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Abstract: This paper proposes a scheme that combines computer vision and multi-tasking processes
to develop a small-scale smart agricultural machine that can automatically weed and perform variable
rate irrigation within a cultivated field. Image processing methods such as HSV (hue (H), saturation
(S), value (V)) color conversion, estimation of thresholds during the image binary segmentation
process, and morphology operator procedures are used to confirm the position of the plant and
weeds, and those results are used to perform weeding and watering operations. Furthermore, the data
on the wet distribution area of surface soil (WDAS) and the moisture content of the deep soil is
provided to a fuzzy logic controller, which drives pumps to perform variable rate irrigation and
to achieve water savings. The proposed system has been implemented in small machines and the
experimental results show that the system can classify plant and weeds in real time with an average
classification rate of 90% or higher. This allows the machine to do weeding and watering while
maintaining the moisture content of the deep soil at 80 ± 10% and an average weeding rate of 90%.
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1. Introduction

Traditional agricultural models utilize inefficient and labor intensive human labor. When
automation and mechanization technology matured, tractors replaced moving farming machines
in place of livestock. This was a solution to solve the issues of insufficient labor and the aging farming
population [1]. Today’s automated tilling machines are mainly categorized as planting and irrigation
equipment; however, plant nursery operations often include weeding, the spreading of fertilizers, and
watering as they are critical cultivation tasks.

To complete weed control tasks, machine devices such as weed mowers or spray machines can be
used and operated via manual control or tractors [2]. However, these methods require indiscriminate
spraying, watering, or weed removal operations. When utilized in inter-row or intra-row weed
removal, human error can often cause damage to crops and excessive watering can lead to the rotting
of roots or leaves. In the early stages, the use of herbicides does not suppress weed growth effectively,
due to the diversity of weed varieties and the issue of drug resistance. Next, inadequate dosage control
can adversely affect the soil and crop growth. This is also true for watering and fertilizing. Lastly, these
machines are powered by petrol engines that can cause air pollution and harm our health. Therefore,
the variable rate spraying with herbicides and the development of smart weeding machines are the
most common practices in recent years.

At present, many studies focus on the design and experiment of the smart weeding machine,
including the use of digital cameras to capture large-scale field images and the adoption of machine
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vision technique to find rows of crops and to perform weeding operations [3–6]. The shape descriptors
in combination with the fuzzy decision-making method are also employed to classify weed species [7].

Besides, several researches also concentrate on the implementation and testing of automatic
weeding machines including the use of proximity sensors to identify crop positions [8–10] or the use of
robots with visual imaging capabilities to locate the position of weeds and employ a special steerage
hoe [11,12], tube stamp [13], or laser device [14,15] to remove the weeds. In addition, a combination of
chemical and mechanical methods are also utilized to destroy the weeds [16]. Some modular weeding
mechanisms are also implemented [17]. These smart weeding machines rely on the performance of the
machine vision system to conduct weeding and visual guidance. However, the uncertainty factors,
including illumination and different colors of leaf or soil, affect the performance of the machine vision
system [18]. The results of Hamuda et al. (2013) and Yang et al. (2015) indicated that HSV-based image
processing methods improve the robustness of the machine’s vision [19,20], and these methods can
reduce the effect of natural illumination during image processing. Some studies also propose good
classification methods that depict the difference between shades of green from varying brightness or
contrast for green crops [21,22]. In 2018, Shu et al. proposed a method that was based on color space
conversion and multi-level threshold [23]. It can be used to segment the vegetation under shadowy
conditions and has been proven to be feasible in real-world applications. Some start-up companies in
the market, such as ecoRobotix and Blue River (which was acquired by John Deer in 2017), have the
ability to develop smart machines which selectively use herbicides to destroy weeds [24,25]. The use
of this method can reduce the amount of herbicide and decrease the damage to the soil. Some other
applications using machine vision technology, such as fruit sorting or harvesting, have also been
presented in recent years [26,27].

