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Abstract: Robot navigation is a complex process that involves real-time localization, obstacle
avoidance, map update, control, and path planning. Thus, it is also a computationally expensive
process, especially in multi-robot systems. This paper presents a cooperative multi-robot navigation
scheme in which a robot can ‘hitchhike’ another robot, i.e., two robots going to the same (or close)
destination navigate together in a leader–follower system assisted by visual servoing. Although
such cooperative navigation has many benefits compared to traditional approaches with separate
navigation, there are many constraints to implementing such a system. A sensor network removes
those constraints by enabling multiple robots to communicate with each other to exchange meaningful
information such as their respective positions, goal and destination locations, and drastically
improves the efficiency of symbiotic multi-robot navigation through hitchhiking. We show that
the proposed system enables efficient navigation of multi-robots without loss of information in
a sensor network. Efficiency improvements in terms of reduced waiting time of the hitchhiker,
not missing potential drivers, best driver-profile match, and velocity tuning are discussed. Novel
algorithms for partial hitchhiking, and multi-driver hitchhiking are proposed. A novel case of
hitchhiking based simultaneous multi-robot teleoperation by a single operation is also proposed.
All the proposed algorithms are verified by experiments in both simulation and real environment.

Keywords: multi-robot navigation; multi-robot cooperation; robots in sensor networks

1. Introduction

With recent advances in artificial intelligence and sensor technologies, it is anticipated that more
and more robots will be used for several services like cleaning, patrolling, and moving items at home
and public places. Using multiple robots has several benefits compared to using a single robot for such
tasks. A multi-robot system enables task parallelism, fault tolerance, and diverse execution of tasks
at the same time. Consider an item delivery multi-robot system in a large and complex environment
in which the goal locations of the robots vary from time to time. In such a multi-robot system, each
robot has to navigate to different locations in the map to provide its designated services (deliver items).
In order to do this, mobile robots are equipped with a navigation module that depends on other
modules. For example, a robot must have the map of the environment with obstacles marked in it that
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is provided by the mapping module. Similarly, robots need to localize and simultaneously update
the new obstacles in the map provided by the Simultaneous Localization and Mapping [1] (SLAM)
module. Then, there is the control module to steer the robot properly towards the goal without hitting
the obstacles that could be static or dynamic (like moving people in corridors) on the planned path.

Thus, robot navigation is a complex process and depends on a lot of modules, most of
which are computationally expensive. For example, 3D SLAM module for 3D localization and
mapping using RGBD (RGB color and Depth) sensors requires processing of a lot of data and is
computationally expensive. In the context of multi-robot systems, each robot must execute all these
computationally expensive modules by itself. Since most of the robots are battery operated, executing
these modules consumes battery power, which decreases the service time of these robots, and they
require frequent recharging.

However, if two (or more) robots have the same start and goal locations, then separately executing
path planning, localization, mapping, and obstacle avoidance modules is a waste of computation
(and hence battery power). Instead, a robot can ‘hitchhike’ another robot going to the same goal and
save its computation by merely following it. We presented this idea in our previous work [2], in
which a ‘hitchhiking’ robot initiates a request and attaches itself behind a ‘driver’ robot going to the
same location by using visual servoing. The hitchhiking robot shuts down all of its modules except
visual servoing, and completely relies on the driver robot to navigate, thus saving computation. This
approach is different from the traditional leader–follower system that has been proposed earlier for a
different set of objectives. For example, in order to coordinate agriculture tasks in fields, a system of
two tractors has been proposed [3,4] to improve efficiency in agricultural tasks in which the focus is on
cooperation and coordination to execute a turn without collision. Similarly, cooperative localization
and mapping has also been proposed [5–8]. Works in [9–11] discuss multi-robot navigation. An effort to
ease teleoperation is proposed in [12], which uses leader–follower robots in master–slave configuration.
Work in [13] considers applications where a human agent is navigating a semi-autonomous mobile
robot in an environment with obstacles. A group of wheeled robots with nonholonomic constraints is
considered to rendezvous at a specific point with a desired orientation while maintaining network
connectivity and ensuring collision avoidance within the robots in [14]. A bio-inspired approach
for multi-robot exploration has also been proposed in [15]. Various algorithms for multi-robot
path planning have also been proposed. Multi-robot path planning can be centralized [16] or
decentralized [17]. Multi-robot collision avoidance has been discussed in [18].

Most of the previously proposed leader–follower multi-robot systems have different objectives.
However, the proposed hitchhiking mechanism aims at cooperative navigation towards the common
goal location, in which the hitchhiking robot shuts down all of its modules except visual servoing
and completely relies on the driver robot for navigation. Moreover, the driver makes sure that the
hitchhiker does not lose any information (like new obstacle positions). For multi-robot scenarios, the
only requirement of the system is networking between the different robots, and a sensor network
provides such capabilities. Moreover, the proposed architecture allows the robots to benefit from the
sensor network [19] in the infrastructure.

This work is an extension of our previous work [2]. The previously proposed work had several
constraints and drawbacks in terms of waiting time, coupling, and profile confirmation. Inability
of long-range communication between the robots, and local-only communication were the major
bottlenecks that resulted in those constraints. Hence, we extend and improve the previous work
by considering robots in a sensor network in which the aforementioned problems are resolved by
intelligent and timely information exchange between the robots. For the benefit of new readers,
we first briefly introduce multi-robot hitchhiking. We then explain its limitations, and how those
limitations can be solved in a sensor network. The present work discusses novel algorithms and modes
of hitchhiking in a sensor network and its advantages.
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The new contributions of this work are summarized below:

1. The present work discusses novel algorithms for hitchhiking in sensor networks that enable
long-range communication between robots. The advantages in terms of reduced waiting time
of the hitchhiker, not missing potential drivers, best driver-profile match, and velocity tuning
are discussed.

2. A novel mode of ‘partial hitchhiking’ is presented in which hitchhiking is executed only for a
partial portion of the path.

3. A novel mode of ‘multi-driver hitchhiking’ is proposed in which a hitchhiker uses multiple driver
robots to navigate to its goal location.

4. A novel usage of hitchhiking for simultaneous teleoperation of multiple robots by a single operator
is presented and its advantages are discussed.

2. A Brief Overview of Hitchhiking Robots

An actual implementation of hitchhiking in real robots requires fusing the various steps of
hitchhiking (Figure 1b) directly into the SLAM module. Our previous work [2] discusses the
mathematical details of fusing the hitchhiking steps in an Extended Kalman Filter (EKF) based SLAM.
This section provides a very brief introduction of hitchhiking in multi-robot systems.
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Figure 1. Hitchhiking Robots. (a) hitchhiking setup: driver robot (leader) with QR-marker and
hitchhiker (follower) robot with camera; (b) four steps of hitchhiking.

2.1. System Configuration

Figure 1a shows the hitchhiking setup. It is comprised of robots that are equipped with front
facing cameras and QR-code markers to assist with visual servoing. Although QR-codes are not
necessary, an easy to detect pattern helps in robust visual servoing. The leader robot in front is called
a ‘Driver’ robot, whereas the follower robot is termed a ‘Hitchhiker’ robot. It is assumed that the
robots are in a sensor network and have networking capabilities to communicate with each other. Each
robot is assigned an ID (Ri). Robots could have a different set of sensors attached to them. Based on
the accuracy, range of sensors, and accuracy of navigation and its dependent modules, each robot is
also given a profile score (Pi). Higher scores indicate a better set of sensors and navigation modules.
The profile score is set manually for each robot and is a static value, as generally the attached sensors
and navigation software of a robot does not change. A priority is associated with each task assigned to
the robot. Priority is a numerical value in range 0 to 20, and higher values signify high priority and
vice-versa. If a robot is not assigned a priority, a default value of 10 is used. A user can assign high
priorities to time critical tasks that must be finished quickly. Hitchhiking is denied (for both driver and
hitchhiker) in a task priority range of 16 to 20.

