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Abstract: Recent advances in planning and control of robot manipulators make an increasing use
of optimization-based techniques, such as model predictive control. In this framework, ensuring
the feasibility of the online optimal control problem is a key issue. In the case of manipulators with
bounded joint positions, velocities, and accelerations, feasibility can be guaranteed by limiting the
set of admissible velocities and positions to a viable set. However, this results in the imposition of
nonlinear optimization constraints. In this paper, we analyze the feasibility of the optimal control
problem and we propose a method to construct a viable convex polyhedral that ensures feasibility of
the optimal control problem by means of a given number of linear constraints. Experimental and
numerical results on an industrial manipulator show the validity of the proposed approach.

Keywords: manipulators; trajectory planning; kinematic constraints; optimization; viability;
inverse kinematics

1. Introduction

Robotic systems typically present kinematic and/or dynamic limitations. For example, joint
positions are generally bounded within an available range of motion, while actuators implicitly present
velocity and acceleration/torque limits. Further constraints can be due to the environment where
the robot has to operate (e.g., partial occupation of the robot workspace) or to safety reasons, which
may determine velocity and acceleration limitations. Including such constraints in the development
of planning and control methods is of utter importance, as their violation might lead to unrealizable
motions (with consequent significant errors in the execution of the tasks) or to safety issues (for example,
in the case workspace limits are not respected).

Constrained methods are widely diffused, for example, in the case of offline trajectory planning.
The general approach consists in the formulation of a constrained optimization problem that should
optimize a given objective, such as minimum execution time [1] or minimum energy consumption [2].
This is also the case of global redundancy resolution methods [3], where the robot has to perform an
assigned task, and the redundancy can be exploited to optimize a desired objective, such as maximum
manipulability [4], dexterity [5], or maximum joint range availability [6]. However, all these methods
are typically performed offline as they need the prior knowledge of the task to be performed, and
they lead to heavy computational burdens that do not permit their online execution. For this reason,
they are not able to handle online trajectory generation and re-planning techniques and this is a
relevant limitation, considering recent robotic applications such as collaborative robotics and robots in
unstructured environments. To handle the robot constraints in online planning and control methods,
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optimization-based techniques are becoming more and more widespread as the increasing computing
power of modern processors allows their real-time implementation with small sampling periods.

Quadratic programming, for example, is intensively exploited in the resolution of the Inverse
Kinematic (IK) problem of redundant manipulators [7–11]. In brief, a manipulator is termed
kinematically redundant with respect to a task when it has a number of degrees of freedom greater than
the one of the desired task. The IK problem does not present a unique solution, as the transformation
between the joint and the task space results in an undetermined system. Such problem is usually
addressed at differential level in order to exploit the linear relation between joint and task velocities
given by the Jacobian of the robot. This can be formulated as a chain of Quadratic Programs (QP) with
decreasing priorities: the tasks are written as cost functions and the robot limits are represented as
linear constraints. The possibility of including robot constraints in the QP represents a great advantage
with respect to other typical methods (such as the unconstrained projection of secondary tasks in the
null space of the Jacobian [12,13]). Further developments in this field explicitly face the problem of
possible saturations and task deformations by introducing a scaling variable into the QP to slow down
the execution of the tasks if needed [14].

A further improvement of these methods is represented by the use of Model Predictive Control
(MPC) techniques, which aim at overcoming issues related to the fact that the previous methods only
consider the current state of the robot. In fact, MPC-based methods are able to take into account the
future evolution of the system, the tasks, and the constraints, improving the behavior of the robot
in terms of task satisfaction and smoothness [15,16]. MPC is also applied to constrained motion
planning [17,18] or low-level control applications [19].

Disregarding the particular field of application, a fundamental issue to address when using
optimization-based control techniques is the feasibility of the online optimization problem. In fact,
feasibility must be ensured in any possible state of the system. Otherwise, a solution to the problem
might not exist, and this could cause the algorithm to stop (unless specific but sub-optimal strategies
are activated when infeasibility occurs).

Feasibility of the online optimization problem is strictly related to the concept of set viability [20].
A set is said to be viable if, given an initial state within such set, the state trajectory can be kept within
the set by means of a proper and realizable input function. In other words, keeping the state within a
viable set ensures feasibility for all future time instants. On the contrary, if the state exits the viable set,
infeasibility of the control problem will surely occur at a certain time in the future. This is particularly
relevant in the case of state-constrained systems, as infeasibility might occur if no viability conditions
are added to the control problem but only state and input limits are taken into account.