Today, the machine vision technology has been sensibly applied to the field to separate crops
from weeds, and can be used as a useful tool for precision agriculture in the future. Nevertheless, such
technology still needs to be effectively integrated into the machine. Inappropriate integration practices
can result in the unstable and inaccurate performance of the robot. Besides, as the machines that were
mentioned above only possessed weeding functions, and other tasks required different machinery,
they thus lack flexibility.

To address this issue, this paper proposes a multi-functional smart machine (Supplementary
Materials) that can automatically remove weeds while also allowing for variable rate irrigation.
The digital camera device of this machine can capture images of growth areas under the machine in
real time and use HSV and adaptive threshold methods to distinguish crops from weed areas and
estimate the wet distribution area of the surface soil (WDAS), such that the machinery can automatically
respond to specific areas with weeding or watering. This scheme allows for the removal of weeds
while leaving the crop unharmed. In addition, the modularized mechanism can be used to provide
different functions, such as turning soil or sowing. Furthermore, the use of the fuzzy logic control
method determines the amount of water that is given to crops depending on the soil moisture content
of the root depth and the wet distribution area of the surface soil to ensure that the soil maintains the
appropriate moisture rate.

This paper is organized as follows: Section 2 details the procedures and the steps in designing the
method, including image processing, variable rate irrigation, and multi-tasking operations; Section 3
describes the design method of the operating mechanism and the computer vision system; Section 4
contains the experimental results and the discussion, while the final chapter contains the conclusion.

2. Materials and Methods

The scheme that is proposed in this paper includes the use of the image processing technique to
classify crops and weeds and also to estimate the WDAS, the fuzzy logic control method to obtain the
pulse width modulation (PWM) level to drive the water pump, and multi-tasking processes to execute
weeding and variable rate irrigation.
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2.1. Image Processing Technique

Since brightness and color contrast differ in each image, the adaptive threshold method uses
brightness and color values to automatically adjust the threshold level that is required during the
segmentation process, such that the feature can be successfully extracted and classified from the image.

2.1.1. Weed/Plant Classification

The flowchart of image processing with the adaptive threshold method is depicted in Figure 1.
The colors of an image are often described using red (R), green (G), and blue (B) as the three primary
colors which are combined to form the RGB color space. This expression method can be used to
convey the color of every single pixel in the image in relation to the red, green, and blue channels;
however, it is not easy to obtain pixel luminance, saturation, and hue with this method, and thus,
a hue (H), saturation (S), and value (V) (known as HSV) color model can better emulate the human
perception of color than an RGB model. This is why the 8-bit digital image that is captured by the
camera is converted from RGB to HSV during image pre-processing. It is assumed that the image
has been shrunk by 25% (see Figure 2a) and that the new image’s dimensions are length (I) × width
(J) or a binary matrix and that every pixel in the matrix Prgb(i, j), where i = 1, 2, 3 . . . , I and j = 1, 2,
. . . , J, shows red, green, and blue color values that are represented as Pr(i, j), Pg(i, j), and Pb(i, j), and
that these values are between 0 and 225. Equation (1) represents the HSV color space and the pixels
hue value Ph(i, j), saturation value Ps(i, j), and value Pv(i, j) in the color space and their conversion
relationship with the RGB color model.

Ph(i, j) = cos−1

{
0.5[(Pr(i,j)−Pg(i,j))+(Pr(i,j)−Pb(i,j))]√

(Pr(i,j)−Pg(i,j))
2−(Pr(i,j)−Pb(i,j))(Pg(i,j)−Pb(i,j))

}
Ps(i, j) =

max(Pr(i,j),Pg(i,j),Pb(i,j))−min(Pr(i,j),Pg(i,j),Pb(i,j))
max(Pr(i,j),Pg(i,j),Pb(i,j))

Pv(i, j) =
max(Pr(i,j),Pg(i,j),Pb(i,j))

255

(1)

where Ph ∈ [0, 360), Ps(i, j), Pv(i, j) ∈ [0, 1].
Next, the adaptive thresholding method is employed to create the binary image from the

H-channel or S-channel of the HSV image. First, the plants and weeds are defined as target objects
with a similar color and it is assumed that the obtained information only contains green plants and

the color of soil (background), then the average hue value Ph, AVG = (1/(I × J))
J

∑
j=1

I
∑

i=1
Ph(i, j) and the

average saturation value are calculated Ps, AVG = (1/(I × J))
J

∑
j=1

I
∑

i=1
Ps(i, j) from the H-channel and

S-channel, respectively. Second, the less of the two average values above is selected to become the
desired output channel (see Figure 2b). The selection of the lesser average value can prevent too much
soil in the image from being mistaken as a green object. On the other hand, it is easy to reach the
segmentation process by taking the lesser average value than by taking a larger value.