The hitchhiker robot follows the driver robot through visual servoing. A complete description of
visual servoing is not in the scope of the present work and a simple explanation is provided. Visual
servoing [20] is the motion control of a robot using feedback information from a camera. It works
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by extracting visual features m from the QR-code markers, and a set of visual measurements x(t)
that are coordinates of points of interest, i.e., m = m(x(t)). A controller then minimizes the error
vector e(t) = m−m∗, so that the features m reach a desired value m∗. The required trajectory m∗(t) is
generated and details can be found in [21,22].

2.2. Flow of Hitchhiking Process

Hitchhiking is carried out in four steps shown in Figure 1b and described below:

1. Hitchhiking Request: The process of hitchhiking starts with a request from a hitchhiker.
The hitchhiker broadcast a request which is comprised of {Rh: Robot-ID, Gh: Goal Location,
and Ph: Robot profile}. A potential driver accepts or rejects the request depending on whether:
(a) it is going to the same (or close) location, and (b) its profile score is greater than or equal to the
hitchhiker’s profile score. The later check of the profile score ensures that the driver is a robot
with better sensor specifications and navigation module than the hitchhiker.

2. Coupling: Once a potential driver robot going to the same goal location accepts the request, the
two robots ‘couple’ in a configuration shown in Figure 1a using a camera and QR-code. Artificial
markers can be laid in the environment to assist coupling.

3. Navigation: The driver robot starts navigation and the hitchhiker starts following the driver using
visual servoing. During navigation, the hitchhiker only executes visual servoing and shuts down
the other modules of localization, path planning, obstacle avoidance, and map update modules.

4. Decoupling: Upon reaching the goal, the driver robot transfers the current pose, and new static
obstacles found in the way to the hitchhiker and the hitchhiking terminates. An example of a
driver’s message is given in Listing 1.

The hitchhiker can thus skip redundant computation from the hitchhiking point to the decoupling
location without any information loss (e.g., location of new static obstacles in the path). However,
there are several drawbacks of implementing hitchhiking in the absence of a sensor network. These
limitations are explained below.

Recovery from ‘Driver Lost’ Scenario

Visual servoing is not the only method of following the driver robot by the hitchhiker and other
robust methods can be employed. In the context of the proposed work, robustness of hitchhiking
depends on the robustness of visual servoing. Visual servoing is not very robust to large rotations, and
the driver might be ‘lost’ by the hitchhiker during navigation. In other words, the follower robot will
be left behind while the driver robot navigates to its goal. Work by Francois [23] has provided details
of the problems in visual servoing and any of the reasons might result in a driver lost scenario.

The hitchhiker only executes a visual servoing module to follow the driver. Hence, if the driver is
lost, then it will be difficult for the hitchhiker to localize itself in the map as it is completely unaware
of its current position in the map. This problem is similar to the famous ‘kidnapped robot problem’ for
which solutions are available in literature [24–26]. However, we propose to recover from this problem
in the first place by transferring the current estimated pose (xδ, yδ, θδ) and associated uncertainty
(Σδ) information to the hitchhiker intermittently in intervals of δ s. This is graphically shown in
Figure 2 where a driver is shown transferring information intermittently. With this scheme, even if the
driver robot is lost due to failure of visual servoing, the hitchhiker still has a rough initial estimate
to localize itself in the map, and navigate towards the goal independently. Moreover, the hitchhiker
also acknowledges receiving the intermittent data from the driver. If the driver does not receive
the acknowledgement message (ack) from the hitchhiker, then it stops for the hitchhiker to catch up.
In general, visual servoing is good enough provided the driver navigates at a slow speed and avoids
sudden sharp turns.
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Figure 2. Intermittent information transfer from driver every δ time-steps to recover from a
‘driver-lost’ scenario.

3. Limitations of Hitchhiking without a Sensor Network

In the absence of a sensor network, the hitchhiking robots are unable to get the status of potential
remote driver robots in the same environment. A local-only communication is feasible when the robots
are in proximity to each other. Inability to communicate with remote robots is a serious bottleneck and
induces the following constraints:

1. Long Waiting Time for Potential Driver Robots: Hitchhiking robots need to wait until a
potential driver passes by. Communication with potential hitchhiker is only possible in proximity.
This limitation results in a long waiting time.

2. Missing Potential Drivers: Since waiting for a long time is not practical, a hitchhiker waits until
a time threshold of Thwait. However, it is possible that a potential driver could arrive at the
hitchhiking spot at a time just after Thwait. Since the threshold is static, in all those cases, the
hitchhiker would miss a potential driver robot. Moreover, it is difficult to set the threshold Thwait.

3. Profile Mismatch: Only the driver robots within the time interval (0,Thwait) are checked for
suitability of hitchhiking. The first potential driver with a matching profile will end up getting
coupled with the hitchhiking robot, even though the successive potential drivers in the permissible
interval (0,Thwait) could have a better profile than the first driver robot.

4. Local Area Hitchhiking: Without a sensor network, hitchhiking is only feasible if a driver passes
by the local area of the hitchhiker. Hitchhiking in remote areas cannot be done.

4. Hitchhiking in Sensor Networks

A sensor network enables remote robots to communicate with each other over large distances.
Moreover, different sensors in the environment can capture the positions of the robots, traffic in
different pathways, presence and absence of new obstacles, blocked paths, etc., which is critical
information for navigation. The present work focuses mainly on the communication aspect of sensor
networks and its advantages in hitchhiking.

The pseudocode for hitchhiking robot in a sensor network is given in Algorithm 1, and driver
robot is given in Algorithm 2. The hitchhiker broadcasts its robot ID (Rh), goal location (Gh), and
profile (Ph). Unlike the hitchhiking without a sensor network as proposed in [2], the robot must also
broadcast its current localized position (xh and yh). Upon receiving this request, the driver robot
checks if the request could be accepted or not. This is shown in the pseudocode of the driver robot in
Algorithm 2 in the function process_request(·). The driver checks if it is going to the same or close
goal location, and the common path is greater than a threshold distance (Tdhh) as hitchhiking over
short distances is not efficient. All of the potential drivers where the criteria is satisfied broadcast an
‘accept’ message to the hitchhiker. The hitchhiker then selects the best driver (function best_driver()
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in Algorithm 1, Line 14), locks it for hitchhiking, and the driver navigates towards the hitchhiker
(Algorithm 2, Lines 8,9). A ‘request_cancel’ message is broadcasted to the other potential drivers. Upon
receiving it, the drivers simply continue to carry their task at hand. Moreover, a timeout is maintained
for receiving confirmation message. Algorithms 1 and 2 assume the simple case of the hitchhiker
located in the planned path of the driver. The case of different paths of drivers and hitchhikers are
discussed later.

Algorithm 1: Pseudocode (Hitchhiker) in Sensor N/W.
Data: Rh, Gh, Ph, xh, yh, Thwait
· · ·
// Broadcast request and get list of potential drivers

1 potentialDrivers← broadcast_request(Rh, Gh, Ph, xh, yh)

// Search the best potential driver
2 found, bestDriver← best_driver(potentialDrivers)
// Cannot find a driver, give up

3 if found == False then
4 terminate_hitchhiking(‘Error : Drivernotfound’)
5 exit()
// Lock the best potential driver.