For robot manipulator control, this issue is common to any control strategy that takes into
account both position and acceleration/torque constraints. In this case, the simplistic imposition
of box constraints on the position and the acceleration/torque of the robot does not ensure the
existence of a feasible solution to the optimization problem. For example, if a robot joint approaches its
position limit with high velocity, the position bound will be exceeded due to the bounded admissible
deceleration. Few works addressed this issue by means of manually-tuned heuristic strategies that
aimed at reducing the velocity of the robot when it approached its position limits [21–23]. Many other
control strategies did not take into account position bounds, assuming that the reference trajectories
were implicitly feasible [24,25]. Notice that the viability guarantee does not ensure the feasibility of the
reference trajectory, which could be only verified offline when the whole trajectory is known a priori.
Such approach does not apply to online methods, which should be able to handle online trajectory
generation and re-planning. In these cases, we can only ensure the feasibility of the optimal control
control, which typically aims at minimizing the deviation of the performed motion with respect to the
reference trajectory. This means that, although the desired motion might be infeasible, the optimal
control problem remains feasible. In this case, a deformation with respect to the nominal trajectory
could arise.
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A formal viability guarantee was given in [26], which proposed an invariance control scheme
for constrained robot manipulators. In particular, viability conditions were derived in order not
to exceed workspace limitations with bounded joint accelerations. In [14], a local redundancy
resolution technique was proposed: to respect a given deceleration limit in the breaking phase,
the position-velocity state region was limited by imposing that the robot was able to stop within the
given joint limit (in fact, limiting the state region to a viable set). This approach was similarly
adopted in [27] in the context of robust constrained motion planning. Recently, viability for
joint-constrained manipulators was explicitly addressed in [28], with a particular focus on the
discrete-time implementation of the viability constraints.

All the above-mentioned approaches were based on the derivation of an analytical viability
condition for a double integral system with bounded input and output. The resulting condition is
quadratic in the velocity state. However, as all the above-mentioned works refer to local/feedback
methods, such condition could be easily linearized around the current system state, resulting in variable
box constraints on the control actions. However, such linearization is not possible for predictive
strategies. In this case, a linear approximation of the viability set should be obtained. For example,
Faroni et al.[29] gives a sufficient condition to approximate the quadratic viable set with a linear
constraint and maintaining the viability property. Although the approximation technique is easy
to implement and does not remarkably increase the computational complexity of the problem, the
resulting allowed state region could result to be significantly smaller than the original one.

In this paper, we propose a method to derive a viable convex polyhedron for a robotic system with
bounded joint positions, velocities, and accelerations. In particular, a simple optimization problem is
set up to determine the maximum polyhedron that approximates the original viable set. The original
quadratic condition is approximated by a polyhedron with a given number of sides, by maximizing
the area of the allowed velocity-position state-region. Moreover, viability of the resulting set is ensured
by imposing that, for all points on the polyhedron boundary, there exists a realizable input action that
keeps the next state within the polyhedron itself, which is also demonstrated to be convex and can be
therefore rewritten as a linear inequality constraint in optimization-based algorithms (such as linear
MPC techniques). The paper shows that, by increasing the number of sides, the polyhedron gives a
better approximation of the original viable set, as expected. This means that a larger admissible state
region can be exploited by the controller when the resulting constraints are included in the optimization
problem. Consequently, the controller can obtain smaller tracking errors when the desired task requires
the robot joint to get close to the maximal viable set boundary. In particular, numerical results show
the enlargement of the admissible state region as the number of sides increases. Such improvement
is more and more evident as the maximum acceleration values gets smaller. Finally, experimental
results on a Universal Robots UR10 manipulator demonstrates the validity of the proposed approach.
In particular, an MPC algorithm is applied to the tracking problem of a given joint-space trajectory and
the results with different viability conditions are compared. Firstly, an experimental example shows
that the use of an invariance condition is of vital importance to ensure both the feasibility of the online
optimization problem and the satisfaction of the manipulator limits. Secondly, the results show that
the viable sets obtained by means of the proposed method permits to obtain smaller (or null) tracking
errors in the case the required motion is close to the viability boundary, increasing the performance of
the MPC controller.

