent as possible from its applications. We achieve this by using a general purpose



Robotics 2017, 6, 21 5 of 21

simulator and middleware. As a specific instantiation of the general testbed that will be presented
in the next section, we dedicate the remainder of this section to a more detailed discussion of related
concepts on multi-robot exploration problem. This part is also an extension of our previous work [30].

3.1. Parameters

Many parameters can influence the experimental results due to the complexity of multi-robot
environments. We list below, the most relevant parameters for multi-robot exploration, which can
be grouped into three families, including Robot, Fleet and Environment. Our goal is to provide the
community with basis to define a reference database of benchmark setups, where each setup refers to
a different configuration of parameters. This idea has already been shown in different areas, such as
databases of images for facial recognition (http://www.face-rec.org/databases/) and arenas defined
in the RoboCup Rescue competition (http://wiki.robocup.org/Robot_League#Field_Description).

Robot

• Mathematical and physical models such as size, shape and weight. For example, it can be difficult
or impossible to get a big robot pass through a narrow doorway.

• Kinematic models such as velocity and acceleration.
• Mechanical models such as holonomic and non-holonomic.
• Computing capabilities such as CPU and RAM. Typically, we need to take into consideration

resources available for computing when we choose an algorithm. Simple algorithms running on
constraint devices might have better performance than sophisticated ones.

• Sensor properties such as sampling frequency, range and resolution. For example, sensor can
actually affect localization accuracy and mapping quality.

3.2. Fleet

• Number of robots. An intuitive thinking would be that more robots can lead to faster exploration.
However, it actually depends on the coordination strategies among robots.

• Fleet homogeneity. An heterogeneous fleet consisting of aerial and ground robots would exhibit
better performance over a homogeneous one. However, it also depends on the coordination
strategies among different types of robots.

• Initial position of robots. Depending on deployment environment, in particular the form of
obstacles, exploration performance can be significantly impacted by robots’ position where they
start mission from [14].

• Communication bandwidth. Some algorithms require a large amount of data exchange among
robots. The performance of a multi-robot system might significantly drop with a limited network
bandwidth.

• Communication range. Communication between robots is typically achieved by wireless network,
while the coverage of the latter may vary. Robots might get disconnected and not be able to
communicate with each other when they are out of WiFi range. However, this issue can be
mitigated by taking into account network connectivity in path planning [9,31].

Environment

• Terrain size. Obviously, exploring a large terrain requires more time than a smaller one.
However, this can sometimes be mitigated by increasing the number of robots.

• Obstacle material, density and shape. The material of the obstacle mainly affects the wireless
communication. Regarding the obstacle density, typically, there is less space to explore in an
environment with many obstacles. The effect of the obstacle shape on the robot is mainly reflected
in the navigation. For example, the navigation is more complicated with concave obstacles where
deadlocks can occur, or when multiple robots are located in the same area [32].

http://www.face-rec.org/databases/
http://wiki.robocup.org/Robot_League#Field_Description


Robotics 2017, 6, 21 6 of 21

• Landform. Exploration of a large single area takes probably less time than exploration of
an environment that is decomposed into several open areas but connected with narrow corridors.
In the latter, it is likely that robots might obstruct one another.

• Dynamicity. If the environment is changing (e.g., doors opening and closing, or humans and
other robots moving around), the exploration time and the associated cost can vary in different
experimental runs. Dealing with dynamicity falls into the realm of problems of path planning
and obstacle avoidance. However, the interference of the latter leads to coordination becoming
an NP-hard optimization problem.

3.3. Metrics

The metrics are served to quantitatively analyze and compare different coordination strategies.
In this section, we introduce two categories of evaluation metric among multi-robot systems. One is
for single robot, the other is for whole fleet. These metrics can be used to comprehensively assess the
performance of a strategy implemented in our testbed.

3.3.1. Robot

Metrics for single robot quantify primarily the resource consumption of the robot. They allow
us not only to compare different solutions, but also analyze the applicability of a given solution to
a robotic fleet by answering the following questions:

• Does an embedded computer have enough CPU resources to perform all computations fast enough?
• Does an embedded computer have enough RAM resources to avoid memory ballooning and

swapping, which impacts the speed of computing?
• Are robot network interfaces suitable for communication required for inter-collaboration?

We therefore propose to measure the CPU and RAM usages as well as network transmission
rate on the simulated robot, among which the CPU usage is the sum of user and system CPU times,
the RAM usage is the percentage of memory in use, and the network transmission rate is the total
number of kilobytes received/transmitted per second.

3.3.2. Fleet

Metrics for whole fleet quantify primarily the overall multi-robot system performance for a given
task, which include:

Exploration Time

This is the most commonly used metric in the state-of-the-art [3,4,10,14], which measures the total
time required to complete an exploration mission for a robot fleet. In our definition, timing begins when
at least one robot in the fleet started the exploration, and ends when at least one has explored a predefined
percentage (e.g., 99%) of the whole terrain. The time is measured in wall-clock time, showing us how
many days, hours, minutes, and seconds that the fleet has spent on the exploration process.

One of the goals regarding the optimization of multi-robot exploration is to minimize the overall
exploration time. The challenge of achieving this goal remains to make each robot moving to the “best”
position in order to maximize the exploration area (i.e., information gain) and minimize at the same
time the usage of robots (e.g., exploration cost). Unfortunately, this problem is NP-hard for known and
beyond the scope of this paper.



Robotics 2017, 6, 21 7 of 21

Exploration Cost

The distance-based metrics have been widely used in multi-robot systems to estimate the cost of
a mission [4,10,14,33], especially for task allocation. We define the exploration cost as the sum of the
distances traveled by all robots of the fleet:

cost(n) =
n

∑
i=1

di (1)

where n is the number of robots in the fleet, and di is the distance traveled by robot i.
However, the definition of this metric can be varied according to users’ needs. It could be the energy
consumed by the computational resources such as CPU, RAM and network bandwidth, or even the
price of the robots and their handling and maintenance costs.