6 lock_driver(Rh, RbestDriver)

// Driver found. Wait until Thwait
7 start_time← get_current_time()
// Wait until timeout for driver aligned message

8 wait_driver_aligned()
// Wait until timeout for coupling

9 couple()
// Broadcast coupling successful

10 broadcast(‘Couplingsuccessful’)
// Start Visual Servoing until decouple point

11 visual_servoing(dloc)
// If decoupling point ‘dloc’ is reached

12 xδ, yδ, θδ, Σδ, Ωδ ← decouple()
13 end()
· · ·

14 Function best_driver(potentialDrivers)
15 if potentialDriver == Null then
16 return(False)
17 min_length← inf
18 best_driver_id← Null
19 for countinlen(potentialDrivers) do
20 did, xd, yd ← potentialDrivers[count]
21 path_length← astar(xh, yh, xd, yd)

22 if path_length < min_length then
23 min_length← path_length
24 best_driver_id← did

25 return(True, best_driver_id)
· · ·

Since multiple driver robots can accept the request, the hitchhiker receives a list of potential
drivers. The search for the best possible driver candidate among the list of potential drivers is based
on their respective profile scores, or proximity to the hitchhiker. For example, proximity could be
prioritized if the hitchhiker robot has a priority task at hand. By prioritizing proximity, the nearest
potential driver robot is locked for hitchhiking. On the other hand, if a profile is prioritized, the robot
with the best set of sensor specifications and navigation module is prioritized. Notice that this could
be useful while navigating in crowded passages as a driver with better obstacle avoidance module and
sensors is selected for hitchhiking.

Once the best potential driver is found, it is locked for hitchhiking. Otherwise, hitchhiking is
terminated and the hitchhiker navigates towards its goal using its own modules. The rest of the process
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is similar to that proposed in [2]. The hitchhiker and driver couples for visual servoing using a camera
and QR-code marker. The driver then navigates towards the goal and the hitchhiker follows it using
visual servoing. On reaching the goal, the driver robot transfers the localized position to the hitchhiker
so that it can start localizing and continue operation from that position. The driver also transfers
positions and dimensions of the newly found static obstacles in the way for the hitchhiker to update
its map. The advantages of hitchhiking in sensor networks are discussed in the next section.

Algorithm 2: Pseudocode (Driver) in Sensor N/W.
Data: ReceivedRh, Gh, Ph, xh, yhfromhitchhiker

1 Function process_request(msg)
2 if (astar(Sh, Gh) ∩ astar(Sd, Gd)) < Tdhh then
3 deny_hitchhiking(msg)
4 if Pd < Ph then
5 deny_hitchhiking(msg)
6 x, y,θ ← current_pose()
7 t← get_current_time()
8 accept_hitchhiking(x, y, t)
9 navigate(xh, yh)

10 return

11 Function start_hitchhiking()
12 goal_reached← False
13 while notgoal_reached do

// Calculate location for decoupling beforehand
14 dloc← get_decouple_loc(Gh, Gd, current_pos)
15 aligned← False
16 while notaligned do
17 aligned← hh_align(pose, marker, current_pos)
18 broadcast(Rh, ‘Aligned : Readytocouple’, dloc)

// Wait for successful coupling from hitchhiker
19 coupled← False
20 while notcoupled do
21 coupled← get_message()

// Start navigation until the decoupling location
22 Ωδ ← {} //Empty new obstacle set

23 while current_loc 6= dloc do
24 xδ, yδ, θδ, Σδ, Ωδ ← navigate()

// Intermittently send location and new obstacle coordinates
25 foreach δseconds do
26 broadcast(Rh,xδ, yδ, θδ, Σδ, Ωδ)

// Decoupling, send location and obstacle coordinates with uncertainty
27 decouple(Rh,xδ, yδ, θδ, Σδ, Ωδ)

28 goal_reached← True
29 return

Advantages of Hitchhiking in a Sensor Network

In the presence of a sensor network, the hitchhiking robot can immediately get the status of remote
service robots. Thus, the hitchhiker can acquire a list of potential driver robots which are navigating to
the same destination, and select the best possible driver robot. The advantages are listed below:

1. Reduced waiting time for potential driver robots: Since the status of potential driver robots are
quickly acquired, the hitchhiker knows beforehand if it needs to wait, and for how much time.
This reduces the waiting time.

2. Adjustable waiting time: The parameter Thwait can be tuned according to the priority of the task
at hand. Thus, potential drivers arriving at the hitchhiking spot at a time just after Thwait are
not missed.
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3. Velocity tuning of driver robots: A potential driver robot can increase its speed towards the
hitchhiking spot. This further reduces the waiting time of the hitchhiker robot and helps with
faster navigation.

4. Selection of best potential driver: The selection of driver robots is not limited to the interval
(0,Thwait), nor is the selection done on a first come first served basis. Instead, a driver robot with
the best profile is selected. This ensures the best case setup for cooperative navigation.

5. Partial Hitchhiking in Sensor Networks

Algorithms 1 and 2 show only the simple case in which hitchhiking is not possible if none of the
potential drivers is passing near the hitchhiker’s location in the map. However, if none of the driver
robots are passing near the hitchhiker robot, then the hitchhiker can self-navigate towards a location
that is on the path of the driver robot, and where coupling is possible. This is called ‘Partial Hitchhiking’
as the hitchhiker navigates a portion of the map using its own modules, and the remaining path is
traversed while relying on the driver robot.

Partial hitchhiking is graphically explained in Figure 3. The hitchhiker’s start and goal locations
are marked as ‘H’ and ‘G’, respectively. Similarly, the driver robot’s start and goal locations are marked
as ‘D’ and ‘G’, respectively. Both of the robots have the same goal location. It can be seen that the
shortest path of the driver does not pass through the hitchhiker’s location. Hence, hitchhiking is not
possible in normal mode. However, the hitchhiker can self-navigate towards a location ‘h’ shown
in green in Figure 3, couple with the driver, and navigate together to the goal location. This is only
possible in a sensor network which enables remote communication between the robots. Several areas
of the map could be marked as potential hitchhiking areas that are equipped with artificial markers to
facilitate coupling. In the real experiments (Section 8.2), we used corner areas as points of coupling
that saved time for the robots to orient and align.

H

D

G

dh
h

Figure 3. Partial Hitchhiking. Hitchhiker robot self-navigates the path shown in red until the
hitchhiking location ‘h’.

Notice that, unlike normal hitchhiking, the hitchhiker must execute its own path planning in
order to calculate the point of coupling, and then navigate from the current to the coupling location
on its own. Moreover, partial hitchhiking is only allowed if the length of the common path traversed
(λ, shown in Figure 3) is larger than the threshold distance (Tdhh) as hitchhiking over short distances
is not efficient. In Figure 3, the distance traversed by the hitchhiker is dh and the distance traversed
symbiotically is λ. Partial hitchhiking is favored in scenarios with smaller dh and larger λ (given,
λ > Tdhh).
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For partial hitchhiking, the point of coupling can easily be calculated in the map. Many path
planning algorithms (like A-star algorithm [27]) represent the robot path in a graph structure.
Let G = (V, E) be a graph with edge distances, and ψ be an admissible heuristic. Let H be the
hitchhiking point that marks the start location and G be the end node of the hitchhiker robot. If d(v) is
the shortest distance from H to v seen so far, then d(v) + ψ(v) gives an estimate of the distance from
H to v, and similarly from v to G. The queue of nodes Qh = (V1, V2, · · · , Vn) sorted by d(v) + ψ(v) is
the A* path from H to G. Similarly, if Qd is the sorted node queue of the driver robot from D to G, then
the nearest node in Qd ∩Qh is the node of coupling in the map (marked in green as ‘h’ in Figure 3).