The paper is organized as follows. Section 2 introduces the concept of set viability applied to
constrained kinematic control of robot manipulators. Section 3 illustrates the proposed method for the
computation of the optimal viable polyhedron and gives viability and convexity proves. Numerical results
demonstrate the effectiveness of the proposed approach in Section 4, while experimental results on a
Universal Robot UR10 manipulator are shown in Section 5. Section 6 concludes the paper.
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2. Feasibility of the Constrained Kinematic Control Problem

Consider a generic robot joint and denote with q, q̇, q̈ its position, velocity, and acceleration,
respectively. The limits on q, q̇, and q̈ can be therefore expressed as:

qmin ≤ q ≤ qmax, (1)

q̇min ≤ q̇ ≤ q̇max, (2)

q̈min ≤ q̈ ≤ q̈max, (3)

where qmin, q̇min, q̈min, and qmax, q̇max, q̈max are the minimum and maximum joint position, velocity,
and acceleration, respectively.

Assume a discrete-time implementation with sampling period T in which the acceleration is
considered as constant along each sampling period. At time k, kinematic limits at the next sampling
time k + 1 can be easily written as linear inequalities in the joint acceleration q̈k as:

qmin ≤ qk + T q̇k +
1
2

T2 q̈k ≤ qmax, (4)

q̇min ≤ q̇k + T q̈k ≤ q̇max, (5)

q̈min ≤ q̈k ≤ q̈max. (6)

However, the simplistic imposition of Equations (4)–(6) may result in an empty admissible set, as
no feasible solution might exist that satisfies all constraints at the same time [28].

Indeed, the existence of a solution is guaranteed if Equations (4)–(6) are feasible for all the
admissible states of the system. This is strictly correlated to the concept of set viability, as mentioned
in Section 1. As each joint is modeled as a double integrator, the viability analysis traces back to the
viability of a double integrator system with bounded input and output. By imposing the feasibility of
Equations (4)–(6), the maximal viability set for the double integrator can be derived analytically [26].
Intuitively, it can be calculated by imposing that, applying the maximum deceleration q̈min, the joint
stops at q = qmax with null velocity (q̇ = 0). The resulting condition (valid for the upper bound) is
given by: q− q̇2

2q̈min
− qmax ≤ 0 if q̇ > 0

q− qmax ≤ 0 otherwise
(7)

which expresses a quadratic condition in the system states. An analogous condition for the lower
bound can be derived likewise.

Such condition can be easily linearized around the current velocity and position, in the case of
local methods, as in [14,27]. The inclusion of Equation (7) in the QP ensures that the states of the
system (i.e., the joint velocities and positions) remain within a viable set for which the problem is
feasible. More details about the discrete implementation in robotic systems can be found in [28].

The necessity of deriving a linear approximation of the original quadratic equation (Equation (7))
comes from the advantages given by the linear formulation in optimization-based controllers (in
particular, the significant decrement of computational time and the ease of implementation of linear
MPC with respect to the nonlinear one). However, in the case of predictive strategies, the linearization
adopted for local methods is not applicable.

To tackle this issue, Faroni et al. [29] proposed a linear viability condition based on a single
constraint for each joint. Firstly, it showed that approximating the quadratic constraint in Equation (7)
by means of a straight line passing through the extreme points of the maximal viable set (i.e., (qmax, 0)
and the intersection between Equation (7) and q̇ = q̇max in Figure 1) leads to a non-viable set. Then,
it derives a linear viability condition by imposing that the maximum deceleration along the linear
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constraint is exactly equal to the maximum admissible deceleration. In this way, the joint states can be
always kept within the resulting set by means of a realizable acceleration. Such condition is given by:

− q̈min

q̇max
q + q̇ +

q̈min

q̇max
qmax ≤ 0 (8)

for the upper bound, and likewise for the lower one.
Inequalities (Equations (7) and (8)) are graphically represented in Figure 1. Linearity of Equation (8)

is a great advantage, as it allows the straightforward inclusion in an optimization problem as a linear
constraints. However, it is clear that Equation (8) implies a conservative reduction of the available
state-space region compared to Equation (7), and such reduction worsens as the acceleration limits
become smaller.

From a practical perspective, the reduction of the admissible state region shows its drawbacks
when the robot is required to perform a motion that would violate Equation (8). In fact, the states laying
between the linear and the quadratic constraints in Equations (7) and (8) are potentially realizable by
the robot, but they are automatically excluded by the controller, with consequent deformation of the
desired trajectory. Similarly, for redundant manipulators, shrinking the admissible state region could
results in a worse satisfaction of the secondary objectives.

Figure 1. Viable admissible set for the double integrator system. Black: Maximal region, given by the
quadratic inequality in Equation (7). Blue: Conservative linear inequality in Equation (8), as proposed
in [29].

