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Abstract: In recent years, automatic driving control has attracted attention. To achieve a satisfactory
driving control performance, the prediction accuracy of the traveling route is important. If a highly
accurate prediction method can be used, an accurate traveling route can be obtained. Despite the
considerable efforts that have been invested in improving prediction methods, prediction errors do
occur in general. Thus, a method to minimize the influence of prediction errors on automatic driving
control systems is required. This need motivated us to focus on the design of a mechanism for shaping
prediction signals, which is called a prediction governor. In this study, we first extended our previous
study to the input-affine nonlinear system case. Then, we analytically derived a solution to an optimal
design problem of prediction governors. Finally, we applied the solution to an automatic driving
control system, and demonstrated its usefulness through a numerical example and an experiment
using a radio controlled car.

Keywords: prediction; signal shaping; automatic driving control

1. Introduction

In recent years, automatic driving control has attracted attention, and various studies on this
topic have been undertaken [1,2]. In automatic driving systems that achieve lane-keeping and obstacle
avoidance, the traveling route is predicted based on the data of the driving environment collected using
sensor information from cameras and other equipment mounted on the vehicle [3,4]. Acceleration
and braking are then controlled to move the vehicle along the predicted traveling route. Accordingly,
the predicting of the traveling route is crucial for achieving sophisticated automatic driving control.
Although it may be possible to obtain an accurate traveling route if it can be predicted using a vast
amount of data and a sophisticated prediction algorithm, it is very likely that, if the amount of data
available is small and the prediction algorithm is simple, the accuracy of the predicted traveling route
will be inferior.

Based on this perspective, many previous studies have been conducted on image recognition as
a means of recognizing the driving environment with high prediction accuracy [5–7]. Moreover,
many studies have been conducted on various prediction methods, such as Kalman filtering
and machine learning, and automatic driving control systems based on such methods have been
proposed [8–13]. However, the prediction method, regardless of its accuracy, may produce prediction
errors that are unavoidable in an unpredictable real-world situation. Accordingly, methods to minimize
the degradation incurred in the performance of automatic driving control when a prediction error
occurs are deemed necessary.
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In the field of control, an optimal prediction governor, whereby the predicted signal is shaped
to minimize the decrease in the control performance of the system when a prediction error occurs,
has been proposed [14]. In an optimal prediction governor, the low accuracy predicted value obtained
in real time, is proactively shaped using a past high accuracy predicted value and the system model
information. In an autonomous driving system, in addition to the predicted value obtained in real
time, in many cases it is also possible to use highly accurate predicted information obtained from
time-consuming processing, such as image recognition, and therefore, the applicability of the prediction
governor to automatic driving problems is considered to be high. However, only linear systems are
considered in the optimal prediction governor, making it inapplicable directly to nonlinear systems
such as automotive systems.

Motivated by the above, this paper is focused on the design of an optimal prediction governor for
nonlinear systems. First, a generalized version of the prediction governor designed in our previous
study is considered. Then, the optimal design problem for the prediction governor is formulated for
application to input-affine nonlinear systems. The optimality here refers to the shaping of the low
accuracy predicted value by the prediction governor, such that the system output obtained using
this shaped value becomes the best approximation of the system output obtained using the high
accuracy predicted value as input. Next, the optimal design problem is analytically solved to derive
the optimal prediction governor and clarify the optimal structure. Finally, the application of the
proposed prediction governor to an automatic driving control problem is described. In particular,
the usefulness of the prediction governor is validated through the result of a trajectory tracking
simulation and an experiment on lane-keeping control using a radio controlled car.

The following points are emphasized. First, in this study, the prediction governor proposed in our
previous study [14] was generalized, and an optimal prediction governor for input-affine nonlinear
systems was derived. Consequently, the prediction governor was rendered applicable to not only linear,
but also nonlinear systems. This is a significant and successful outcome in terms of developing optimal
design theory for prediction governors. Next, the prediction governor was applied to an automatic
driving control system, and the usefulness of the proposed method was validated through numerical
simulations and experiments. Based on this initiative, it is likely that the practical applicability of the
prediction governor can be demonstrated. Moreover, to be best of the authors’ knowledge an approach
that considers the reshaping of predicted signals in automatic driving control has not previously been
reported. Accordingly, the successful outcome of the present study gives new insight into automatic
driving technology.