6. Multi-Driver Hitchhiking in Sensor Networks

Ability to communicate with robots over long distances also enables a hitchhiker to use multiple
driver robots to navigate towards its goal location. This is called multi-driver hitchhiking.

Figure 4 graphically shows the multi-driver hitchhiking scenario. In Figure 4, the hitchhiker’s
start and goal locations are marked as ‘H’ and ‘Gh’, respectively. The first driver robot’s start and goal
locations are marked as ‘D1’ and ‘Gd1’, respectively. Similarly, the second driver robot’s start and goal
locations are marked as ‘D2’ and ‘Gd2’, respectively. In Figure 4a, Gh and Gd2 are the same locations.

H D1

Gh
Gd2

D2

h1

Gd1

h2

(a)

H D1

Gh

D2

h1

Gd1

h2

Gd2
h3

(b)

Figure 4. Multi-Driver Hitchhiking. (a) with common goal; (b) without common goal.

In Figure 4a, there are two places of hitchhiking. The path of driver robot D1 passes through the
hitchhiker’s location and the first hitchhiking occurs at location ‘h1’ marked in brown. Driver D1 and
hitchhiker decouple at location h2 marked in green. The location h2 falls in the path of the second
driver D2 shown in blue. The hitchhiker then waits for the robot D2 and navigates with it to the goal
location Gh.
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Figure 4a showed a scenario with a common goal between the driver and the hitchhiker. On the
contrary, Figure 4b shows a scenario with different goals of the driver and the hitchhiker. In the
latter case, the first hitchhiking starts at location ‘h1’ marked in brown with driver D1, and the second
hitchhiking at location ‘h2’ marked in green with driver D2. Since driver D2’s goal is different (Gd2)
from the hitchhiker’s goal (Gh), the hitchhiker decouples at location h3 from where the hitchhiker
navigates towards the goal using its own modules.

Just like partial hitchhiking, the hitchhiker also needs to plan a path using its own path-planning
module in a multi-driver hitchhiking scenario. Let Qh, Qd1, and Qd2 be the node paths of the hitchhiker,
driver 1, and driver 2, respectively. In the scenario of Figure 4b, the two points h2 and h3 are given by,

h2 ← min{QD1 ∩QD2}# nearest node,

h3 ← max{Qh ∩QD2}# farthest node.

The path traversed by the hitchhiker during the first and second hitchhiking are λ1 and λ2,
respectively. Notice that in both cases in Figure 4a,b, hitchhiking is allowed only if λ1 > Tdhh and
λ2 > Tdhh. In a sensor network, a time synchronization is required between the robots. Particularly,
the second driver D2 could arrive at the second hitchhiking location h2 before the robots D1 and H,
and must be ready to wait for them, and vice-versa.

7. Multi-Robot Teleoperation through Hitchhiking in Sensor Networks

Hitchhiking can also assist in simultaneous teleoperation of multiple robots by a single
teleoperator. Although robots are getting more and more autonomous in their tasks, some tasks
like search and rescue operations at disaster sites require a human to be in control and navigate the
robots. In these tasks, multiple robots are often teleoperated and navigated to specific areas of the
map. The robots are generally equipped with cameras that capture a live video that is relayed to the
teleoperator. The teleoperator then controls the robot motion through input devices like joysticks or
wearable sensors.

Although the teleoperation of a single robot is easy, it is difficult to simultaneously teleoperate
multiple robots by a single operator. Hitchhiking can be useful to assist with simultaneous teleoperation
of multiple robots. Figure 5 shows a scenario of a disaster site in which two robots are to be navigated
to the marked target area. This is a common scenario in which multiple robots carry first-aid or
necessary items to the target area. In such scenarios, the teleoperator can control only one robot, while
the other robot could hitchhike and follow the other robot using the QR-code and camera setup. This is
graphically shown in Figure 5 in which the teleoperator only controls the black robot, while the blue
robot hitchhikes and follows the driver robot towards the common target area.

Teleoperating multiple robots using hitchhiking has several advantages compared to
normal hitchhiking:

1. There is an ease of simultaneously teleoperating multiple robots towards a common goal by a
single teleoperator. It eliminates the need of using multiple operators, or separately controlling
the robots one-by-one.

2. It saves time as both the robots are simultaneously controlled and navigated in the area.
3. It eliminates redundant control operations. In the absence of hitchhiking based teleoperation, the

operator would have to repeat the same set of commands for each robot. However, in hitchhiking
based teleoperation, the redundant commands to the robots are eliminated, and only one robot is
effectively controlled.

4. It saves network bandwidth as only one robot needs to be sent the commands from
the teleoperator.
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TARGET 
 AREA

   TELE-
OPERATOR

HH

Figure 5. Hitchhiking based simultaneous teleoperation of multi-robots. Only the black robot is
teleoperated while the blue robot hitchhikes with the black robot to navigate to the target area.

8. Experimental Results

We performed experiments in both simulation and real environment to test the benefits of
hitchhiking in sensor networks.

8.1. Experiments in Simulation Environments

The simulation was programmed in Matlab software (R2011b, MathWorks, Natick, MA, USA) and
is shown in Figure 6. The path planning algorithm used was D-Star algorithm [28,29]. The simulation
environment is comprised of a 470× 300 grid map with obstacles shown in gray. In the grid map,
the cost of navigating one micro-grid in forward, back, left, and right direction was set to one unit.
For diagonal movement, the navigation cost was set to

√
2 units. The scale of the map was set as

1 m = 4 grid pixels.

50 100 150 200 250 300 350 400 450

x

50

100

150

200

250

300

y

H

G

D1 D2D3

Figure 6. Simulation environment. D1, D2, and D3 are driver positions. H is the hitchhiker’s position,
and G is the common goal.
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The simulation was carried with three driver robots and one hitchhiker robot. In Figure 6, D1, D2,
and D3 mark the starting positions of the three potential driver robots, the hitchhiker robot is marked
as H, and the goal location is marked as G. The hitchhiking spot is marked with a yellow circle and the
common path is also shown in Figure 6.

8.1.1. Worst Case Scenario with No Potential Drivers

The worst case scenario in hitchhiking is when there are no potential drivers and the hitchhiker
has to wait. In the simulation, we set the threshold waiting time (Thwait) to 150 s. In the absence of a
sensor network, the hitchhiker had to wait a total of 450 s in three test runs. This is shown in Figure 7a.
However, in a sensor network, the robot could quickly confirm the non-availability of potential drivers
and navigate towards its goal using its own modules. Considering the delay in communication, and
parsing the messages set to 10 s, the total waiting time in sensor environment hitchhiking was only
30 s, and the hitchhiker navigated to the goal on its own.

450
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Hitchhiker Wait Time (Thwait )
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Waiting Time in Case of Denied
Hitchhiking Due to Driver Priority

Test 1 Test 2 Test 3

(b)

Figure 7. Hitchhiker waiting time. (a) worst case scenario with no hitchhiking; (b) waiting time due to
driver priority based hitchhiking denial with and without sensor networks.

8.1.2. Denied Hitchhiking Due to Driver Priority

Potential drivers navigating to the same location as the hitchhiker and with higher profiles may
still deny hitchhiking if they have a high priority (time-critical) task at hand. We tested this case in a
simulation environment with three driver robots at a speed of 0.5 m/s. The three driver robots were
80, 120, and 160 grid-pixels from the hitchhiker (equivalent to 20 m, 30 m, and 40 m, respectively).
As shown in Figure 7b, in the absence of a sensor network, the hitchhiker had to wait for a total time of
180 s. However, in the presence of a sensor network, the hitchhiking was denied from remote locations
with only a little time (24 s) spent on communication.