Exploration Efficiency

Efficiency is often measured as the ratio of useful output to total input. In the case of space
exploration, it is directly proportional to the amount of information retrieved from the environment,
and inversely proportional to the costs incurred by the robot fleet [33]:

e f f iciency(n) =
A

cost(n)
(2)

where A is the total explored area in square meters. For example, if the value of the exploration
efficiency is 1.6, meaning that each time all robots from the fleet move by 1 m, they discover on average
1.6 m2 of the terrain.

Exploration Safety

The collision among robots are extremely undesirable for multi-robot systems. The risk of collision
increases with the fleet size, which is difficult to identify and evaluate due to the lack of available
information. However, this problem can be alleviated by using coordination strategies. We therefore
define the safety metric as the number of collisions occurred during the exploration process:

sa f ety(n) = 1− ∑n
i=1 si

S
(3)

where S is a predefined cardinal and si is the total number of collisions experienced by robot i.
Obviously, the greater the value, the higher the safety.

Map Completeness

Map building is a task tightly coupled with the exploration. The completeness of robot-built map
is a major problem that researchers are concerned about [16,34,35]. Using this metric requires a prior
knowledge about the terrain to be explored and mapped. We therefore define the map completeness
as the ratio between the explored area A and the ground-truth area G:

completeness =
A
G

(4)

Map Quality

Building up an entirely accurate environment map by autonomous robot is still an open problem.
Reasons for the errors of a map could be at the hardware (sensors accuracy) and/or the software
(SLAM algorithms) level. To identify these errors, we need a ground-truth map of the environment.
The occupancy grid map is widely used to represent the unknown, occupied and free space in the
exploration problem. Let m(x,y) denote the grid cell with coordinates (x, y). Then an occupancy



Robotics 2017, 6, 21 8 of 21

grid map m can be represented as m = ∑x,y∈N m(x,y), where each m(x,y) stores an occupancy value
specifying whether a cell is unknown, occupied or free. We therefore define the map error as the
number of cells m(x,y) in the explored grid map having different value from their counterpart m′(x,y) in
the ground-truth:

error = ∑
x,y∈N

m(x,y), m(x,y) 6= m′(x,y) (5)

There is another factor we need to consider: results obtained from this formula are also affected
by the resolution of the map (i.e., size of the cell). A larger cardinal of cell will be required for a higher
resolution map. By using the same sensor and algorithm, the error is likely to be larger in a high
resolution map than in a low one. A good exploration performance must show a trade-off between the
map error and its resolution.

Given the above, we now define the map quality as the overlap of the explored and the
ground-truth area as a ratio to the latter:

quality =
A− error×ω

G
(6)

where ω is the cell size in square meters. As we can see from the definition, unlike the map quality
metric defined in [16,35], which mainly focuses on the completeness of the built map (i.e., percent of
the mapped areas), we are more concerned about its topological accuracy.

3.4. Experimental Design

An experimental design consists of:

• Parameters: This is a set of all parameters introduced in Section 3.1. For each parameter, users must
provide one or more values that will be used in experimental runs.

• Parameter vectors: A parameter vector contains a single value for each parameter, and it will be
used to perform a single experimental run. Users can either list all parameter vectors, or provide
a function to compute them.

• Iterations: This is the number of times to repeat each experimental run. This element is very
necessary for scientific experiments, especially in robotics, since there are several non-deterministic
components from the hardware such as noises on laser scan and odometry, or from the software
like algorithms implemented for SLAM. It is also necessary for using the computer cluster in
numerous institutions, because the cluster is usually shared use where there is no constant
network bandwidth.

• Stop conditions: It expresses when to stop each experimental run. It can be a condition to evaluate
whether the experiment is completed with success, or a timeout to evaluate failed runs in order to
avoid infinite loop.

• Measurements: These are the data to collect for each experimental run. Users have to state when to
perform each measurement, by providing a frequency for periodic measurements or a triggering
condition to collect data upon the occurrence of some event.

• Metrics: These are the formulas introduced in Section 3.3, which compute the benchmark results
from the collected data.

An example of an experimental design is shown in Table 1. For each benchmarking process,
users should provide a similar table to enable the reproducibility of experiments. That is, another person
can run the experiments in another environment and reach the same conclusion such as “algorithm
A is faster than B”. Instead, achieving replicability, meaning that the experiments can be repeated
with exactly the same result such as “algorithm A is 100 s faster than B”, which is more challenging.
The latter requires to have exactly the same testbed, i.e., with the same hardware and software setups.



Robotics 2017, 6, 21 9 of 21

Table 1. Example of an experimental design.

Parameters

Robot: Pioneer 3-DX

Number of robots: [1, 30]

· · ·

Parameter vectors All possible combinations

Iterations 5

Stop conditions
99% of explored terrain

2000 s of elapsed time

Measurements

Explored area per simulation step

% of used CPU of each robot per 5 s

· · ·

Metrics

Exploration time

Exploration cost

· · ·

4. Testbed

In this section, we present the current status of our testbed. We first describe its abstract
architecture, then the infrastructure we have built as well as the challenges we have faced, and last,
how to automate the deployment process.

4.1. Architecture

The architecture of our testbed is illustrated in Figure 3. It is composed of four parts: a simulator,
a monitor, a set of robot controllers, and the ROS middleware used to connect all of them. In particular,
we use the MORSE 3D realistic simulator and wrap it up into a ROS node. The monitor is also
performed as a ROS node, which allows us to supervise the experimental processes. Specifically, it can
stop the experiment when the stop condition is triggered, collect measurement data and compute the
metrics afterwards.