Third, the initial threshold is set as Tn = 0 (n = 0) and the binary segmentation process for the
channel then begins. Assume that the threshold is defined as

Tn+1 = Ln
h, AVGPv, AVG (2)

where Ln
h, AVG represents the average hue value in the target area within the image that is filled with

plants and weeds, this value is between 0 and 1; the average value of brightness on the V-channel is
represented as Pv, AVG ∈ (0, 255). The final threshold will be obtained once the termination condition
|Tn+1 − Tn| ≤ 10−4 is achieved during the binary segmentation process. This optimization method
can effectively separate the image background and objects with an iteration process. After that,
the morphology method is used on the binary image to emphasize the target features of the image
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with processing steps that include masking, erosion, dilation, connected-component labeling, or local
descriptors (see Figure 2c). Finally, connected markings are then utilized to mark the position of the
plant and weeds and to count the number of weeds (see the Figure 2d). The red box signifies plant and
weed, whereas blue signifies the serial number of green objects. The plants are acquired by using the
maximum area method from the binary image and the remaining are weeds.

Robotics 2018, 7, x FOR PEER REVIEW  4 of 17 

 

represented as 0 255∈v, AVGP ( , ) . The final threshold will be obtained once the termination condition 
4

1 10−≤n+ nT -T
 
is achieved during the binary segmentation process. This optimization method can 

effectively separate the image background and objects with an iteration process. After that, the 
morphology method is used on the binary image to emphasize the target features of the image with 
processing steps that include masking, erosion, dilation, connected-component labeling, or local 
descriptors (see Figure 2c). Finally, connected markings are then utilized to mark the position of the 
plant and weeds and to count the number of weeds (see the Figure 2d). The red box signifies plant 
and weed, whereas blue signifies the serial number of green objects. The plants are acquired by 
using the maximum area method from the binary image and the remaining are weeds. 

 
Figure 1. Flowchart for the image processing with the adaptive threshold method. Figure 1. Flowchart for the image processing with the adaptive threshold method.



Robotics 2018, 7, 38 5 of 17

Robotics 2018, 7, x FOR PEER REVIEW  5 of 17 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. Flowchart of image processing. (a) Original image; (b) output channel; (c) feature 
extraction; (d) mark the position of the plant and weeds. 

2.1.2. Soil Surfaces Moisture Content Estimation 

Excessive or insufficient soil moisture content at the roots of the plants can affect plant growth. 
In addition, the appropriate control of moisture content of soil surfaces can delay the growth rate of 
weeds. The image processing method is also utilized to estimate the WDAS by first using the area 
description sub-operation method to convert the green objects in ROI of the image into black objects. 
Next, with only the soil images (small quantities of weeds are not considered), the average R, G, and 
B channels of the soil image are calculated, and the three values are then averaged and defined as 
WDAS. A larger value indicates that the color of the soil tends to be dark brown. It means that the 
larger this WDAS is, the bigger the surface value that is occupied by wet soil. Conversely, the 
smaller the value, the greater the area that is occupied by dry soil. This method provides similar 
performance compared to that of the previous proposed method in [28].  

2.2. Variable Rate Irrigation Method 

Fuzzy logic controller (FLC) utilize linguistic rules that are based on professional experience 
and utilize inference methods to make fuzzy comprehensive decisions [29,30]. In this paper, WDAS 
( pS ) and Soil Moisture Content (SMC; qS ) are input variables of the controller, while the output 

variable is the PWM drive voltage ( oW ) that controls the speed of the pump. Figure 3 demonstrates 
the variable rate irrigation method using FLC.  