8.1.3. Velocity Tuning of Potential Drivers

With the threshold waiting time (Thwait) set to 150 s, the velocity of driver was set to 1 m/s
(4 grid-pixels/s). As shown in Figure 6, the distance between D1 and H is approximately 225 grid
pixels (≈56 m). Thus, in simulation without a sensor network, at a normal speed of 1 m/s, the robot
took 56 s to reach the hitchhiker. However, in the sensor network, the request was processed from a
remote location and the driver robot increased its speed to reach the hitchhiking spot early. Figure 8
shows the waiting time of a hitchhiker with a driver robot increasing its speed by 1.5×, 2×, and 3×.
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The hitchhiker’s waiting time is inversely proportional to an increase in driver’s speed.

56

37.33
28
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Hitchhiking

3 x
Sensor N/W
Hitchhiking

S
ec

on
ds

Driver Robot Velocity Tuning in Sensor Networks

Hitchhiker Wait Time (Thwait )

Figure 8. Driver speed tuning to reduce hitchhiker’s waiting time.

8.1.4. Best Profile Match

Three driver robots (D1, D2, D3) were simulated in the environment shown in Figure 6 with
varying distances d1, d2, and d3 from the hitchhiker (H), respectively, in all possible combinations.
The driver robots were also assigned varying profile scores P1, P2, and P3, respectively. In the absence
of sensor networks, only the robot with the shortest distance was selected, irrespective of the profile
of the robot. The results of different distance configurations (e.g., d1 < d2 < d3) are given in Table
1. It can be seen that in case of hitchhiking without a sensor network, only the nearest potential
driver is selected, which may be wrong. This is explained in Figure 9, which shows a configuration
with P3 > P2 > P1. Although robot R3 has the highest profile score (P3), robot R1 is still selected as a
potential driver for hitchhiking as it is closest to the hitchhiker and approaches the hitchhiker prior to
the other robots with better profiles. However, in a sensor network, the robot with the highest profile
score is always selected as shown in Table 1.

d1

d2

d3

R1

R2

R3

H

P1

P2

P3

Selected

(P3>P2>P1)
(d3>d2>d1)

Figure 9. Inappropriate robot selection due to distance priority.
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Table 1. Selection of driver robots based on driver profiles with and without sensor networks.

Distance
Configuration

Profile
Configuration

Selected Robot Profile
without Sensor N/W

Selected Robot Profile
with Sensor N/W

d1 < d2 < d3
or
d1 < d3 < d2

P1 > P2 > P3 P1 X P1 X

P1 > P3 > P2 P1 X P1 X

P2 > P1 > P3 P1 7 P2 X

P2 > P3 > P1 P1 7 P2 X

P3 > P1 > P2 P1 7 P3 X

P3 > P2 > P1 P1 7 P3 X

d2 < d1 < d3
or
d2 < d3 < d1

P1 > P2 > P3 P2 7 P1 X

P1 > P3 > P2 P2 7 P1 X

P2 > P1 > P3 P2 X P2 X

P2 > P3 > P1 P2 X P2 X

P3 > P1 > P2 P2 7 P3 X

P3 > P2 > P1 P2 7 P3 X

d3 < d1 < d2
or
d3 < d2 < d1

P1 > P2 > P3 P3 7 P1 X

P1 > P3 > P2 P3 7 P1 X

P2 > P1 > P3 P3 7 P2 X

P2 > P3 > P1 P3 7 P2 X

P3 > P1 > P2 P3 X P3 X

P3 > P2 > P1 P3 X P3 X
7: Wrong Driver Robot Selection. X: Correct Driver Robot Selection.

8.2. Experiment in a Real Environment

Two robots Pioneer-P3DX (Figure 10a) [30] and Kobuki Turtlebot (Figure 10b) [31] were used,
which were equipped with distance sensors (Microsoft Kinect [32] and UHG-08LX laser range sensor
[33]) and cameras. The experiment environment is shown in Figure 11. The distance sensor is accurate
within ±30 mm within 1 m, and within 3% of the detected distance between 1 and 8 m. The angular
resolution is approximately 0.36 degrees, and other specifications can be found in [33]. The driver
robot was Pioneer P3DX, and Turtlebot was the hitchhiker. The robots were programmed in ROS
[34]. The sensor network was set to enable remote communication between robots. A modified open
source library [35–37] was used for visual servoing. Both are differential drive robots, and their motion
model is well known [17]. A-star algorithm [27] was used for path planning. Five experiments in real
environments were performed for: (1) Normal hitchhiking, (2) Partial hitchhiking, (3) Multi-driver
hitchhiking, (4) Hitchhiking based teleoperation, and (5) Denied hitchhiking in sensor networks, which
are explained in the next subsections.

(a) (b) (c)

Figure 10. Robots used in the experiments. (a) Pioneer P3DX; (b) Kobuki Turtlebot; (c) Motion Model.
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Figure 11. Experiment environment. The grid map is shown with actual pictures of passages and areas.

8.3. Integrating Hitchhiking with an EKF Based SLAM Algorithm

We first describe the motion model of the robot. The distance between the left and the right
wheel is Wr, and the robot state at position P is given as [x, y, θ]. From Figure 10c, turning angle β is
calculated as

r = β · (R + Wr), l = β · R

∴ β =
r− l
Wr

(1)

and the radius of turn R as

R =
l
β

, β 6= 0. (2)

The coordinates of the center of rotation (C, in Figure 10c), are calculated asñ
Cx
Cy

ô
=

ñ
x
y

ô
−
Å

R +
Wr

2

ã
·
ñ

sinθ

−cosθ

ô
. (3)

The new heading θ′ is
θ′ = (θ + β)mod2π, (4)

from which the coordinates of the new position P′ are calculated asñ
x′

y′

ô
=

ñ
Cx
Cy

ô
−
Å

R +
Wr

2

ã
·
ñ

sinθ′

−cosθ′

ô
, β 6= 0 =⇒ r 6= l. (5)

If r = l, i.e., if the robot motion is straight, the state parameters are given as θ′ = θ, andñ
x′

y′

ô
=

ñ
x
y

ô
+ l ·

ñ
cosθ

sinθ

ô
, (l = r). (6)

EKF is a mathematical tool to model the uncertainties of the sensors attached to the robot. It can
be used with different sensors and a complete description is given in [38].
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The state of the robot (xt) at time t is indicated by a vector comprised of its pose [xy]T and
orientation (θ) as xt = [xyθ]T . EKF assumes a Gaussian distribution in which the belief bel(xt) at
time t is given by the mean µt and the covariance Σt. A command moves the robot comprising of the
translation velocity (vt) and rotational velocity (ωt) as [vtωt]T :

θ ← µt−1,θ . (7)

EKF uses Jacobians of motion and control functions to deal with the nonlinearity of the system.
The Jacobian of motion function with respect to state is given by

Gt ←

1 0 − vt
ωt

cosθ + vt
ωt

cos(θ + ωt∆t)
0 1 − vt

ωt
sinθ + vt

ωt
sin(θ + ωt∆t)

0 0 1

 , (8)

and the Jacobian of motion with respect to control is given by

Vt =


−sinθ+sin(θ+ωt∆t)

ωt

vt(sinθ−sin(θ+ωt∆t))
ω2

t
+ vt(cos(θ+ωt∆t)∆t)

ωt
cosθ−cos(θ+ωt∆t)

ωt
− vt(cosθ−cos(θ+ωt∆t))