Figure 3. Architecture of our testbed.

Each robot controller materializes as a set of ROS nodes. For the sake of realistic benchmarking,
we use the same controller as the one running on actual robots. The coordination strategies is
shown as cross-cutting the robot controllers since we are mainly interested in distributed approaches.
This means each robot controller should provide some ROS nodes dedicated to coordination.
However, our architecture also support centralized approaches, for which the ROS nodes dedicated to
coordination can be performed independently from the robot controllers.



Robotics 2017, 6, 21 10 of 21

4.2. Infrastructure

The MORSE simulator and the system monitor are deployed on a workstation with 8 processors,
8GB RAM, a GeForce GTX 770 graphics card and a 1000 Mbps Ethernet adapter. The robot controllers
are deployed on a computer cluster in order to meet the computation requirement for simulation of
multiple robots in real time. The cluster consists of 70 computing nodes which can provide resources
required for high-performance distributed applications. Each computing node contains multiple
processors varying from 8 to 12, and RAM varying from 16 GB to 48 GB. The communication including
inter-node in cluster and cluster-workstation are achieved through a wired network.

To our knowledge, operating systems running on the computer cluster in different institutions
are varied. For example, our cluster is running on CentOS that is not supported by ROS. To overcome
this problem, we used an open-source virtual machine (VM, https://www.virtualbox.org/), which is
also a trade-off to maximize the reusability of our testbed. For each robot controller, we used a VM
with Ubuntu 12.04.1 LTS and ROS Groovy. Since all controllers run under the same infrastructure,
the potential slow-down should be evenly distributed. As a result, we believe that the use of VM does
not impact relative ratios of benchmarking results of different approaches.

The network communication in our testbed consists of three parts:

• Communication between the simulator and the robot controllers. The simulator sends sensory data
including laser scans and odometry to the controllers, and receives motion control information
from the latter. The amount of data to be transmitted and thus the required network bandwidth
increase obviously with the number of robots to simulate.

• Communication between the monitor and the robot controllers. The monitor receives measurement
data such as explored maps and traveled distances from the controllers. The usage of network
bandwidth mainly depends on the size of the terrain to explore.

• Communication between the robot controllers. This part of data is mainly caused by the
coordination strategies such as map exchange and coordinate frame transform among robots.
The transmission rate may also depend on the size of the terrain to explore and increase with the
number of robots to simulate.

Moreover, the communication between different ROS nodes is achieved using publish-subscribe pattern.

4.3. Challenges

4.3.1. Emulated Hardware

Utility-maximization resource allocation for the computer cluster is our primary concern.
To explore multi-scale trade-offs between the performance of VM and the required resources of
the cluster for multi-robot exploration simulations, we conducted several experiments with different
emulated hardware configurations. We fixed the number of robots to 8 and the RAM of each VM
to 2 GB, while varied the number of processors allocated to each VM and the number of deployed
computing nodes from 1 to 8. Table 2 shows the experimental results with exploration of the terrain
shown in Figure 4d, in which the exploration time is the mean of 5 identical runs.

As it can be seen from the table, the occupied network bandwidth for the communication between
the simulator and the robot controllers as well as the RAM used by each VM are the same for all
the configurations, while the team of robots with two processors each got the shortest exploration
time. This configuration was then chosen for our experiments, that will be presented in Section 5.
An alternative could be to use four processors per VM, since it is only a second slower than the one
with two processors. However, this is an unnecessary waste of resources, and typically, for a shared-use
computer cluster, the more computing resources we request, the longer we have to wait before having
a computing slot allocated to run the experiments. Furthermore, it is worth pointing out that metrics
other than exploration time can also be used as a reference according to the needs.

https://www.virtualbox.org/


Robotics 2017, 6, 21 11 of 21

(a) loop (b) cross (c) zigzag (d) maze

Figure 4. Our experimental terrains.

Table 2. Performance testing with different emulated hardware configurations.

Processor(s) per VM
1 2 4 8

Computing node(s)

Robot(s) per node 8 4 2 1

Exploration time (in seconds) 489 s 349 s 350 s 384 s

Occupied network bandwidth ≈85 Mb/s(simulator↔ robot controllers)

RAM used by each VM

4.3.2. Network Bandwidth

Realistic simulation of a large number of robots requires high computational power. This is why
our testbed relies on a computer cluster. However, since robot controllers need to communicate with
each other and also with the simulator over a network, the bandwidth of the latter becomes a major
constraint on large-scale simulation. Obviously, more robots to simulate implies more data need to be
exchanged over the network. This may give rise to a network overload, thus result in data loss and
inconsistent robot behaviors, and eventually lead to simulation failures.

As mentioned in Section 4.2, the data to be transmitted over the network mainly includes laser
scans, odometry, motion control information, explored maps, and coordinate frame transforms. Indeed,
reducing the data publishing frequencies can alleviate network load. However, the reduction should
be restricted to keep the simulation realistic. Table 3 summarizes relevant frequencies used in our
experiments. At the simulator side, the frequency of the MORSE simulator was set to 60 Hz in order to
handle the simulation in real time (i.e., one second of time in simulation is equal to one second of time
in the real world). The laser was set to 25 Hz, which is the minimum operating frequency of an actual
SICK LMS500 laser scanner. The odometry was set to 10 Hz, which is the default rate of an actual
Pioneer 3-DX robot. At the robot controller side, both the transform rate from map to odometry for the
gmapping package (SLAM) and the publishing rate of movement commands for the move_base package
were set to 10 Hz.

Table 3. Frequencies used in our testbed.