Finally, we make the following remark. The approach of this paper is similar to a path
smoothing approach based on model information of systems for non-holonomic vehicles [15]. However,
the proposed perdition governor shapes predicted signal with prediction error in order to minimize
the performance degradation due to prediction error. This point is different from the previous work
in [15]. In addition, the prediction governor is similar to reference governor [16,17]. However,
the prediction governor is distinguished from the reference governor in terms of concept and structure.
The main purpose of the prediction governor is to minimize the influence of the prediction error
on the system’s output, while that of the reference governor is to eliminate wind up phenomenon
due to the input/state constraints of systems. Moreover, the basic reference governor is given by
v(t) = v(t− 1)− κ(t)(v(t− 1)− r̄(t)), where r̄ is a given original reference signal, v is a modified
reference signal, and the parameter κ ∈ [0, 1] is maximized by considering input/state constraints.
Thus, the reference governor is based on the original desired reference signal r̄(t) and the model
information, and minimizes the value of v− r̄ under input/state constraints. In contrast, the prediction
governor is based on the predicted low accuracy signal r(t), the past high accuracy signal r̄(t− 1),
and the model information. In addition, it minimizes the output difference between the system driven
by the shaped signal v and that driven by r̄.
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This paper presents an extension of the authors’ previous study [18], with the addition of a proof
of the optimality for the derived prediction governor and the results of an experiment using a radio
controlled car.

Notations: Let R, R+, and N be the real number field, the set of positive real numbers, and the
set of positive integers, respectively. We use In to express the n× n identity matrix. The ∞-norm of
discrete-time signal e := (e(0), e(1), . . .) is expressed by ‖e‖∞ := supt∈{0}∪N |e(t)|.

2. Optimal Prediction Governor for Input-Affine Nonlinear Systems

2.1. Problem Formulation

Consider the feedforward system Σ ◦ G shown in Figure 1, which is composed of the control
system Σ and the prediction governor G.

The input-affine nonlinear system Σ is given by

Σ :

{
x(t + 1) = f (x(t)) + g(x(t))v(t),

y(t) = Cx(t),
(1)

where t ∈ {0} ∪N is discrete time, x ∈ Rn is the state, v ∈ R is the input, and y ∈ R is the output.
For x0 ∈ Rn, the initial state of x is given by x(0) = x0. In addition, f : Rn → Rn and g : Rn → Rn

are continuous and smooth functions of x and C ∈ R1×n is constant matrix. We assume the state x of
system Σ is bounded, i.e., (x(1), x(2), . . .) ∈ `n

∞ holds for every initial state x0 ∈ Rn and bounded
input (v(0), v(1), . . .) ∈ `∞. Furthermore, we assume that Cg(x) 6= 0 (∀x ∈ Rn).

The prediction governor is given by

G :

{
ξ(t + 1) = A(ξ(t)) + B(ξ(t))v(t) + C(ξ(t))r(t) +D(ξ(t))u(t),

v(t) = α(ξ(t)) + β(ξ(t))r(t) + γ(ξ(t))u(t),
(2)

where ξ ∈ RN is the state, r ∈ R and u ∈ R are the inputs, v ∈ R is the output, and ξ(0) = ξ0 ∈ RN .
A,B, C,D : RN → RN and α, β, γ : RN → R are the functions of ξ. For G, we assume that α(ξ0) = 0
to guarantee v(t) = 0 for r(t) ≡ 0 and u(t) ≡ 0. The prediction governor in (2) is a general version of
that presented in the previous study [14]. In Figure 1, r is a low accuracy predicted reference and r̄ a
high accuracy predicted reference. In addition, u is a past high accuracy predicted reference, and in
this study it is assumed that u(t) = r̄(t− 1) and u(t) = 0 (t < 1). In this study, we also assume that
the maximum error between low accuracy predicted reference r and high accuracy predicted reference
r̄ is ∆ ∈ R+.

‖r− r̄‖∞ = ∆. (3)

Control

System

＋

－

Figure 1. Error system composed of a control system and a prediction governor.

The state and the output of system Σ driven by the high accuracy predicted signal r̄ are denoted
by x̄ and ȳ, respectively. In addition, x̄(0) = x0. Then, we derive a prediction governor that minimizes
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the difference between the output y of Σ ◦ G and the output ȳ in Figure 1. To design the prediction
governor, we introduce the following cost function:

J(G) := sup
(x0,ξ0r,r̄)∈Rn×RN×`∞×`∞

‖y− ȳ‖∞. (4)

Function J(G) evaluates the maximum difference between y and ȳ. Then, the design problem of
prediction governor G is formulated as follows.