① ② 

③ ④ 

Figure 2. Flowchart of image processing. (a) Original image; (b) output channel; (c) feature extraction;
(d) mark the position of the plant and weeds.

2.1.2. Soil Surfaces Moisture Content Estimation

Excessive or insufficient soil moisture content at the roots of the plants can affect plant growth.
In addition, the appropriate control of moisture content of soil surfaces can delay the growth rate of
weeds. The image processing method is also utilized to estimate the WDAS by first using the area
description sub-operation method to convert the green objects in ROI of the image into black objects.
Next, with only the soil images (small quantities of weeds are not considered), the average R, G, and B
channels of the soil image are calculated, and the three values are then averaged and defined as WDAS.
A larger value indicates that the color of the soil tends to be dark brown. It means that the larger this
WDAS is, the bigger the surface value that is occupied by wet soil. Conversely, the smaller the value,
the greater the area that is occupied by dry soil. This method provides similar performance compared
to that of the previous proposed method in [28].

2.2. Variable Rate Irrigation Method

Fuzzy logic controller (FLC) utilize linguistic rules that are based on professional experience and
utilize inference methods to make fuzzy comprehensive decisions [29,30]. In this paper, WDAS (Sp)
and Soil Moisture Content (SMC; Sq) are input variables of the controller, while the output variable is
the PWM drive voltage (Wo) that controls the speed of the pump. Figure 3 demonstrates the variable
rate irrigation method using FLC.
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Figure 3. The diagram of the variable rate irrigation system.

The Sq is acquired by the moisture sensor which is inserted in the soil under the roots of the plant.
The fuzzy set utilizes the types of triangle and trapezoid membership functions that are served as
fuzzy set and each fuzzy set has a linguistic label that is used for definitions. The labels contain: wet
(W), normal (N), dry (D), high (H), mid (M), and low (L). Variable values address the corresponding
degree values in each fuzzy set. Table 1 details the input/output variables of the fuzzy sets and their
membership function distribution area.

Table 1. Input and output values and linguistic labels.

Sp Sq Wo

[a , b, c, d] Linguistic Labels [a , b, c] Linguistic Labels [a , b, c] Linguistic Labels

[0, 0, 91, 109] W [0, 0, 40] H [0, 0, 145] L
[97, 105, 113, 0] N [30, 50, 70] M [135, 170, 200] M

[100, 118, 255, 255] D [60, 100, 100] L [185, 255, 255] H

Table 1, a, b, and c depict the physical values corresponding to the three vertexes of the triangular
membership function. The symbol d is extra vertexes for trapezoidal membership function. Sp, Sq, and
Wo depict the WDAS, SMC, and PWM output variable. Then, the analysis of the fuzzy inference is
executed, which is the core of the fuzzy logic control. The aim is to match the membership function
degree to the input variable and perform the intersection and union operation that is established by the
simulated inference rule for decision-making. The paper employs the [maximum-minimum method]
of the Mamdani fuzzy model for inference. The fuzzy rule syntax is “[If] . . . and . . . [then] . . . ”.
The expert experience are used to establish a rule database as shown in Table 2. For example,
the depiction of the fuzzy rule in Table 2 is as follows.

Rule 1: If {(Sp is W) and (Sq is L)} then {(Wo is H)}
Rule 2: If {(Sp is W) and (Sq is M)} then {(Wo is L)}
Rule 3: If {(Sp is W) and (Sq is H)} then {(Wo is L)}
. . .

Rule 9: If {(Sp is D) and (Sq is H)} then {(Wo is L)}
Figure 4 shows the rules surface of FLC.

Table 2. Fuzzy logic inference table.

Wo
Sp(WDAS)

W N D

Sq (SMC)
L H H H
M L M H
H L L L
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Figure 4. Rule surface for FLC.

Finally, a weighted average formula is used to infer the completed fuzzy output for the conversion
to a crisp output Wo, otherwise known as defuzzification. The fuzzy inference algorithms are
programmed in the Matlab simulink toolbox.