MORSE simulator

simulator 60 Hz

laser 25 Hz

odometry 10 Hz

ROS packages
gmapping (transform_publish_period) 10 Hz

move_base (controller_frequency) 10 Hz



Robotics 2017, 6, 21 12 of 21

4.4. Automated Deployment

Deployment automation is an important requirement for a testbed. However, it is a slightly
complex process for multi-robot simulation, especially with a computer cluster. We have fully
automatized the deployment work by scripting all file manipulation, program execution and text
printing, which are summarized in Algorithm 1.

The job scheduling on the computer cluster is performed by a Portable Batch System (PBS) [36],
which can allocate computational tasks among the available computing resources. The number of
requested computing nodes (denoted by nodes) can be computed by the maximum number of robots
in a fleet (denoted by max_team_size) and the number of robots that can be deployed on each node
(denoted by robots_per_node):

nodes = dmax_team_size/robots_per_nodee (7)

Algorithm 1 Multi-robot simulation deployment

1: Get the set of assigned computing nodes O from the cluster scheduler
2: Deploy the max_team_size of robots such that we have up to robots_per_node robots on each node

o ∈ O
3: for n = min_team_size to max_team_size do

4: for trial = 1 to max_trials do

5: Run MORSE simulator and the monitor on the workstation
6: Start n robots on p nodes where p ⊆ O using a greedy algorithm
7: end for
8: end for

For example, we need 2 processors per robot according to the results presented in Section 4.3.1,
so robots_per_node = 4 for those computing nodes which have 8 processors. Suppose max_team_size = 30,
so nodes = 8. In addition, it can be seen that our proposal allows to sequentially launch several
experiments with different team sizes, and several trials for each team size allow us to get objective
results from a statistical point of view.

As mentioned in Section 4.2, each simulated robot in a team is encapsulated into a VM image.
Typically, the VM images take up a lot of storage space and as a consequence, the time required to
deploy all of them may be long. In our case, the image file for a robot controller reaches 6.8 GB.
Obviously, the deployment time is proportional to the number of robots. We propose here an efficient
strategy (see Algorithm 2) to speed up the VM deployment process. A so-called prototype VM is
first built corresponding to a generic robot controller (e.g., Ubuntu with required ROS packages).
This prototype is then copied to a temporary storage area of the file system of each computing node.
In the end, we can clone it locally as many times as needed, only with a different IP address assigned
to each new VM.

Algorithm 2 Robot controllers deployment

1: deployed_vm_count = 0
2: Copy robot prototype VM to a temporary storage area of each node o ∈ O
3: for i = 1 to robots_per_node do

4: Clone the prototype VM and assign a new IP address to the cloned VM
5: deployed_vm_count = deployed_vm_count + 1
6: if deployed_vm_count == max_team_size then

7: return // deployment complete
8: end if
9: end for



Robotics 2017, 6, 21 13 of 21

5. Experiments

This section presents experiments that were conducted in our testbed. We implemented the
frontier-based approach for autonomous exploration with a fleet of robots [3] and benchmarked
a probabilistic approach for map merging [4]. Specifically, frontiers are regions on the boundary
between open space and unexplored space, and each robot determines itself (i.e., autonomously) which
frontier to go based on its explored map. This is actually a decentralized mechanism. Map exchange is
the only coordination strategy among robots, in which each robot integrates the map from other robots
into its own by fusing the probability of each grid cell. Once the robot updates its explored map, it will
move towards the nearest frontier. Other experiments conducted using this testbed can be found in
our previous work [14], where we performed several benchmarks to determine the optimal size of
a multi-robot fleet for an exploration mission.

5.1. Instantiated Experimental Design

The instantiated experimental design is summarized in Table 4. Some parameters have a fixed value,
i.e., the same value was used in all simulation runs. According to Section 3.4, this table provides all
required information to reproduce our experiments. In particular, we experimented with different fleet
sizes ranging from 1 to 30 identical robots, i.e., homogeneous team of simulated Pioneer 3-DX robots with
2 CPUs and 2 GB RAM. Each robot was equipped with a SICK LMS500 laser scanner, which provides
180 sample points with 190 degrees field of view and a maximum range of 26 m. As the same as the actual
one, the maximum speed of the simulated robot was set to 1.2 m/s for linear and 5.24 rad/s for rotational
motion. A zero mean Gaussian white noise was added to the odometry data, where the standard deviation
was 0.022 m for position noise (i.e., x and y) and 0.02 rad for rotation noise. These noises are very close to
the actual Pioneer 3-DX robot, making our simulation as realistic as possible.

The robots were initially placed along a vertical line, starting from the top left corner of the
terrain to the bottom left corner. The distance between two adjacent robots was set to 2 m. The robots
communicated with each other over a wired Gigabit Ethernet network. The maximum communication
range between them was set to 200 m, based on their relative position in the simulated environment.
The impact of obstacles to communication was ignored, due to the fact that the MORSE simulator
does not currently support it. We will address this issue in our future work and provide different
communication models for the testbed.

Inspired by the RoboCup Rescue competition, four experimental terrains (see Figure 4) were
created with the same size but different topological structures (i.e., explorable areas):

• The loop terrain has a low obstacle density and a simple obstacle shape, in which there is no road
fork (similar to beltway).

• The cross terrain contains five road forks but the obstacle density is still low (similar to crossroad).
• The zigzag terrain has no road fork but more obstacles, and it has a long solution path for the robot

(similar to square-grid street).
• The maze terrain is the most complex which contains many obstacles and dead ends (similar to

whole city).

All terrains are 80 m long and 80 m wide. The height of the obstacles was set to 2 m and the width
of roads was fixed to 8 m.