Problem 1. Suppose that the control system Σ and ∆ ∈ R+ are given. Then, find the parameters ξ0, N , A,
B, C, D, α, β, γ of prediction governor G that minimize the value of J(G) in (4). In addition, determine the
minimum value of J(G).

By using a solution to the problem, the output behavior of system Σ ◦G is similar to that of system
G with high accuracy predicted reference r̄.

2.2. Optimal Prediction Governor

From (1) and (2), and u(0) = 0, the output difference between y and ȳ at t = 1 is given by

y(1)− ȳ(1) = Cg(x0){α(ξ0) + β(ξ0)r(0)− r̄(0)}. (5)

By using α(ξ0) = 0 and the new variable ω := r− r̄ (‖ω‖∞ = ∆ from (3)), the above equation can
be rewritten as

y(1)− ȳ(1) = Cg(x0)ω(0) + Cg(x0)(β(ξ0)− 1)r(0). (6)

Then, we obtain

sup
(x0,ξ0r,r̄)∈Rn×RN×`∞×`∞

|y(1)− ȳ(1)| =
{

supx0∈Rn |Cg(x0)|∆ if β(ξ0) = 1
∞ otherwise

(7)

from (6), Cg(x0) 6= 0, and |ω(0)| ≤ ∆. This means that the lower bound of J(G) is given by
supx0∈Rn |Cg(x0)|∆ for α(ξ0) = 0 and β(ξ0) = 1. Therefore, if there exists a prediction governor
G such that the relations α(ξ0) = 0, β(ξ0) = 1 and J(G) ≤ supx0∈Rn |Cg(x0)|∆ hold, such a G is an
optimal solution to Problem 1.

The solution to Problem 1 is given as follows.

Theorem 1. For the nonlinear system Σ, an optimal prediction governor G? is given by

G? :



ξ(t + 1) =

 f ([In 0 0]ξ(t))
0

f ([0 0 In]ξ(t))

+

g([In 0 0]ξ(t))
0
0

 v(t) +

 0
0

g([0 0 In]ξ(t))

 u(t),

[0 In 0]ξ(t) =

{
[0 In 0]ξ(0) if t ≤ 1

[0 0 In]ξ(t + 1) if otherwise
,

v(t) = (Cg([In 0 0]ξ(t)))−1{C f ([0 In 0]ξ(t))− C f ([In 0 0]ξ(t))}
+ (Cg([In 0 0]ξ(t)))−1Cg([0 In 0]ξ(t))r(t),

(8)

and ξ0 = [x>0 x>0 0]> ∈ R3n. In addition, the minimum value of J(G) is given by

J(G?) = sup
x0∈Rn

|Cg(x0)|∆. (9)



Robotics 2018, 7, 16 5 of 12

Proof of Theorem 1. By direct calculation, it is determined that the relations α(ξ0) = 0 and β(ξ0) = 1
hold for (8) and ξ0 = [x>0 x>0 0]> ∈ R3n.

Next, for the minimum value of J(G), the following relations hold.

sup
x0∈Rn

|Cg(x0)|∆ = min
G

sup
(x0,ξ0,r,r̄)∈Rn×RN×`∞×`∞

|y(1)− ȳ(1)| (10)

≤ min
G

sup
(x0,ξ0r,r̄)∈Rn×RN×`∞×`∞

‖y− ȳ‖∞ (11)

≤ sup
(x0,ξ0r,r̄)∈Rn×RN×`∞×`∞

‖y? − ȳ‖∞ (12)

≤ sup
x0∈Rn

|Cg(x0)|∆. (13)

Note that y? is the output of system Σ ◦ G with G = G?. First, (10) is obtained from (7).
Then, (11) and (12) are obvious from their definitions. Finally, the proof of (13) is given as follows.