ω2
t

+ vt(sin(θ+ωt∆t)∆t)
ωt

0 ∆t

 . (9)

With robot specific error-parameters α1, · · · , α4, the covariance of noise in control space is given by

Mt =

ñ
α1v2

t + α2ω2
t 0

0 α3v2
t + α4ω2

t

ô
. (10)

Here, α1, · · · , α4 are robot specific parameters. They are determined empirically and vary from
robot to robot [38]. The prediction updates in state (µ̄t) and covariance (Σ̄t) are given by

µ̄t = µt−1 +


−vt
ωt

sinθ + vt
ωt

sin(θ + ωt∆t)
vt
ωt

cosθ − vt
ωt

cos(θ + ωt∆t)
ωt∆t

 , (11)

and

Σ̄t = GtΣt−1Gt + Vt MtVT
t , (12)

respectively. The mapping from motion noise in control space to motion noise in state space is provided
by the term Vt MtVT

t in Equation (12).
To model the correction step, we assume that the sensors provide the range (rt), bearing (φt),

andsignature (st, e.g., color) of the landmark relative to the robot’s current pose (xt). The covariance
(Qt) of the sensor noise is given by the matrix

Qt =

σ2
r 0 0

0 σ2
φ 0

0 0 σ2
s

 . (13)

Let [mixmiy]
T be the coordinates of the ith landmark obtained by measurement zi

t = [ri
tφ

i
ts

i
t]

T from
the current pose µ̄t, and q represent the squared distance as

q = (mk,x − µ̄t,x)
2 + (mk,y − µ̄t,y)

2, (14)
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Then, we have

ẑt
k =


√

q
atan2(mk,y − µ̄t,y, mk,x − µ̄t,x)− µ̄t,θ

mk,s

 . (15)

The Jacobian of measurement with respect to state is given by

Hk
t =

−
mk,x−µ̄t,x√

q −mk,y−µ̄t,y√
q 0

mk,y−µ̄t,y
q −mk,x−µ̄t,x

q −1
0 0 0

 . (16)

This gives the measurement covariance matrix as

Sk
t = Hk

t Σ̄t[Hk
t ]

T + Qt. (17)

Maximum likelihood estimate is applied for all the k landmarks (Equations (14)–(17)) in the map
to calculate the most likey correspondence j(i) as

j(i) = argmax
1»

det(2πSk
t )

e−
1
2 (z

i
t−ẑk

t )
T [Sk

t ]
−1(zi

t−ẑk
t ). (18)

The calculation of Kalman gain (Kt) and EKF updates for state (µt) and covariance (Σt) only
corresponds to this most likely estimate:

Ki
t = Σ̄t[H

j(i)
t ]T [Sj(i)

t ]−1,

µt = µ̄t + Ki
t(z

i
t − ẑj(i)

t ),

Σt = (I − Ki
tH j(i)

t )Σ̄t.

(19)

Thus, at each time step (t), a Kalman gain (Kt) is calculated from which the state (µt) and covariance
(Σt) are updated by the robot. In traditional navigation schemes, each robot of the multi-robot system
must execute localization using the abovementioned computationally expensive steps.

In hitchhiking, the driver robot executes localization using the steps described above.
The hitchhiker follows the driver through visual servoing and shuts down the SLAM module. However,
during decoupling, the driver must transfer its pose so that the hitchhiker knows where it is currently
in the map. This is to ensure that the hitchhiker can localize at the decoupled location and navigate
to other places on its own. Failing to do this would result in the hitchhiker being in a completely
unknown place. This scenario is often known as the ‘kidnapped robot problem’, and this problem is
avoided by transferring the driver’s pose to the hitchhiker.

During decoupling, the driver transfers its pose (Pd = [xdydθd]
T) to the hitchhiker robot and the

uncertainty associated with it (Σd). The final orientation of the hitchhiker (θh) is same as that of the
driver robot as the hitchhiker follows the driver using the QR-code and camera setup which tries to be
inline, i.e.,

θh = θd. (20)

If d is the distance between the hitchhiker and the driver during decoupling, then the pose of
hitchhiker is given as

Ph = [(xd − d·cosθh)(yd − d·sinθh)θd]
T . (21)
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Moreover, the hitchhiker assumes the same uncertainty in its pose as the driver robot, i.e.,

Σh = Σd. (22)

The hitchhiker robot uses this pose (Ph) to localize itself in the map. It can use the uncertainty (Σh)
information to consider the distribution of particles (e.g., in case of particle filter [38–41]) by taking the
eigenvalue-eigenvector decomposition of Σh. Eigenvalues (λ1, · · · , λn) and eigenvectors (~v1, · · · , ~vn) of
the matrix Σh gives the magnitude and direction of variance, respectively, for considerable distribution
of particle poses.

8.3.1. Experiment 1: Full Hitchhiking in a Sensor Network (with Velocity Tuning)

We tested the proposed algorithms on the ground floor of the engineering building of Hokkaido
University, which is comprised of many interconnecting passages (Figure 11). The grid map of the
environment is shown in Figure 12. In Figure 12, the start and goal locations of the hitchhiker are
marked in red as HS and HG, respectively. The total hitchhiking distance was equal to the length of the
corridor (≈28.8 m). The driver’s start and goal locations are marked in blue as DS and DG, respectively.
The path planned by the driver robot is indicated in blue and passes through the hitchhiker’s location.
Moreover, the goal location of the hitchhiker also falls on the path of the driver. Hence, this is the
perfect scenario of full hitchhiking. The coupling and decoupling areas are marked as green circles in
Figure 12.

Unlike the hitchhiking proposed in [2], the hitchhiker was able to lock the driver robot for
hitchhiking remotely. This also enabled testing the velocity tuning of driver robot, and the driver robot
increased its speed from 0.5 m/s to 1.0 m/s (within the safe velocity threshold of a Pioneer P3DX robot)
from DS to HS. Doubling the driver’s speed reduced the hitchhiker’s waiting time by 50% from ≈10 s
to 20 s. Figure 13 shows the random frames of visual servoing from HS to HG at different locations.

HS

HG

DS

DG

2
8
.8

 m
 

Figure 12. Full Hitchhiking. The hitchhiking area is marked with a brown rectangle.

8.3.2. Experiment 2: Partial Hitchhiking

We tested partial hitchhiking in the same environment. The partial hitchhiking scenario is shown
in Figure 14. The hitchhiker’s start and goal locations are marked as HS and HG, respectively. The
driver’s start and goal locations are marked as DS and DG, respectively. The driver robot’s path is
indicated in blue. Notice that the driver’s path does not pass through the hitchhiker’s location. Hence,
normal hitchhiking [2] was not feasible. However, the paths of the two robots intersect, and the
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common path was large enough for partial hitchhiking. The hitchhiker thus navigated towards the
point of intersection of the paths of the hitchhiker and the driver, which is indicated with a blue circle
in Figure 14. The hitchhiker and driver coupled at the location are shown with a blue circle in Figure 14,
and are then decoupled at the hitchhiker’s goal location HG marked with a green circle.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Successive random frames showing visual servoing in Experiment 1 starting from location
HS in Figure 12 to location HG for a distance of 28.8 m. (a) Frame 761, (b) Frame 991, (c) Frame 1151,
(d) Frame 1361, (e) Frame 1561, (f) Frame 1761, (g) Frame 2121, (h) Frame 2161.

In this experiment, the hitchhiker traversed a distance of approximately 28.8 m marked with a
green rectangle in Figure 14. The distance navigated through hitchhiking was approximately 35.6 m
and is marked with a brown rectangle. Since the hitchhiked distance was larger than the threshold
distance (Tdhh = 20 m), partial hitchhiking was feasible. Both the hitchhiker and the driver robots
started navigation at the same time from their respective start locations.