Robotics 2017, 6, 21 14 of 21

Table 4. Experimental design of a multi-robot frontier-based exploration.

Parameters

Robot

Robot Model: Pioneer 3-DX

Computing Capabilities:
2 CPUs, 2 GB RAM

Maximum speed: 1.2 m/s, 5.24 rad/s

Laser rangefinder: SICK LMS500

Fleet

Number of robots: [1, 30]

Homogeneity:
homogeneous (Pioneer 3-DX)

Robot initial positions:
top left to bottom left corner, every 2 m

Communication network:
wired Gigabit Ethernet

Communication range: 200 m

Terrains: loop, cross, zigzag, maze

Environment
Terrain size: 80 m × 80 m

Obstacle height: 2 m

Road width: 8 m

Parameter vectors All possible combinations

Iterations 5

Stop conditions
99% of explored terrain

2000 s of elapsed time

Measurements

Explored area per simulation step

% of CPU used by each robot every 5 s

% of RAM used by each robot every 5 s

Kbytes received by each robot every 5 s

Kbytes sent by each robot every 5 s

Metrics

Exploration time

Exploration cost

Exploration efficiency

Map quality

5.2. Robot Controller

The robot controller has been fully implemented into ROS with high modularity. The software
architecture is illustrated in Figure 5, which mainly includes four ROS packages:

• gmapping (http://wiki.ros.org/gmapping) is part of official ROS packages, which performs
a laser-based SLAM (Simultaneous Localization And Mapping). It provides a ROS node that
takes in laser scan data, builds a map, and estimates the robot’s current pose within the
map frame. Taking advantage of this package, we extracted the pose information of robot
(http://wiki.ros.org/pose_publisher), then feed it to the explore package.

• explore (http://wiki.ros.org/explore) was originally developed by BOSCH, which implemented
the frontier-based approach for single robot exploration. We extended it to support multi-robot
system (http://wiki.ros.org/explore_multirobot) by publishing explored map, estimated cost and
expected information gain, and receiving map from other robots via the coordination package.

http://wiki.ros.org/gmapping
http://wiki.ros.org/pose_publisher
http://wiki.ros.org/explore
http://wiki.ros.org/explore_multirobot


Robotics 2017, 6, 21 15 of 21

• coordination was developed as an abstract interface to the testbed. Users can implement their own
coordination strategies such as map merging (http://wiki.ros.org/map_merging), task planning
and motion planning. In our case, it provides the merged map to the explore package and the
frontier position to the move_base package.

• move_base is also part of official ROS packages, which implements Dijkstra’s algorithm to global
path planning and Dynamic Window approach to local collision avoidance.

Figure 5. Architecture of our robot control software.

An important benefit of our software design is the system robustness. When a robot is not able
to coordinate with the team due to communication problems or other robots failures, it can still keep
working and make its own decisions. For example, the robot can get a goal position from the explore
package in the absence of the coordination package. In a sense, the use of the coordination package is not
mandatory but it can overcome individual cognitive biases, thus improve the system performance. It is
worth pointing out that our testbed does not force explicit coordination (i.e., communication) between
robots. The algorithms without any inter-robot communication (e.g., implicit coordination) can also be
benchmarked in our testbed.

5.3. Benchmarking Results

The benchmarking results are given in Figures 6 and 7. Each figure contains four plots,
each corresponding to a metric. In each plot, the abscissa denotes the fleet size, and the ordinate
denotes the measurement. Figure 6 illustrates results from the use of “robot” metrics as presented in
Section 3.3.1. We measured the metrics once every 5 s for each robot in the fleet, and display the mean
of all measurements:

mean(n) =
n

∑
i=1

(
m

∑
j=1

measurementj/m)/n (8)

where m is the number of measurements (indexed by j) for the robot i, and n is the number of robots
in the fleet. Of course, the measurement timing can be changed according to user’s needs and also
specific applications. The results first confirm the trade-offs we made on the emulated robot hardware
(see Section 4.3.1). The CPU usage was less then 90% and the RAM usage was holding at around 35%.
The network receive and send rate was not more than 4 Mb/s. The results also show that, with the
zigzag terrain, robots consume typically more CPU and network. This is mainly because robots need to
plan longer path in this terrain, and hence require more computation and data exchanges. Furthermore,
it can be seen that we got a high deviation with the fleet size of 26 robots in the maze terrain. This is
an actual negative impact of shared use of our computer cluster, which should be addressed in our
future work.

http://wiki.ros.org/map_merging


Robotics 2017, 6, 21 16 of 21

0
50

10
0

15
0

Number of robots

C
P

U
 (

us
ed

/to
ta

l)

●
●

●
●

●
●

● ●
● ●

●
● ●

●
●

● ●
●

● ●
●

● ●
●

●
●

● ●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(a) CPU usage

0
20

40
60

80
10

0

Number of robots

R
A

M
 (

us
ed

/to
ta

l)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(b) RAM usage

0
10

00
20

00
30

00
40

00
50

00
60

00

Number of robots

N
et

w
or

k 
re

ce
iv

e 
ra

te
 (

K
by

te
s/

s)

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(c) Network receive rate

0
10

00
20

00
30

00
40

00
50

00
60

00

Number of robots

N
et

w
or

k 
se

nd
 r

at
e 

(K
by

te
s/

s)

●

●
●

●

● ●

●
● ● ●

●

●

●

●
●

● ●

●
● ●

●

● ●

●

●

●

●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(d) Network send rate

Figure 6. Results from the use of “robot” metrics.