The output y?(t + 1) of system Σ ◦ G with G? in (8) is expressed as

y?(t + 1) = C f (x(t))

+ Cg(x(t))(Cg
(
[In 0 0]ξ(t))

)−1{C f ([0 In 0]ξ(t))− C f ([In 0 0]ξ(t)) + Cg([0 In 0]ξ(t))r(t)}.
(14)

Here, the state [In 0 0]ξ(t) corresponds to the state x of system Σ driven by v, i.e., [In 0 0]ξ(t) = x(t),
and the state [0 In 0]ξ(t) corresponds to x̄ of Σ driven by r̄, i.e., [0 In 0]ξ(t) = x̄(t), because G? has the
model of Σ. Based on this, (14) can be rewritten:

y?(t + 1) = C f (x(t)) + Cg(x(t))(Cg(x(t))−1{C f (x̄(t))− C f (x(t)) + Cg(x̄(t))r(t)}
= C f (x̄(t)) + Cg(x̄(t))r(t).

(15)

Therefore, the output difference between y? and ȳ at t + 1 is

y?(t + 1)− ȳ(t + 1) = C f (x̄(t)) + Cg(x̄(t))r(t)− C f (x̄(t))− Cg(x̄(t))r̄(t)

= Cg(x̄(t))r(t)− Cg(x̄(t))r̄(t) (16)

= Cg(x̄(t))ω(t).

For any r ∈ `∞ and r̄ ∈ `∞, we have

|y?(t + 1)− ȳ(t + 1)| = |Cg(x̄(t))ω(t)| ≤ |Cg(x̄(t))|∆. (17)

From this,

‖y? − ȳ‖∞ ≤ sup
t∈N
|Cg(x̄(t))|∆ = sup

x̄∈Rn
|Cg(x̄)|∆ (18)

can be obtained, which means (13) holds.

Theorem 1 assigns the prediction governor G that minimizes J(G) and the performance limit of
the prediction governor given by (2). The following procedure is followed for implementing (8).

(i) Calculate [0 0 In]ξ(t + 1) in the first formula.
(ii) Using the second formula, calculate [0 In 0]ξ(t + 1).
(iii) Using the third formula, calculate v(t).
(iv) Calculate [In 0 0]ξ(t + 1) in the first formula.

Next, the structure of the prediction governor obtained from Theorem 1 is explained.
First, [In 0 0]ξ(t) and [0 In 0]ξ(t) in (8) correspond to the system state x at the time of the input
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of shaped value v and the system state x̄ at the time of the input of high accuracy predicted value
r̄, respectively. That is, the first and second formulas in (8) estimate x(t) and x̄(t). Next, in the
output formula for v(t) in (8), r(t) is shaped based on the estimation of the difference in outcome,
i.e., difference between y(t) and ȳ(t), due to prediction error. In other words, the optimal prediction
governor can be considered to produce a compensating signal to cancel the output difference generated
one step ahead as a result of prediction error.

Moreover, the boundedness of the state of the optimal prediction governor can be confirmed as
follows. From the third row of the first formula in (8), the state [0 0 In]ξ is bounded if the state of the
nonlinear system Σ is bounded for (u(0), u(1), . . .) ∈ `∞. At this time, from the second row of the
first formula in (8), it can be confirmed that the state [0 0 In]ξ is bounded. In addition, substituting v
from the third formula in the first row of the first formula in (8) gives

[In 0 0]ξ(t + 1) = f ([In 0 0]ξ(t)) + g([In 0 0]ξ(t))(Cg([In 0 0]ξ(t))−1(s(t)− C f ([In 0 0]ξ(t)), (19)

where s(t) = C f ([0 In 0]ξ(t)) + Cg([0 In 0]ξ(t))r(t). This means the state [In 0 0]ξ is bounded if the
state of the system given by (19) is bounded for (s(0), s(1), . . .) ∈ `∞. Therefore, if the states of system
Σ and the system given by (19) are bounded for (r(0), r(1), . . .) ∈ `∞, (r̄(0), r̄(1), . . .) ∈ `∞, then the
state of the optimal prediction governor G? is bounded, i.e., ‖ξ‖∞ < ∞.

Finally, some supplementary points are now discussed. When system Σ is linear, that is, in case

Σ :

{
x(t + 1) = Ax(t) + Bv(t),

y(t) = Cx(t),
(20)

Theorem 1 agrees with the results obtained in the previous study [14]. In fact, by substituting
f (x) = Ax, g(x) = B in (8), together with coordinate transformation and dimensionality reduction
from 3n to n, give

G? :

{
ξ(t+1) = A?ξ(t) +A?B(r(t−1)− r̄(t−1)),

v(t) = C?ξ(t) + C?B(r(t−1)− r̄(t−1)) + r(t),
(21)

where A? := A − B(CB)−1CA, C? := −(CB)−1CA, and J(G?) = |CB|∆. Based on these findings,
it can be confirmed that, for a linear system, the performance of the prediction governor cannot be
improved even if the prediction governor class is extended as given by (2).