HS

HG

DS DG

2
8
.8

 m
 

35.6 m 

Figure 14. Partial Hitchhiking. A green rectangle marks the path traversed by the hitchhiker on its
own. A brown rectangle marks the hitchhiked path.
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8.3.3. Experiment 3: Multi-Driver Hitchhiking

Figure 15 shows the environment setup for multi-driver hitchhiking. The hitchhiker’s start and
goal locations are marked as HS and HG, respectively. The first driver’s start and goal locations
are marked in black as DS1 and DG1, respectively. The first driver robot’s path is indicated in black.
Similarly, the second driver’s start and goal locations are marked in blue as DS2 and DG2, respectively.
The second driver robot’s path is indicated in blue.

In this setup, the first driver’s path passes through the hitchhikers location. Hence, hitchhiking
first took place at the location marked in yellow circle in Figure 15. The decoupling location is the
point of intersection of the hitchhiker’s path and the second driver’s path is shown in blue, which is
also the point of second hitchhiking with the second driver.

In this experiment, the hitchhiker traversed a distance of approximately 28.8 m through the first
hitchhiking. The distance navigated through the second hitchhiking was approximately 35.6 m and is
marked with a brown rectangle. In both cases, the hitchhiked distance was larger than the threshold
distance (Tdhh = 20 m). Multiple hitchhiking was feasible since the status and path information of
both the drivers were acquired by the hitchhiker in the sensor network. In this experiment, both the
driver’s D1 and D2 were programmed to start simultaneously. Hence, driver D2 reached the location
marked with the blue circle before the hitchhiker. For time synchronization, we simply programmed
the second robot to wait until the hitchhiker had arrived. Driver D2 had to wait for ≈21 s.

HS

HG

DS2 DG2

DS1

DG1

2
8
.8

 m

35.6 m 

Figure 15. Multi-Driver Hitchhiking. The first hitchhiking takes place between the areas marked with
yellow and blue circles with D1. The second hitchhiking takes place between the blue and green circles
with D2 .

8.3.4. Experiment 4: Hitchhiking Based Simultaneous Multi-Robot Teleoperation

The same setup shown in Figure 12 was used to test the simultaneous teleoperation of two robots
using a single teleoperator. The section of the teleoperated portion of the map is shown in Figure 16. As
with the previous experiments, Pioneer P3DX was set as the driver robot and was directly teleoperated
using a keyboard. Turtlebot was the hitchhiker and followed the driver. The hitchhiking location was
HS and the goal location was set to HG shown in Figure 12. The teleoperator was successfully able to
simultaneously navigate both of the robots to the desired location by controlling only one of the robots.
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HS

HG

Length =
 28.8 m

Figure 16. Experiment in a real environment. HS and HG are the start and goal locations of
hitchhiking, respectively.

8.3.5. Experiment 5: Denied Hitchhiking in a Sensor Network

We repeated the experiment described in our previous work (Section 7.3 of [2]) to test cases in
which hitchhiking should be denied. Similar to [2], we set the hitchhiker with a profile score (Ph) of 90,
and driver with a profile score (Pd) of 58. Clearly, hitchhiking must be denied in this case as Pd < Ph.
The waiting time (Thwait) was set to 25 s. In traditional hitchhiking [2], the robot waited for Thwait
seconds until the driver was in proximity for communication and later the hitchhiking was denied.
However, in a sensor network case, the hitchhiker knew about the low profile score of the driver
from the remote location and continued to navigate towards the goal using its own module without
hitchhiking. Namely, although the hitchhiking was denied, a sensor network enabled the hitchhiker to
know quickly that there are no potential drivers and it saves on waiting time.

Figure 17 summarizes the total time required for coupling, decoupling, hitchhiker’s waiting time,
driver’s delay, and hitchhiker’s delay in Experiments 1 (full hitchhiking), 2 (partial hitchhiking), and 3
(multi-driver hitchhiking). Table 2 provides the breakdown of the various times. On average, it took
about 15 s for coupling and decoupling. However, in the multi-driver experiment, the second driver
took more time to properly align as the hitchhiker had to first decouple from the first driver and then
couple with the second driver. Hence, the alignment took extra time. In Table 2, in the multi-driver
experiment, there is no waiting time (0 s) for the hitchhiker for the second hitchhiking as the second
driver had already positioned itself and the hitchhiker did not wait for the second driver. For the same
case, the second driver’s delay was 65 s as it included its waiting time of ≈21 s at the location marked
with the blue circle in Figure 15 of Experiment 3.

Table 3 shows the different modules run by the two robots while navigating in the normal
hitchhiking case. It is clear that the traditional navigation requires all the modules of both the
robots to be active. On the other hand, in hitchhiking, most of the modules of the hitchhiker are
off. One overhead is visual servoing, which is not computationally expensive compared to SLAM
(especially 3D SLAM). Similarly, Table 4 shows the modules run by the two robots while navigating in
a traditional and partial hitchhiking case. The traditional navigation requires both robots to execute all
the modules, whereas in partial hitchhiking, the hitchhiking robot executes these modules only for
a portion of the path. In Tables 3 and 4, the modules which are either off or executed partially have
been indicated in red color. Although costs are incurred in coupling and waiting, in both the cases,
hitchhiking is only allowed if the common path of the driver and hitchhiker robots are larger than the
threshold distance (Tdhh) and denied otherwise (Algorithm 2, lines 2–3) to ensure efficiency.
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Figure 17. Coupling time, decoupling time, hitchhiker’s waiting time, driver delay, and hitchhiker’s
delay in different experiments with/without sensor network environment.

Table 2. Average time of the hitchhiking components.

Experiment Sensor N/W Time to Time to Waiting Time Delay of Delay of

Yes/No Couple Decouple of Hitchhiker Driver Hitchhiker

Exp 1:
Normal
Hitchhiking

Yes 15.5 s 12.0 s 10.0 s 27.5 s 37.5 s

No Same as hitchhiking in sensor N/W

Exp 2:
Partial
Hitchhiking

Yes 17.0 s 13.0 s 5.0 s 30.0 s 35.0 s

No Hitchhiking not feasible without sensor N/W

Exp 3:
Multi-Driver
Hitchhiking

Yes 15.0 s 13.0 s 11.0 s Driver 1: 28.0 s 39.0 s

32.0 s 12.0 s 0.0 s * † Driver 2: 65.0 s 44.0 s

No Hitchhiking not feasible without sensor N/W

*: Hitchhiker did not wait as Driver 2 was waiting in the blue area shown in Figure 15. †: includes Driver 2’s
waiting time of ≈21 s.

Table 3. Modules run with and without hitchhiking (Normal Hitchhiking Case).

Normal Hitchhiking
Scheme Robot PP OBS LZN MAP VS

Traditional R1 On On On On Off
R2 On On On On Off

Hitchhiking R1 (Driver) On On On On Off
R2 (Hitchhiker) Off Off Off Off On

PP: Path Planning, OBS: Obstacle Avoidance, LZN: Localization, MAP: Mapping, VS: Visual Servoing.
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Table 4. Modules run with and without hitchhiking (Partial Hitchhiking Case).

Partial Hitchhiking
Scheme Robot PP OBS LZN MAP VS

Traditional R1 On On On On Off
R2 On On On On Off

Hitchhiking R1 (Driver) On On On On Off
R2 (Hitchhiker) partial partial partial partial On

PP: Path Planning, OBS: Obstacle Avoidance, LZN: Localization, MAP: Mapping, VS: Visual Servoing.