3. Proposed Method

As mentioned in the previous section, viability conditions are fundamental to ensure the feasibility
of the control problem. The derivation of linear viability conditions (e.g., Equation (8)) allows their
straightforward implementation in an optimization-based control framework, such as MPC algorithms.
A strategy to enlarge the admissible region without waving its linearity is therefore proposed. It
consists in increasing the number of linear constraints that compose the admissible set. We can
therefore state the following problem.

Problem 1. Given the acceleration, velocity, and configuration limits for each joint, find the maximal viable
convex polyhedron determined by a given number of linear inequalities.

We address this problem by converting it into an optimization problem. In particular, for each
joint, two optimization problems are set up (one for the upper position bound and one for the lower
position bound). Without loss of generality, consider the upper configuration bound for a generic
joint (i.e., the first quarter in Figure 1). The optimization variables of the problem are given by the
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coordinates of the extremes of the segment composing the polyhedron shown in Figure 2. Given a
number of segments h, such variables are denoted with the vectors:

px = (px,0, . . . , px,j, . . . , px,h), (9)

py = (py,0, . . . , py,j, . . . , py,h), (10)

whereas a generic point on the polyhedron is denoted with Pj(px,j, py,j).
Now, impose that (px,0, py,0) = (qmean, q̇max), where qmean = qmax+qmin

2 and (px,h, py,h) = (qmax, 0).
To maximize the area covered by the polyhedron, a cost function equivalent to the opposite of such
area is defined as follows:

ψ =
1
2

h

∑
j=1

(px,j−1 − px,j)(py,j−1 + py,j). (11)

Figure 2. Construction of the polyhedron P1.

The extremes of the segments are required to lay in the first quarter and have to respect the
maximum position and velocity bounds. This results in the following box constraints:

qmean ≤px ≤ qmax, (12)

0 ≤py ≤ q̇max. (13)

Moreover, as a first necessary condition to the convexity of the polyhedron, we impose:

px,j − px,j−1 ≥ 0 ∀j = 1, . . . , h, (14)

py,j−1 − py,j ≥ 0 ∀j = 1, . . . , h. (15)

One last constraint needs to be imposed to ensure that the resulting polyhedron is viable and
convex. To this purpose, we resort to a geometrical reasoning. Consider a generic segment Pj Pj+1
whose extremes are the points (px,j, py,j) and (px,j+1, py,j+1) and denote with ~nj the unitary vector
normal to the segment and directed toward the inner region of the polyhedron. It results that:

~nj =

(
py,j+1 − py,j∥∥Pj Pj+1

∥∥ ,
px,j − px,j+1∥∥Pj Pj+1

∥∥
)

. (16)
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Consider then a generic point Pζ(px,ζ , py,ζ) on the segment. By applying the maximum
deceleration q̈min to the system, the states are forced to move on the curve given by:{

q = px,ζ + py,ζ t + 1
2 q̈mint2

q̇ = py,ζ + q̈mint
(17)

The tangent vector to such curve in the (q, q̇)-plane is given by:

~t =
(

dq
dt

,
dq̇
dt

)
=
(

py,ζ + q̈mint, q̈min
)
. (18)

The vector~t at t = 0 is therefore the tangent vector in the point Pζ and results to be:

~t(px,ζ , py,ζ) = (py,ζ , q̈min). (19)

Note that~t(px,ζ , py,ζ) represents the direction of the state movement when the maximum realizable
deceleration is applied. The state will therefore be able to remain below the considered segment if the
following condition holds:

~nj ·~t(px,ζ , py,ζ) ≥ 0 ∀ (px,ζ , py,ζ) ∈ Pj Pj+1 (20)

where (·) denotes the scalar product between two vectors. As

min
px,ζ ,py,ζ

(
~nj ·~t(px,ζ , py,ζ)

)
= ~nj ·~t(px,j, py,j), (21)

condition in Equation (20) can be imposed on the sole extreme point Pj of each segment and becomes:

py,j(py,j+1 − py,j) + q̈min(px,j − px,j+1) ≥ 0. (22)

Finally, the resulting optimization problem can be written as:

minimize
px , py

ψ

subject to qmean ≤ px ≤ qmax

0 ≤ py ≤ q̇max

px,j − px,j−1 ≥ 0 ∀j = 1, . . . , h

py,j−1 − py,j ≥ 0 ∀j = 1, . . . , h

py,j(py,j+1 − py,j) + q̈min(px,j − px,j+1) ≥ 0 ∀j = 1, . . . , h− 1

px,0 = qmean

py,0 = q̇max

px,h = qmax

py,h = 0

(23)
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Following the same reasoning, an analogous optimization problem can be set up for the lower
position bound. Note that, if the joint limits are symmetric, the solution for the lower bounds can be
obtained by “mirroring” the solution of Equation (23) into the third quarter of the (q, q̇)-plane. Notice
that, as Equation (23) is non-convex, global optimization such as genetic or multi-start algorithms
should be adopted to solve the optimization problem (see Section 4).