3. Application to Automatic Driving Control

In this section, the application of the prediction governor to an automatic driving control
system is described, and its usefulness is examined. A steering signal, as shown in Figure 2, is
shaped by combining low accuracy prediction, where real-time processing is feasible, and high
accuracy prediction, where the processing is time consuming. The car is controlled using this shaped
steering signal.

First, to verify the prediction governor’s performance, a numerical simulation of trajectory
tracking was conducted and the tracking accuracy was evaluated. Next, to examine the usefulness of
the prediction governor, actual lane-keeping experiments were conducted using a radio controlled car.

Figure 2. Application of the prediction governor to autonomous vehicle.
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3.1. Simulation

Let us consider system Σ ◦ G in Figure 1. System Σ is a four-wheel car model and is given by

Σ :


x(t + 1) =

 px(t) + V cos ψ(t) · ts

py(t) + V sin ψ(t) · ts

ψ(t)

+

 0
0
ts

 v(t),

y(t) =
[

0 0 1
]

x(t),

(22)

where ts is the sampling time and V is the vehicle translation speed (constant). x denotes the state of Σ
and is defined by [px py ψ]> (initial value x(0) := [0 0 0]>) in terms of the vehicle position (px, py) and
the yaw angle ψ. v is the input corresponding to the the vehicle yaw rate. y is the output response,
where y = ψ is set by focusing on vehicle yaw angle ψ. Moreover, in Σ ◦ G, the predicted values r and
r̄ are the target yaw rates for the four-wheel car, where r is the low accuracy predicted value and r̄ is
the high accuracy predicted value.

Let us suppose ts = 0.01 (s) and V = 2000 (mm/s). Let the low accuracy predicted value r(t) be
given by Figure 3, and the high accuracy predicted value r̄(t− 1) obtained with a slight delay be given
by Figure 4 (∆ = 2.8196 is the maximum value of ‖r− r̄‖∞). Here, a trajectory that needs to be realized
by the car (true trajectory) is set for the high accuracy predicted value and a trajectory that deviates
slightly from this trajectory is set for the low accuracy predicted value. At this time, r is shaped using
prediction governor G, generating the shaped value v. The results of using the prediction governor
are shown in Figure 5. Figure 5a shows the shaped value v and Figure 5b shows the output response
y of Σ.

In Figure 5b, the thin line represents the system response ȳ (behavior of yaw angle ψ) using the
high accuracy predicted value r̄ from Figure 4, while the thick line represents the system response y
(behavior of yaw angle ψ) using the shaped value v. It can be observed that the two responses overlap.
In contrast, Figure 6 shows the result ŷ (behavior of yaw angle ψ) obtained using the low accuracy
predicted value r. Further, Figure 7 shows the trajectory of the car along the x− y plane. In this figure,
the dashed line, the dot-dashed line, and the solid line represent the trajectories obtained using r̄, r,
and v, respectively. These figures confirm that the response obtained using shaped value v is closer to
the output response obtained using r̄ than that obtained using r. At this time, the value of ‖y− ȳ‖∞

was 0.0282 and that of ‖ŷ− ȳ‖∞ was 0.3693. These results confirm that the prediction governor was
operating appropriately. Moreover, the calculated value of the right hand side of (9) was 0.0282. This
suggests that it is possible to estimate in advance the difference in outcome.

t
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-4

-2

0

2

4

Figure 3. Low accuracy predicted value r.
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Figure 4. High accuracy predicted value r̄.
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(a) Shaped value v.
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(b) Output response of Σ.

Figure 5. Time response with prediction governor G?.
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Figure 6. Time response with predicted value r.
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Figure 7. Trajectory of four-wheel car.

3.2. Experiment

A RoboCar 1/10 2016 from ZMP Inc., as shown in Figure 8, was used in the experiments. Table 1
shows the specification of the RoboCar. Figure 9 shows the experimental setup. Two white lines were
drawn on the field. As depicted in Figure 9, position measurement cameras (OptiTrack Prime13W) were
placed at both ends of the field to capture the RoboCar’s travel trajectory. First, the image captured by
the camera mounted on the RoboCar was obtained and the traveling route was predicted by analyzing
this image. Next, based on the predicted route the steering angle of the RoboCar was controlled.