2.3. Multi-Tasking Process

First, the region of interest (ROI) within the image is divided into the left, middle, and right
segments, as shown by the red frames of Figure 5. The middle segment is for plant identification, while
the left and ride segments are for weed identification. The image processing method is used to obtain
the identification results of each segment, including the wet distribution area of the surface soil in the
ROI. Next, the identification results in these three areas are binary coded. When the code value for a
segment is “1”, it means that there is a weed or plant in the segment, while “0” means that there are no
plants or weeds in the segment. As the middle segment is the plant area, it is identified as the segment
that contains the plant and will not be weeded. The left and right segments will be weeded when the
output value is “1”. The operation process first removes the weed and then disperses water through
the pump with values between 0 and 255 as defined by the FLC, so as to regulate the input voltage of
the pump to achieve the variable rate irrigation.
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3. Description of the Mechatronics System

The proposed mechatronics system includes the frames of the machine, the weeding and watering
mechanism, the image and soil moisture sensor, the actuator, and the graphical user interface (GUI).

3.1. Mechanism Design

The drawing of the prototype design of the machine is as shown in Figure 6. The body of
the machine is assembled from multiple black iron support frames combined with herringbone
patterned wheels with a diameter of 300 mm. The dimensions of the body are 988 mm (L) × 806 mm
(W) × 449 mm (H). The weeding mechanism is constructed from a linkage device, chain, gear, and
a depth-adjustable mechanism. The motor drives the gear and the chain to pull the three-pronged
weeding device in an arc to flick the soil backwards (see Figure 7a) and simultaneously remove the
weeds. The mechanism is height adjustable and convenient for tilling soil. Three weeding mechanisms
are replicated to facilitate the comprehensive coverage of the cultivation areas. The metal tubes on
both sides of the weed remover are equipped with spray nozzles that are equipped with two sets of
water pumps (see Figure 7b) that draw out water from the water tank in the back of the machine to
irrigate the soil on both sides of the plant.
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3.2. Hardware/Software System Implementation

A laptop computer serves as the main processing unit that is used for executing the image
classification and fuzzy logic inference. The data for the soil moisture content that is received from the
soil moisture sensor can be wirelessly transmitted to the sub-microcontroller, and the data is transferred
via a universal serial bus (USB) interface to the main processing unit for the fuzzy logic inference
operation. The results are transmitted to the main microcontroller, which then transmits the PWM
signal to drive the pump and performs the variable rate irrigation. There is an additional graphical
user interface (GUI) that allows for the real time observation of the ROI area to display the crop and
weed dispersion, the completed rows, and the soil moisture rate of this operation. It allows the user to
start and stop the system execution. The main controller program of the GUI will begin the detection
and the classification of the target within the different segments of ROI, along with the estimation
of WDAS (see Figure 8). The multi-tasking process (as shown in Section 2.3) will be executed once
the detection and classification process is finished. In addition, the growth response map of the plant
shows that the image of each plant will be recorded in the database during the experiment in the
whole field.
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4. Results and Discussion

The site of the experiment is at an empty field (situated in front of a building within the school
of bio-electromechanical engineering) (longitude: 120.6059◦, latitude: 22.6467◦). The square field is
4 m in length and width and contains six crop rows that each have 10 butter lettuces. The lettuces are
spaced 40 cm apart (as shown in Figure 9) from each other and three experiments were conducted in
the area to verify the performance of the system:
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to be used for cultivating work in the field.

4.1. Scenario 1

First, the crop and weed categorization was manually performed on the same row of plants
at one-hour intervals between 10 A.M. and 4 P.M. Equation (2) was used to find the appropriate
image processing computation threshold value so that the method could conduct categorization under
different degrees of environmental lighting. The number of weeds that were grown in the area were
then calculated as a means to verify the identification capabilities of the algorithm. Figure 10 displays
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the classification results at 3 P.M. The results show that the weed classification rate is between 90.0 and
95.2%, while the crop classification rate is 100%.
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Figure 10. Classification results of the image using the proposed image processing method at 3 p.m.
(a) original image (10 a.m.); (b) initial threshold Tn = 0; (c) threshold update (second iterations);
(d) final iteration; (e) pixel that belongs to the plant is highlighted in white; (f) pixel that belongs to the
weeds is highlighted in white.