Figure 7 shows the measurements by using the “fleet” metrics as described in Section 3.3.2.
We performed 5 runs for each fleet size, and display the mean value of these runs. The symbol size
of the mean value in the plots varies with the number of success runs (i.e., 1 to 5), and it will not
be displayed if all 5 runs fail. It can be seen that system performance is the lowest with the zigzag
terrain. Our experiments showed that exploration was mainly performed by a single robot in this
terrain, because there is only one frontier which is always the closest to the same robot (i.e., the one
at the top left corner of the terrain). In addition, the optimal fleet size of the robots can be assessed
according to these benchmarking results. For example, to explore the maze terrain the ideal fleet
should have 11 robots, with which we can get less exploration time and cost while ensuring high
exploration efficiency.



Robotics 2017, 6, 21 17 of 21

0
50

0
10

00
15

00
20

00

Number of robots

E
xp

lo
ra

tio
n 

T
im

e

●

●

● ● ● ● ● ● ● ● ● ●
● ● ●

● ●
● ●

●
●

● ●
●

●

●

● ●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(a) Exploration time

0
20

00
40

00
60

00
80

00
10

00
0

Number of robots

E
xp

lo
ra

tio
n 

C
os

t

● ● ● ●
● ●

● ● ● ●
● ●

● ● ●

● ●
● ● ●

●
● ● ●

●

● ● ●
●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(b) Exploration cost

0
2

4
6

8
10

12

Number of robots

E
xp

lo
ra

tio
n 

E
ffi

ci
en

cy

●

● ●

●

●

●

●
●

● ●

● ●
●

●

●

●

●

● ● ●

● ●
●

●

●

● ●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(c) Exploration efficiency

0.
7

0.
8

0.
9

1.
0

1.
1

Number of robots

M
ap

pi
ng

 Q
ua

lit
y

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●
●

●

●

● ●

●

●

●

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

●

loop
cross
zigzag
maze

(d) Map quality

Figure 7. Results from the use of “fleet” metrics.

6. Discussion

6.1. Network Reliability

In real multi-robot systems, coordination often relies on direct communication via wireless
network interfaces. Robots form a wireless Mobile Ad Hoc Network (MANET) that is subject to
disconnection when they move away from each other to perform their tasks [9,31]. This unreliability
can have serious impacts on coordination strategies among robots. Making realistic simulation requires
to take into account such network unreliability. This is why in our testbed, robots can communicate
only if they are within a certain range that is specific to the wireless technology used in simulated robots.
However, range is only one facet of wireless networking. There are other factors which can influence
communication reliability such as radio interferences, communication delays, and signal attenuation
caused by obstacles. More realistic simulation need to integrate models of radio propagation and
network protocols as done in RoboNetSim [19].

However, a direct consequence of the introduction of these models is an increase in the
computational overhead. More importantly, simulating unreliability requires to change the ROS
architectural model. Currently, ROS is based on a central node called ROS master (http://wiki.
ros.org/Master), which provides naming and registration services to the rest of the nodes in the

http://wiki.ros.org/Master
http://wiki.ros.org/Master


Robotics 2017, 6, 21 18 of 21

ROS system. It keeps record of topic publishers and subscribers, as well as service providers,
and hence enables individual ROS nodes to discover one another. An unreliable network means
that disconnections should be reflected by the ROS master. The ROS community is aware of this
problem that arises when a robot gets disconnected in ROS-based multi-robot systems. The response
to this issue is being address by a ROS special interest group that targets a so-called multi-master
(http://wiki.ros.org/sig/Multimaster) solution.The core idea is to use one master inside each reliable
network, that is typically one master per robot since robot parts are often connected through a wired
network. Masters that will be connected to each other through unreliable networks (i.e., wireless),
should update their registries depending on discoveries or disconnections.

6.2. Network Bandwidth

In our testbed, network is used for intra-robot communication between the robot controller and
the robot body, and also for inter-robot communication between different robots. Depending on the
network topology in the computer cluster and the bandwidth of the network, there might be some
limitations on the maximum number of robots that can be simulated. The number can be less than
what we can obtain in a real setting. In the latter, the intra-robot communication is performed within
the robot (typically wired), while the inter-robot communication is typically done through a wireless
network. Moreover, in a real setting with decentralized working scheme, different groups of robots far
from each other beyond the wireless range can form different networks allowing communication in
parallel. The total bandwidth can thus be much greater than the maximum allowed by used network
interfaces due to parallelism. Another opportunity for parallel communication occurs when robots
embed different network interfaces working on different channels (i.e., radio frequencies) or using
different technologies (e.g., Wifi, WiMax, and HSPA). This parallelism is impossible with a typical flat
bus style network topology in a computer cluster. Last, the network of the computer cluster used for
the testbed is also used for other communications, including network file systems traffic, management
traffic, job scheduling traffic, and other jobs running on the cluster.

6.3. Hardware in the Loop

Some work draws a strict separation between simulations and tests on multi-robot systems [28],
while other researchers propose to introduce hardware in the loop [37]. The latter performed some
hybrid experiments, in which a subset of simulated robot parts were replaced by actual hardware.
This actually showed a promising manner where the transition from simulation to real machine
experiment is more progressive.

In our proposal, we rely on the ROS middleware. The robot controllers, the sensors and the
actuators are all ROS nodes, which communicate through ROS topics. The modularity and the network
abstraction designed in our testbed enable different deployment schemas. Simulated sensors and
actuators can be replaced by nodes that wrap hardware sensors and actuators. This can be done step
by step and integrated in a robot testing methodology such as the one presented in [38].

Besides, control nodes can also be deployed on actual robots, which allows a more accurate
estimation of the impact of computing capabilities. Moreover, using robot onboard computer instead
of the computer cluster has another benefit. The former typically offers two or more network interfaces
including Ethernet and WiFi. The wireless interface can be used for inter-robot communication
for coordination, while the wired interface can be used to communicate with simulated sensors and
actuators. Consequently, we could avoid at least part of network load problems that limit the maximum
fleet size as discussed in Section 6.2.