Denoting with P1 the polyhedron determined by the segments obtained as solution of
Equation (23), and with P2 the analogous polyhedron obtained for the lower bounds, the overall
polyhedron for the single joint is given by:

P = P1 ∪ P2 ∪ [qmin, qmean]× [0, q̇max] ∪ [qmean, qmax]× [q̇min, 0]. (24)

Proposition 1. Polyhedron P is a viable set with respect to the given joint position, velocity and acceleration
limits. Moreover, such polyhedron is convex.

Proof (Viability). Viability of the set is implicitly ensured by the imposition of Equation (22).

Proof (Convexity). To prove it by contradiction, denote the solution of Equation (23) with p∗x, p∗y
and assume that the corresponding polyhedron P∗1 (i.e., the part of the polyhedron in the first
quarter) is non-convex. Consider then a triple of consequent extremes {Pj−1, Pj, Pj+1}, which causes a
non-convexity. Equations (20) and (21) imply:

~nj−1 ·~t(p∗x,j−1, p∗y,j−1) ≥ 0, (25)

~nj ·~t(p∗x,j, p∗y,j) ≥ 0. (26)

Consider now the point Pc given by the projection of Pj onto Pj−1 Pj+1 and denote with ~nc the
vector normal to Pj−1 Pj+1. We want to prove that the polyhedron obtained by substituting Pc to Pj in
P∗1 is a feasible and more efficient solution of Equation (23). First, constraints in Equations (12)–(15)
are straightforwardly satisfied. Moreover,

~nc ·~t(p∗x,j−1, p∗y,j−1) ≥ ~nj−1 ·~t(p∗x,j−1, p∗y,j−1) ≥ 0 (27)

as~nj−1 ·~i ≤ ~nc ·~i ≤ 0 and~nc ·~j ≤ ~nj−1 ·~j ≤ 0 by construction (where~i and~j denote the unitary vectors
directed as the horizontal and the vertical axis, respectively).

Moreover, as q̈min in Equation (19) is assumed to be negative, the following inequality holds:

~nc ·~t(px,c, py,c) ≥ ~nc ·~t(p∗x,j−1, p∗y,j−1) ≥ 0. (28)

Note that Equations (27) and (28) implies that the new candidate solution satisfies Equation (22)
and is therefore a feasible solution to Equation (23). Moreover, the candidate solution is more efficient
than the assumed one, as

ψ
(

P0, . . . , Pj−1, Pc, Pj+1, . . . , Ph
)
≤ ψ

(
P0, . . . , Pj−1, Pj, Pj+1, . . . , Ph

)
, (29)

which means that p∗x, p∗y are not the optimal solution of Equation (23), as a feasible and more efficient
solution that eliminates such non-convexity exists. Applying this reasoning to any triples of extremes
that cause a non-convexity implies that the optimal polyhedron P1 must be convex. The same
demonstration can be applied to P2 leading to the same conclusion.
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4. Numerical Results

Consider the first joint of the robot manipulator Universal Robot UR10. The joint configuration
and velocity limits from the datasheet are given by:

qmax = −qmin = 3.14 rad, q̇max = −q̇min = 2.16 rad/s. (30)

Typically, acceleration limits are not explicitly given in the datasheet. Indeed, the actual dynamic
limit of the joint is usually determined by the available joint torque. However, handling viability
directly in terms of torque limits is typically avoided due to the complexity of the problem. The common
approach consists in estimating a (usually conservative) corresponding acceleration limit for each joint
separately. A method for the estimation of such acceleration limit is given, for instance, in [28]. As a
first example, assume that the acceleration limits are given by q̈max = −q̈min = 6 rad/s2.

We solve the optimization problem (Equation (23)) for different values of h to evaluate the resulting
polyhedrons as the number of edges grows and to compare the results to the quadratic and the linear
viability constraints (Equations (7) and (8), respectively). Table 1 shows the values of the inner area of
polyhedron P1. The values are normalized with respect to the maximal viable set obtained by means of
Equation (7), whose area is therefore equal to one (last column of Table 1). As expected, the smaller area is
given by Equation (8) (first column of Table 1), while the extension of the polyhedron obtained by solving
Equation (23) grows with the number of edges. In other words, the larger the number of edges, the closer
the optimal polyhedron is to the maximal extension (given by Equation (7)). This is clearly shown in
Figure 3, which depicts the different viable sets.