Next, the camera on the machine randomly captured 10 images every hour in the growth area
between 10:00 in the morning and 16:00 in the afternoon. The image data was collected over a
period of seven days, with the weather each day being sunny with clouds. Figure 8 shows the
classification results of the plants and weeds at each time point. From the figure, we can see that
the classification results of the plants (Figure 11a) and weeds (Figure 11b) are better in the afternoon,
achieving a classification rate of up to 80% or higher. However, more variation is shown in Figure 8
in the classification results in the afternoon, which takes place due to the low irradiation angle of the
sunshine and seasonal short daylight.
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4.2. Scenario 2

This experiment is carried out to evaluate the performance of the variable rate irrigation method
that is proposed in this paper. Soil moisture sensors were installed around the roots of an entire row
of plants (5 cm deep below the soil level) with wireless transmission devices to transmit the sensor
values to the computer, so as to obtain the PWM signal for controlling the watering pump. Ten plants
were used for testing. Figure 12 shows the soil moisture control results from the watering of two plants
which were chosen randomly. The initial soil moisture content levels of these two plants were 4% and
20%. For the first plant, FLC activated the pump eight times for a total duration of 25.5 s and achieved
a soil moisture level of 80%. For the second plant, FLC activated the pump five times for a total of
19.5 s. Based on the calculations, the variable rate irrigation device can achieve a soil moisture control
range of 80 ± 10%.
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4.3. Scenario 3

In order to test the correction rate of the actions that were conducted through the multi-tasking
measurement, each plant in the area was observed for the actions that require completion, after which
an assessment was carried out to determine if the machine actually completed these tasks within the
designated area in order to assess the correctness of the machine operations.

First, the machine was transported to the test area (field) and was placed at the starting position
with its Logitech digital webcam focused on the first plant. The plant was placed in the center of the
ROI in the graphical user interface (GUI). Then, the GUI activation button was pressed, at which point
the indicator icon on the GUI became red. When the classification procedure was completed for the first
plant, the indicator icon turned green. Next, the machine was manually pushed to the next plant and
the process above was repeated. When changing rows, the stop button was pressed and the machine
was re-activated after being moved to the next row. Figure 13a represents the operation success rate of
the left, center, and right segments in the ROI when it was operating in the field. The figure shows that
the mission success rate reaches a maximum of 95% and a minimum of 75%.

Figure 13b represents the weeding rate for each row of plants and shows that the average rate
was about 90%. The total number of plants for measurement was 60. The weeding rate is defined as
WD(%) = ((DN −DO)/DN)× 100, with DN and DO representing the number of weeds before and
after machine operation. It should be noted that the number of weeds in each row of the field was first
counted manually.

Next, the measurement time of each plant for cultivation task within rows of plants is evaluated.
The tasks included the processing of 10 plants for each row and a total of six rows of plant were
made. The operation time for each plant during the six rows was averaged (included the variable
rate irrigation and no watering) to obtain the results as shown in Figure 14. The figure shows that
the operation time for the first and second plants in each row is longer than that for the other plants.
It is inferred that this is caused by the more iteration times for searching for the optimal threshold
during the image identification process. The figure shows that it takes 15~26 s to water each plant and
the entire operation time averages at 3.5 min. However, if the machine does not conduct watering
operations, the time for a single row averages at approximately 40 s.
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5. Conclusions

The multi-tasking farm machine that was proposed in this paper can be attached to an automated
guided vehicle to implement consistent field operations in a small field. The experimental results
show that the average weeding rate is 90%, and that the average wet distribution area of surface
soil can be maintained at 75%. Although variable rate irrigation requires a longer operation time
at this stage, this method could save water and it is believed that once hardware processing speeds
increase in the future, this problem can be solved. The multi-tasking strategy that was proposed in this
paper can also be expanded to different cultivation tasks and used in conjunction with the relevant
farming equipment (such as seed planting, fertilizer, and chemical sprays) to achieve the objectives of
maintained standardized field operations and the conservation of manpower.
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