9. A Note on System Architecture for Multi-Robot Hitchhiking

Inter-robot communication is an indispensable part of a hitchhiking system. Although inter-robot
networking is not the main research or contribution of this work, for the sake of completeness, a short note
on some prominent system architectures with their advantages and disadvantages are provided in this
section. Multi-robot hitchhiking could be implemented through various system architectures. Figure 18
shows three such prominent architectures: (a) Centralized architecture (Figure 18a), (b) Distributed
architecture (Figure 18b), and (c) Cloud architecture (Figure 18c). The discussion is restricted to the
implementation of hitchhiking robots only.

Hitchhiker

Driver

R1
R2

R3

R4 R5

Central
Server

(a)

Hitchhiker

Driver

R1
R2

R3

R4 R5
(b)

R1

Cloud

R2 R3

Hitchhiker Driver
(c)

Figure 18. Different system architectures for multi-robot hitchhiking. (a) centralized architecture;
(b) distributed architecture; (c) cloud architecture.

Figure 18a shows a central architecture in which various robots (R1, R2, · · · , R5) communicate
through a central server. Thus, a hitchhiker robot R1 would communicate with a potential driver (R5)
through the central server. For a multi-robot system, this architecture is easy to implement. A powerful
centralized server has an advantage that robots can delegate some of their heavy computational tasks
to the server (e.g., path planning). However, a failure of the central server would entirely disable the
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entire system. Moreover, in the context of a multi-robot hitchhiking system, it is not always feasible to
dedicate a separate system for the central server.

Figure 18b shows a distributed architecture. All the robots (R1, R2, · · · , R5) have the capability
of directly communicating with each other. In other words, each node must be a server as well as a
client, and hence it seems to be a complex system to setup. However, notice that ROS (Robot Operating
System) has a strong in-built support for establishing such a network. The details of establishing such
network have been detailed in [42,43]. For most of the indoor service robots, a local ROS network is
sufficient. For outdoor scenarios, approaches like creating a bridge, or port forwarding as discussed
in [43] could be employed. A distributed architecture using ROS was used in all the experiments in
the proposed work. Fault tolerance and cost-effectiveness were the primary reasons for selecting this
architecture in our implementation.

Figure 18c shows a cloud based architecture. Although it has not been incorporated in the
proposed system, recently there have been many promising projects utilizing this architecture like
Rapyuta [44] the cloud engine for RoboEarth [45–49], RobotWebTools [50], and others. The challenges
of cloud robotic systems have been discussed in [51]. In the context of hitchhiking robot system,
the primary disadvantage of a cloud based architecture is network latency. For indoor robots, a
peer-to-peer network can easily be set up and setting a cloud system is an overkill. For example, a
direct communication between the hitchhiker and the driver robots in proximity for coupling and
decoupling is straightforward, whereas a cloud based system would only induce latency. This will
have adverse effects on the quality-of-service.

10. Discussion and Conclusions

One of the most profound advantages that robots can have in a sensor network is the ability to
communicate their status (e.g., current location, goal locations, planned paths, etc.) remotely with
other robots. Our earlier worked showed the feasibility of hitchhiking, and advantages of cooperative
navigation of two robots towards the same (or close) goal locations. However, it had many constraints
due to a communication bottleneck. We showed that hitchhiking in a sensor network removes those
constraints and improves the ability of multiple robots to symbiotically navigate together. A sensor
network enables remote communication and enables partial and multi-driver hitchhiking. There is
a reduced waiting time of the hitchhiker robot, and the potential driver robot with the best profile
is selected. Moreover, the driver robot is able to tune its velocity within the safety limits to further
reduce the hitchhiker’s waiting time. Even in case of denied hitchhiking due to any of the reasons,
a sensor network enables the hitchhiker to quickly know the status and avoid unnecessary waiting.
We showed that it is not necessary for the robots to have exactly the same start and goal locations. In
fact, partial hitchhiking allows a hitchhiker to navigate a portion of the path on its own, and some of
the path symbiotically. In this regard, a sensor network enables the robots to be able to couple and
decouple at different positions in the map. Moreover, this also enables a hitchhiker robot to utilize
different driver robots to navigate towards its goal.

It should be noted that additional costs are incurred in hitchhiking in coupling (aligning) the
driver and hitchhiker robots, and waiting. However, efficiency is ensured by only allowing hitchhiking
over large distances (> Tdhh) and denying hitchhiking for high-priority tasks. Our work is focused
on the feasibility of hitchhiking based multi-robot navigation in a sensor network and not on energy
saving techniques of robots. Saving of battery power is a result of the hitchhiker robot not executing
certain redundant modules. The exact amount of computation saved by the hitchhiker varies according
to the algorithm used for path planning, localization, and obstacle avoidance. It also varies according
to the sensors used, and has not been quantitatively experimented in this work. This work also
showed how simultaneous teleoperation of two robots by a single operator can be done through
hitchhiking easily.

Hitchhiking can be extended to multi-robots. In other words, there could be one driver robot and
multiple hitchhiking robots. There are multiple scenarios when the goal locations of the robots are the



Robotics 2018, 7, 37 25 of 28

same or different. Normal hitchhiking is a good fit for a scenario in which the goal locations of the
driver and all the hitchhiking robots are the same. A major challenge for such a scenario would be
efficient coupling. Different hitchhikers must build a consensus about their positions behind the driver
robot. If the goal locations are different, partial hitchhiking is possible albeit with increased complexity
of calculating various coupling and decoupling locations.

Hitchhiking is not limited only to the robot–robot cooperative scenarios in warehouses. However,
it can also be extended to human–robot or robot–human scenarios. For example, a robot can hitchhike
with a person and follow him/her towards its goal. A real-world application of such scenario could
be a robotic wheelchair hitchhiking with a nurse at the hospital. Similarly, a practical application of
a robot–human hitchhiking scenario would be an escorting service in which a robot escorts people
to their destination. All of these scenarios would require the robot to perform some sort of visual
servoing to follow the target. Our work showed that, with the aid of assisted artificial markers, it is
feasible to make a robust system. Incorporating people in the hitchhiking system is considered part of
our future work.
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Abbreviations

The following abbreviations are used in this manuscript:
Rid Robot ID
Hs Start location of hitchhiker
Hg Goal location of hitchhiker
Ds Start location of driver
Dg Goal location of driver
Thwait Threshold hitchhike wait time
Talign Threshold alignment time
Tcoupling Threshold coupling time
Tdhh Threshold hitchhiking distance
Σ Positional uncertainty of robot
Ω New static obstacles
[x, y, θ]T Robot Pose
SLAM Simultaneous Localization and Mapping
A* The A-Star Path Planning Algorithm [27]
D* The D-Star Path Planning Algorithm [28]
EKF Extended Kalman Filter

Appendix A

Listing 1: Example of driver message in JSON format.
{ “robot_id” : “03” , // RobotId
“x” : “224” , // Estimatedxlocation
“y” : “659” , // Estimatedylocation
“Σ” : “ ( σ2

x , σ2
y , σ2

θ ) ” , //Uncertainty
“time_stamp” : “1512769283” // Unixtimestamp
“new_obstacles” : { // Newobstaclesmetadata
“obstacles” : [ // Coordinates
{ “obs1” : “x” : “111” , “y” : “324” , “w” : “8” , “b” : “8” } , // Obstacleinformation
{ “obs2” : “x” : “744” , “y” : “546” , “w” : “18” , “b” : “23” } , // Obstacleinformation
{ · · · } ] // Othermetadata
} }
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