7. Conclusions

In this paper, we presented a ROS-based testbed for realistic multi-robot simulation. Our testbed
uses MORSE simulator for realistic simulation and a computer cluster for decentralized computation.
We released our MORSE simulation scenarios, the developed ROS packages, and the scripts for

http://wiki.ros.org/sig/Multimaster


Robotics 2017, 6, 21 19 of 21

autonomous deployment, as open-source publicly available to the research community. In addition,
we provided a detailed description of benchmarking process based on experimental design,
which aimed to improve the reproducibility of experiments. We advocate that an experimental design
must explicitly declare all elements of a benchmark such as parameters and metrics. Our testbed
is fully automated, which enables to continuously benchmark different algorithms under different
conditions, without any manual intervention.

Another contribution of this paper is an experience report on building a testbed with shared-use
computer cluster as is often the case in many institutions. We showed how to set up the testbed in such a
context, the challenges and how to face them. To validate and evaluate our testbed, we benchmarked the
frontier-based exploration approach with a fleet of robots using a probabilistic map merging algorithm.
While most parameters were with fixed values, we varied a few of them: the number of robots and the
terrain characteristics. We thus demonstrated the impact of the latter on the exploration performance.

As with future work, we would like to define a collection of reference experimental designs.
The collection will consist of several vectors, where each vector corresponds to a set of particular
values with respect to robot, fleet and environment. Our goal is to provide the multi-robot community
with the seed for a database that will be used to compare different algorithms similarly to what is
done in other communities. This should ultimately provide us insights on how to compare existing
solutions, and which algorithm should be used for a given problem.

Acknowledgments: This work is part of the SUCRé project that is supported by the Nord-Pas-de-Calais region
of France.

Author Contributions: Zhi Yan, Luc Fabresse, Jannik Laval and Noury Bouraqadi designed the testbed;
Zhi Yan implemented the testbed and performed the experiments; Zhi Yan, Luc Fabresse, Jannik Laval and
Noury Bouraqadi wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Parker, L.E. Multiple Mobile Robot Systems; Springer: Berlin/Heidelberg, Germany, 2008; pp. 921–941.
2. Yan, Z.; Jouandeau, N.; Cherif, A.A. A Survey and Analysis of Multi-Robot Coordination. Int. J. Adv. Robot. Syst.

2013, 10, 399, doi:10.5772/57313.
3. Yamauchi, B. Frontier-Based Exploration Using Multiple Robots. In Proceedings of the 2nd International

Conference on Autonomous Agents Minneapolis, MN, USA, 10–13 May 1998; pp. 47–53.
4. Burgard, W.; Moors, M.; Fox, D.; Simmons, R.; Thrun, S. Collaborative Multi-Robot Exploration.

In Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA),
San Francisco, CA, USA, 24–28 April 2000; pp. 476–481.

5. Vazquez, J.; Malcolm, C. Distributed Multirobot Exploration Maintaining a Mobile Network. In Proceedings
of the 6th IEEE International Conference on Intelligent Systems (IS), Varna, Bulgaria, 22–24 June 2004;
pp. 113–118.

6. Howard, A. Multi-robot Simultaneous Localization and Mapping using Particle Filters. Int. J. Robot. Res.
2006, 25, 1243–1256.

7. Sheng, W.; Yang, Q.; Tan, J.; Xi, N. Distributed multi-robot coordination in area exploration. Robot. Auton. Syst.
2006, 54, 945–955.

8. Rooker, M.N.; Birk, A. Multi-robot exploration under the constraints of wireless networking. Control Eng. Pract.
2007, 15, 435–445.

9. Doniec, A.; Bouraqadi, N.; Defoort, M.; Le, V.T.; Stinckwich, S. Distributed Constraint Reasoning Applied to
Multi-robot Exploration. In Proceedings of the 21st IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Newark, NJ, USA, 2–4 November 2009; pp. 159–166.

10. Stachniss, C. Robotic Mapping and Exploration; Springer: Berlin, Germany, 2009.
11. Cabrera-Mora, F.; Xiao, J. A Flooding Algorithm for Multirobot Exploration. IEEE Trans. Syst. Man Cybern.

Part B 2012, 42, 850–863.
12. Moratuwage, D.; Wang, D.; Rao, A.; Senarathne, N.; Wang, H. RFS Collaborative Multivehicle SLAM:

SLAM in Dynamic High-Clutter Environments. IEEE Robot. Autom. Mag. 2014, 21, 53–59.



Robotics 2017, 6, 21 20 of 21

13. Saeedi, S.; Paull, L.; Trentini, M.; Seto, M.; Li, H. Group Mapping: A Topological Approach to Map Merging
for Multiple Robots. IEEE Robot. Autom. Mag. 2014, 21, 60–72.

14. Yan, Z.; Fabresse, L.; Laval, J.; Bouraqadi, N. Team Size Optimization for Multi-robot Exploration.
In Proceedings of the 4th International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), Bergamo, Italy, 20–23 October 2014; pp. 438–449.

15. Faigl, J.; Kulich, M. On benchmarking of frontier-based multi-robot exploration strategies. In Proceedings of
the 2015 European Conference on Mobile Robots (ECMR), Lincoln, UK, 2–4 September 2015.

16. Couceiro, M.S.; Vargas, P.A.; Rocha, R.P.; Ferreira, N.M.F. Benchmark of swarm robotics distributed
techniques in a search task. Robot. Auton. Syst. 2014, 62, 200–213.

17. Bonsignorio, F.; Pobil, A.P.D.; Messina, E. Fostering Progress in Performance Evaluation and Benchmarking
of Robotic and Automation Systems. IEEE Robot. Autom. Mag. 2014, 21, 22–25.