An analogous example is performed by using q̈max = −q̈min = 3 rad/s2. The values of the
normalized area of P1 are shown in Table 2 and the resulting viable sets are depicted in Figure 4.
The results lead to conclusions similar to the ones given by the previous example. However, it is clear
that the magnitude of the phenomenon grows as the acceleration limits get smaller.

Of course the use of a larger value of h also gives some drawbacks. First, the computational
complexity of Equation (23) rapidly grows with h as the number of variables and constraints is linear
in h. As an example, the time needed to solve Equation (23) for h = 1 and h = 11 was in the order
of 1 second and 15 s, respectively (the computation was performed in Matlab using a multi-start
gradient-descent method on a standard laptop mounting a 2.5 GHz Intel Core i5-2520M processor).

Furthermore, the value of h determines the number of linear inequalities describing the polyhedron.
In optimization-based control algorithms (such as linear MPC), this affects the computational complexity
of the online optimal control problem, which is typically a critical issue in online methods, as mentioned in
Section 1.

Table 1. Inner area of P1 for different values of h in case q̈max = −q̈min = 6 rad/s2.

Equation (8) h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 Equation (7)

0.9139 0.9636 0.9773 0.9836 0.9871 0.9895 0.9911 0.9920 0.9923 0.9925 1

Table 2. Inner area of P1 for different values of h in case q̈max = −q̈min = 3 rad/s2.

Equation (8) h = 3 h = 4 h = 5 h = 6 h = 7 h = 8 h = 9 h = 10 h = 11 Equation (7)

0.8200 0.9239 0.9525 0.9656 0.9731 0.9731 0.9813 0.9838 0.9857 0.9857 1
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0
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Figure 3. Comparison of the viable polyhedrons for different values of h (portion of interest of the first
quarter) in the case q̈max = −q̈min = 6 rad/s2.

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.5

1

1.5

2

Figure 4. Comparison of the viable polyhedrons for different values of h (portion of interest of the first
quarter) in the case q̈max = −q̈min = 3 rad/s2.



Robotics 2018, 7, 41 11 of 19

5. Experimental Results

Experimental were also performed on a six-degrees-of-freedom Universal Robot UR10
manipulator to prove the validity of the proposed approach. For the purposes of the paper, the
joint position and velocity limits have been set to slightly conservative values with respect to the ones
given in the datasheet. In particular, they are set as:

Qmax = −Qmin = ( 3, 3, 3, 3, 3, 3 ) rad, (31)

Q̇max = −Q̇min = ( 2, 2, 3, 3, 3, 3 ) rad/s. (32)

The acceleration limits have been set as Q̈max = −Q̈min = ( 3, 3, 3, 3, 3, 3 ) rad/s2.
The experimental platform is shown in Figure 5. The objective of these experiments was the evaluation
of the performance of an optimization-based control algorithm when different viability constraints
are implemented. To this purpose, a simple MPC scheme was applied to a trajectory following
problem. The MPC control scheme is in charge of following a position reference signal in the joint
space. The model implemented in the MPC consists of a double integrator for each joint, as typical of
robot kinematic control [15,30]. The input action is therefore represented by the joint accelerations,
which then feed the low-level controller of the robot. Joint position, velocity, and acceleration limits can
be implemented as linear constraints in the MPC (see [15] for details) and the online optimal control
problem results to be a QP which minimizes the weighted sum of the tracking error and the control
effort, as typical of linear MPC [31]. Notice that the choice of such a simple control scheme is due to the
will of highlighting the behavior of a linear MPC controller in the case of different viability conditions.
However, the proposed method could be straightforwardly applied to more complex MPC techniques
such as [15,16,29].

Figure 5. Universal Robot UR10 used as experimental platform.

The MPC algorithm was implemented using a sampling period T = 8 ms and by setting a
predictive and a control horizon N = 20 sampling periods. The robot trajectory is controlled by means
of a ROS-based control architecture. Namely, a position controller runs in a ROS Kinetic Ubuntu 16.04.
The controller communicates with the robot by means of a TCP connection. The controller takes the
MPC position output as reference and receives the actual joint position. The controller output is the
sum of a proportional action, with gain equal to seven, and a feedforward term equal to the MPC
velocity output.
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We considered a simple trajectory given by a straight line in the joint space, parameterized with
respect to the normalized longitudinal length along the path, denoted with r ∈ [0, 1]. The trajectory
Qdes(t) is therefore defined as:

Qdes(t) = Qstart + (Qend −Qstart) r(t), (33)

where Qstart = ( 0, −1, 0.5, 0, 0, 0.5 ) rad and Qend = ( 2.9, −0.5, −1.5, 1, −0.5, 2.9 ) rad are the initial
and the final points of the trajectory, respectively, and r : [0, tend] → [0, 1], t 7→ r(t) is defined as
a timing law with trapezoidal velocity profile, where tend represents the total time of the trajectory,
as depicted in Figure 6.