Table 1. Specification of the RoboCar.

Item Specification

Body

Size, weight 190 × 429 × 150 (mm), 2.2 (kg)
Minimum turning radius 500 (mm)
maximum speed 10 (km/h)
Motor Drive: Small DC motor, Steering: Servomotor for robot
External sensor USB camera (640×480 (pix), 30 (fps), 128 (deg))
Inner Sensor Rotary encoder
CPU Intel Celeron Quad Core 1.83 (GHz)

Software OS Linux (Ubuntu 14.04)

In the process of predicting the traveling route, two types of image processing algorithms were
used. In the first algorithm (Image Processing 1), the images captured by the camera were converted to
binary images, and from the images corresponding to the position of the white lines 300 (mm) ahead
of the front end of the car the coordinates on the image were determined. The mid point between the
white lines was then calculated using these coordinates. In the second algorithm (Image Processing 2),
after binarization, using a differential filter and Hough transformation together with processing such
as clustering, the white lines were detected. The crossing point (vanishing point) of these two lines was
then calculated. In this study, the aforementioned two methods of image processing were executed
simultaneously in the RoboCar.

As shown in Figure 10, for a sampling period of ts = 0.07 (s), although Image Processing 1 can be
conducted in real time, there is a time lag for Image Processing 2, as it requires more time. In this study,
based on experiments conducted in advance to estimate the white line position, the yaw rate signal
obtained using the results of Image Processing 1 was set as the low accuracy predicted value, and the
yaw rate signal obtained using the results of Image Processing 2 was set as the high accuracy predicted
value. Using the prediction governor, in each step, the low accuracy predicted value was then shaped
using the high accuracy predicted value, and the RoboCar was run using this shaped value.
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Since the actual input to the RoboCar is the steering angle, the yaw rate signal v is used after
converting it into steering angle s (rad) using the transformation s = tan−1(v · L/V). Here, L is the
distance between the front and rear wheel axles and was set as L = 250 (mm) in the experiments V is
the speed of the car and was set at a constant value of V = 2000 (mm/s).

(a) Overview (b) Top view

Figure 8. RoboCar 1/10.

Figure 9. Experimental setup.

Figure 10. Proposed shaping strategy by prediction governor.

The results of the experiments are shown in the following figures. The results of applying the
prediction governor, as shown in Figure 11, suggest that the steering angle represented by the thin
line is shaped as indicated by the thick line. The corresponding trajectories are shown in Figure 12.
In Figure 12, the double lines show the two white lines of the traffic lane. The dot-dashed line shows the
trajectory when the low accuracy predicted value only was used, the dashed line shows the trajectory
when the high accuracy predicted value only was used, and the solid line shows the trajectory when the
nonlinear prediction governor was used in driving control. As observed in the results, first, the travel
trajectory based on low accuracy predicted value only deviated widely from the traffic lane because of
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misrecognition of the white lines. Further, the travel trajectory based on the high accuracy predicted
value only, deviated from the traffic lane because of the time lag. In contrast, by applying the prediction
governor, the erroneous steering signal was shaped and deviation from the traffic lane was avoided.
The results confirmed that the control performance was improved by applying the prediction governor.
Finally, it is also stressed that a satisfactory performance could be obtained by using the prediction
governor even though a controller was designed without the consideration of lane-keeping constraints.
Therefore, this experimental result illustrated the practical benefits of the proposed method.

Figure 11. Steering angles calculated from predicted value r and shaped value v.

Figure 12. Trajectory of four-wheel car.

4. Conclusions

In this paper, a prediction governor for input-affine nonlinear systems was proposed. First,
the optimal design problem for the prediction governor was formalized, and the optimal prediction
governor was analytically derived. Next, the simulation of trajectory tracking and lane-keeping
experiments using actual model car to confirm the feasibility of applying the proposed approach in
automatic driving control problem were described. Finally, it was confirmed that desirable behavior
can be obtained in automatic driving control by applying the prediction governor.

As topics of study in the future, the design of a prediction governor for MIMO systems and
systems where Cg(x) = 0, as well as experiments using actual cars taking into account even more
complex environments such as driving along curved traffic lanes etc., are suggested.
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