18. Taylor, J.R.; Drumwright, E.M.; Parmer, G. Making Time Make Sense in Robotic Simulation. In Proceedings
of the 4th International Conference on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), Bergamo, Italy, 20–23 October 2014; pp. 1–12.

19. Kudelski, M.; Gambardella, L.M.; Caro, G.A.D. RoboNetSim: An integrated framework for multi-robot and
network simulation. Robot. Auton. Syst. 2013, 61, 483–496.

20. Gerkey, B.P.; Vaughan, R.T.; Howard, A. The Player/Stage Project: Tools for Multi-Robot and Distributed
Sensor Systems. In Proceedings of the 11th International Conference on Advanced Robotics (ICAR),
Coimbra, Portugal, 30 June–3 July 2003; pp. 317–323.

21. Michel, O. Cyberbotics Ltd. WebotsTM: Professional Mobile Robot Simulation. Int. J. Adv. Robot. Syst. 2004,
1, 39–42.

22. Freese, M.; Singh, S.P.N.; Ozaki, F.; Matsuhira, N. Virtual Robot Experimentation Platform
V-REP: A Versatile 3D Robot Simulator. In Proceedings of the 2nd International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR), Darmstadt, Germany,
15–18 November 2010; pp. 51–62.

23. Koenig, N.P.; Howard, A. Design and use paradigms for Gazebo, an open-source multi-robot simulator.
In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
Chicago, IL, USA, 14–18 September 2004; pp. 2149–2154.

24. Echeverria, G.; Lemaignan, S.; Degroote, A.; Lacroix, S.; Karg, M.; Koch, P.; Lesire, C.; Stinckwich, S. Simulating
Complex Robotic Scenarios with MORSE. In Proceedings of the 3rd International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR), Tsukuba, Japan, 5–8 November 2012;
pp. 197–208.

25. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source
Robot Operating System. In Proceedings of the ICRA’09 Workshop on Open Source Software,
Guiyang, China, 18–20 September 2009.

26. Del Pobil, A.P.; Madhavan, R.; Messina, E. Benchmarks in robotics research. In Proceedings of the 2006
IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 9–15 October 2006.

27. Anderson, M.; Jenkins, O.C.; Osentoski, S. Recasting Robotics Challenges as Experiments. IEEE Robot.
Autom. Mag. 2011, 18, 10–11.

28. Michael, N.; Fink, J.; Kumar, V. Experimental Testbed for Large Multirobot Teams. IEEE Robot. Autom. Mag.
2008, 15, 53–61.

29. Okada, T.; abd Razvan Beuran, J.N.; Tan, Y.; Shinoda, Y. Large-scale Simulation Method of Mobile Robots.
In Proceedings of the IEEE 2nd International Symposium on Universal Communication (ISUC), Osaka, Japan,
15–16 December 2008.

30. Yan, Z.; Fabresse, L.; Laval, J.; Bouraqadi, N. Metrics for Performance Benchmarking of Multi-robot
Exploration. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 3407–3414.

31. Le, V.T.; Bouraqadi, N.; Stinckwich, S.; Moraru, V.; Doniec, A. Making networked robots connectivity-aware.
In Proceedings of the 2009 IEEE International Conference on Robotics and Automation (ICRA), Kobe, Japan,
12–17 May 2009; pp. 3502–3507.

32. Lampe, A.; Chatila, R. Performance Measure for the Evaluation of Mobile Robot Autonomy. In Proceedings
of the 2006 IEEE International Conference on Robotics and Automation (ICRA), Orlando, FL, USA,
15–19 May 2006; pp. 4057–4062.



Robotics 2017, 6, 21 21 of 21

33. Zlot, R.; Stentz, A.T.; Dias, M.B.; Thayer, S. Multi-Robot Exploration Controlled by a Market
Economy. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (ICRA),
Washington, DC, USA, 11–15 May 2002.

34. Frank, S.; Listmann, K.D.; Haumann, A.D.; Willert, V. Performance Analysis for Multi-robot Exploration
Strategies. In Proceedings of the 2nd International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), Darmstadt, Germany, 15–18 November 2010; pp. 399–410.

35. Scrapper, C.; Madhavan, R.; Lakaemper, R.; Censi, A.; Godil, A.; Wagan, A.; Jacoff, A. Quantitative Assessment
of Robot-Generated Maps. In Performance Evaluation and Benchmarking of Intelligent Systems; Springer:
New York, NY, USA, 2009; pp. 221–248.

36. Henderson, R.L. Job scheduling under the Portable Batch System. In Proceedings of the Workshop
on Job Scheduling Strategies for Parallel Processing, Santa Barbara, CA, USA, 5 April 1995; Springer:
Berlin, Germany; New York, NY, USA, 1995; pp. 279–294.

37. Zhu, J.; Zheng, Q.; Liang, Y.; Liang, M. A component-based hybrid testbed for multi-mobile robots.
In Proceedings of the 2009 International Conference on Information and Automation, Macau, China,
22–24 June 2009.

38. Laval, J.; Fabresse, L.; Bouraqadi, N. A methodology for testing mobile autonomous robots. In Proceedings
of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan,
3–7 November 2013; pp. 1842–1847.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Benchmarking Process
	Parameters
	Fleet
	Metrics
	Robot
	Fleet

	Experimental Design

	Testbed
	Architecture
	Infrastructure
	Challenges
	Emulated Hardware
	Network Bandwidth

	Automated Deployment

	Experiments
	Instantiated Experimental Design
	Robot Controller
	Benchmarking Results

	Discussion
	Network Reliability
	Network Bandwidth
	Hardware in the Loop

	Conclusions