Figure 6. Timing law with trapezoidal velocity profile.

The control problem the MPC controller has to solve at each cycle k therefore results:

minimize
Q̈

N

∑
i=1

∥∥Qdes(k + j)−Q(k + j)
∥∥2

+ λ
N−1

∑
i=0

∥∥Q̈(k + j)
∥∥2

subject to Q̇min ≤ Q̇(k + j) ≤ Q̇max ∀j = 1, . . . , N

Q̈min ≤ Q̈(k + j) ≤ Q̈max ∀j = 0, . . . , N − 1

Q(k + 1) = Q(k) + TQ̇(k) + 0.5T2Q̈(k)

Q̇(k + 1) = Q̇(k) + TQ̈(k)

(34)

where Q, Q̇, and Q̈ ∈ R6 are the joint position, velocity, and acceleration vectors, respectively, and the
controller effort weighting factor λ = 1× 10−6 was tuned empirically. Different implementations of
the position limits will then be added to the problem in order to evaluate the different behaviors of
the system.

As a first example, the total time of the trajectory was chosen as tend = 2.07 s and the behavior of
the MPC controller was evaluated in three different scenarios:

• No position bounds are implemented.
• Box position constraints are implemented, which means that the following constraints are added

to Equation (34):
Qmin ≤ Q(k + j) ≤ Qmax ∀j = 1, . . . , N (35)

• The linear viability condition in Equation (8) is applied, that is, Equation (35), and the following
constraint are added to Equation (34):

− Q̈i,min

Q̇i,max
Qi(k + j) + Q̇i(k + j) +

Q̈i,min

Q̇i,max
Qi,max ≤ 0 ∀j = 1, . . . , N, ∀i = 1, . . . , 6; (36)

where the subscript i denotes the ith element of the vector.
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The viability constraints are imposed throughout the whole control horizon for the sake of
clarity and because the small increment in the computational time (due to the larger number of linear
constraints) does not represent a significant issue in the presented experimental tests. However, in the
case of linear MPC, imposing such constraints only on the last time instant of the horizon would be
enough to ensure feasibility of the control problem and would not give significant differences in terms
of control performance. The imposition of the constraint throughout the whole horizon permits to
obtain a more reliable prediction of the future trajectory. This can be helpful especially in the case the
prediction is utilized in linearized methods such as [15], as a non-reliable prediction might worsen the
performance of the method.

Notice that the trajectory is devised in such a way that the desired motions of the first and the
sixth joints exceed the maximal viable set, as shown in Figure 7a,b. The figures also show the phase
plot of the position/velocity variables computed by the MPC in the three above-mentioned cases. In
the case no position bounds are implemented (dashed green line), the joint position obviously does
not satisfy the position limit. However, when box position constraints are implemented in the MPC
(dash-dotted purple line), infeasibility of the control problem occurs and, since that time, the joint
is forced to decelerate with the maximum admissible deceleration, but the position limit cannot be
satisfied anyway. This highlights the importance of the viability property. In fact, the implementation
of the linear constraints in Equation (8) does ensure the feasibility of the control problem and permits
to satisfy the position bound (with a deformation of the original trajectory) (dashed red line). These
behaviors are clarified also in Figure 8a,b, where the ideal and the measured joint positions for Joint 1
and Joint 6 are shown.

A second experiment is performed by choosing a total trajectory time tend = 2.65 s. In this case,
the trajectory drives the first and the third joints in the region between Equations (7) and (8). The
behavior of the MPC controller is evaluated in cases where three different viability constraints are
implemented:

• The linear viability condition in Equation (8), that is, Equation (36) is added to Equation (34).
• The viable polyhedron obtained by solving Equation (23) with h = 3, that is, the following

constraints are added to Equation (34):(
Qi(k + j), Q̇i(k + j)

)
∈ P i

h=3 ∀j = 1, . . . , N, ∀i = 1, . . . , 6; (37)

where the superscript i denotes the viable polyhedral of the ith joint.
• The viable polyhedron obtained by solving Equation (23) with h = 4, that is, the following

constraints are added to Equation (34):(
Qi(k + j), Q̇i(k + j)

)
∈ P i

h=4 ∀j = 1, . . . , N, ∀i = 1, . . . , 6. (38)

Figure 9a,b shows the state trajectory for the first joint in the three different cases. Notice that
the position limit is respected and the control problem remains feasible for all cases. However, the
reduction of the admissible region determined by Equation (8) gives rise to a significant modification
of the original trajectory, although the desired states are always potentially realizable by the robot (as
the trajectory does not exceed Equation (7)). An improvement is obtained when the polyhedron with
h = 3 is used.

Notice that the small velocity bumps visible in the figures are due to predictive nature of the
controller. In fact, as the control scheme is based on the tracking of a position reference along the
predictive horizon, the controller slightly increases the velocity when it realizes the viability constraint
will be activated and a deformation of the task will arise (as the state will be forced to follow the
constraint). By giving a small acceleration before the activation of the constraint, the controller
minimizes the future deviation with respect to the given position reference.
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Finally, the use of h = 4 permits to obtain a viable polyhedron that is large enough to enclose the
whole desired trajectory. These behaviors are clarified also in Figure 10a,b, where the ideal and the
measured joint positions for Joint 1 and Joint 6 are shown.
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(a)
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Figure 7. State trajectory in the (q, q̇)-plane for (a) Joint 1 and (b) Joint 3 for Ttot = 2.07 s: Reference
trajectory (gray solid line); MPC without position bounds (green dashed line); MPC with box position
bounds (purple dash-dot line); MPC with linear viability inequality (Equation (8)) (red dashed line);
maximal viable set (black dotted line); and linear viability inequality ((Equation (8)) (blue dotted line).



Robotics 2018, 7, 41 15 of 19

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

1.5

2

2.5

3

2 2.5 3

2.4

2.6

2.8

3

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4

0.5

1

1.5

2

2.5

3

2 2.5 3

2.6

2.7

2.8

2.9

3

(b)

Figure 8. Position of (a) Joint 1; and (b) Joint 3 for Ttot = 2.07 s: Reference trajectory (gray solid line).
Output of MPC given as reference signal to the low-level controller: MPC without position bounds
(green dotted line); MPC with box position bounds (purple dotted line); and MPC with linear
viability inequality (Equation (8)) (red dotted line). Measured position: MPC without position bounds
(green dashed line); MPC with box position bounds (purple dash-dot line); and MPC with linear
viability inequality (Equation (8)) (red dashed line).
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Figure 9. State trajectory in the (q, q̇)-plane for (a) Joint 1 and (b) Joint 3 for Ttot = 2.65 s: Reference
trajectory (gray solid line); MPC with linear viability inequality (Equation (8)) (red dashed line); MPC
implementing the viable polyhedron with h = 3 (purple dash-dot line); and MPC implementing the viable
polyhedron with h = 4 (dashed green). Viable sets: Maximal (black dotted line); Linear viability inequality
(Equation (8)) (blue dotted line); Polyhedron with h = 3 (light blue dotted line); and Polyhedron with
h = 4 (gray dotted line).
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Figure 10. Position of (a) Joint 1 and (b) Joint 3 for Ttot = 2.65 s. Reference trajectory (gray solid line).
Output of MPC given as reference signal to the low-level controller: MPC with linear viability
inequality (Equation (8)) (red dotted line); MPC implementing the viable polyhedron with h = 3
(purple dotted line); and MPC implementing the viable polyhedron with h = 4 (green dotted line).
Measured position: MPC with linear viability inequality (Equation (8)) (red dashed line); MPC implementing
the viable polyhedron with h = 3 (purple dash-dot line); and MPC implementing the viable polyhedron
with h = 4 (green dashed line).
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6. Conclusions

In this paper, we have proposed a method to compute the maximal viable polyhedron for a robot
manipulator with bounded joint positions, velocities, and accelerations. In the proposed approach,
each joint is considered separately and two optimization problems are devised: one for the upper
bounds and one for the lower ones. Given its number of sides, the resulting polyhedron maximizes
the area of the admissible position/velocity region. Moreover, the set is proven to be viable and
convex. In this way, it can be easily implemented as linear constraints in optimization-based control
methods, such as linear MPC. Numerical results demonstrate that the percentage of area covered by
the polyhedrons increases as the number of sides grows. This allows the controller to exploit a larger
admissible state region and, thus, gives it a broader margin of maneuver in the case the desired motion
drives the robot in proximity of the viability boundary. In this case, a better task following can be
achieved, as demonstrated by means of experimental results on a six-degrees-of-freedom manipulator.
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