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Abstract: Classical gradient-based approximate dynamic programming approaches provide reliable
and fast solution platforms for various optimal control problems. However, their dependence
on accurate modeling approaches poses a major concern, where the efficiency of the proposed
solutions are severely degraded in the case of uncertain dynamical environments. Herein, a novel
online adaptive learning framework is introduced to solve action-dependent dual heuristic dynamic
programming problems. The approach does not depend on the dynamical models of the considered
systems. Instead, it employs optimization principles to produce model-free control strategies. A policy
iteration process is employed to solve the underlying Hamilton–Jacobi–Bellman equation using means
of adaptive critics, where a layer of separate actor-critic neural networks is employed along with
gradient descent adaptation rules. A Riccati development is introduced and shown to be equivalent
to solving the underlying Hamilton–Jacobi–Bellman equation. The proposed approach is applied on
the challenging weight shift control problem of a flexible wing aircraft. The continuous nonlinear
deformation in the aircraft’s flexible wing leads to various aerodynamic variations at different trim
speeds, which makes its auto-pilot control a complicated task. Series of numerical simulations were
carried out to demonstrate the effectiveness of the suggested strategy.

Keywords: model-free control; flexible wing aircraft; reinforcement learning; optimal control

1. Introduction

Various Approximate Dynamic Programming (ADP) methods have been employed to solve
the optimal control problems for single and multi-agent systems [1–6]. They are divided into
different classes according to the way the temporal difference equations and the associated optimal
strategies are evaluated. The ADP approaches that consider gradient-based forms provide fast
converging approaches, but they require the complete knowledge of the dynamical model of the
system under consideration [7]. The solution of the flexible wing control problem requires model-free
approaches, since the aerodynamics of the flexible wing aircraft are highly nonlinear and they variate
continuously [8–16]. This type of aircraft has large uncertainties embedded in their aerodynamic
models. Herein, an online adaptive learning approach, based on a gradient structure, is employed to
solve the challenging control problem of flexible wing aircrafts. This approach does not need any of the
aerodynamic information of the aircraft. It is based on a model-free control strategy approximation.

Several ADP approaches have been adopted to solve the difficulties associated with the
dynamic programming solutions which involve the curse of dimensionality in the state and action
spaces [2–5,17,18]. They are employed in different applications such as machine learning, autonomous
systems, multi-agent systems, consensus and synchronization, and decision making problems [19–21].
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Typical optimal control methods tend to solve the underlying Hamilton–Jacobi–Bellman (HJB)
equation of the dynamical system by applying the optimality principles [22,23]. An optimal
control problem is usually formulated as an optimization problem with a cost function that
identifies the optimization objectives and a mathematical process to find the respective optimal
strategies [6,7,18,22–28]. To implement the optimal control solutions stemming from the ADP
approaches, numerous solving frameworks are considered based on combinations of Reinforcement
Learning (RL) and adaptive critics [1,5,18,25,27]. Reinforcement Learning approaches use various forms
of temporal difference equations to solve the optimization problems associated with the dynamical
systems [1,18]. This implies finding ways to penalize or reward the attempted control strategies
to optimize a certain objective function. This is accomplished in a dynamic learning environment
where the agent applies its acquired knowledge to update its experience about the merit of using
the attempted policies. RL methods implement the temporal difference solutions using two main
coupled steps. The first approximates the value of a given strategy, while the second approximates the
optimal strategy itself. The sequence of these coupled steps can be implemented with either value or
policy iteration method [18]. RL has also been proposed to solve problems with multi-agent structures
and objectives [29] as well as cooperative control problems using dynamic graphical games [21,26,30].
Action Dependent Dual Heuristic Dynamic Programming (ADDHP) depends on the system’s dynamic
model [7,26,28]. Herein, the relation between the Hamiltonian and Bellman equation is used to solve
for the governing costate expressions and hence a policy iteration process is proposed to find an
optimal solution. Dual Heuristic Dynamic Programming (DHP) approaches for graphical games are
developed in [21,26,30]. However, these approaches require in-advance knowledge of the system’s
dynamics and, in some cases of the multi-agent systems, they rely on complicated costate structures to
include the neighbors influences.

Adaptive critics are typically implemented within reinforcement learning solutions using neural
network approximations [18,27]. The actor approximates the optimal strategy, while the value of the
assessed strategy is approximated by the critic [18]. Real-time optimal control solutions using adaptive
critics are introduced in [3]. Adaptive critics provide prominent solution frameworks for the adaptive
dynamic programming problems [31]. They are employed to produce expert paradigms that can
undergo learning processes while solving the underlying optimization challenges. Moreover, they have
been invoked to solve a wide spectrum of optimal control problems in continuous and discrete-time
domains, where actor-critic schemes are evoked within an Integral Reinforcement Learning
context [32,33]. An action-dependent solving value function is proposed to play some zero-sum
games in [34], where one critic and two actors are adapted forward in time to solve the game.
An online distributed actor-critic scheme is suggested to implement a Dual Heuristic Dynamic
Programming solution for the dynamic graphical games in [7,24] without overlooking the neighbors’
effects, which is a major concern in the classical DHP approaches. The solution provided by each agent
is implemented by single actor-critic approximators. Another actor-critic development is applied to
implement a partially-model-free adaptive control solution for a deterministic nonlinear system in [35].
A reduced solving value function approach employed an actor-critic scheme to solve the graphical
games, where only partial knowledge about the system dynamics is necessary [26]. An actor-critic
solution framework is adopted for an online policy iteration process with a weighted-derivative
performance index form in [33]. A model-free optimal solution for graphical games is implemented
using only one critic structure for each agent in [25]. The recent state-of-the-art adaptive critics
implementations for numerous reinforcement learning solutions for the feedback control problems are
surveyed in [36]. These involve the regulation and tracking problems for single- as well as multi-agent
systems [36].

Flexible wing aircraft are usually modeled as two-mass systems (fuselage and wing). Both masses
are coupled via different kinematic and dynamic constraints [8,13–15,37]. They involve the kinematic
constraint at the connection point of the hang strap [38,39]. The keel tube works as a symmetric axis
for this type of aircraft. The basic theoretical and experimental developments for the aerodynamic
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modeling aspects of the flexible wing systems are introduced in [8,13–15,40,41]. Several wind tunnel
experiments have been introduced for the hang glider in [14]. An approximate modeling approach of
the flexible wing’s aerodynamics led to equations of motion for the lateral and longitudinal directions
with small perturbation models in [42]. The modeling process for the hang glider assumed a rigid
wing modeling process, where the derivatives, due to the aerodynamics, were added at the last
stage [11,12]. A comprehensive decoupled aerodynamic model for the hang glider is presented in [43].
A nine-degree-of-freedom aerodynamic model that employs a set of nonlinear state equations is
developed in [38,39]. The control of the flexible wing aircraft follows a weight shift mechanism, where
the lateral and longitudinal maneuvers or the roll/pitch control mechanism is achieved by changing
the relative centers of gravity of the wing and the fuselage systems [9,10,13,14,37,44]. The geometry of
the flexible wing’s control arm influences the maximum allowed control moments [9]. The reduced
center of gravity magnifies the static pitch stability [9]. Frequency response-based approaches are
adopted to study the stability of flexible wing systems in [11,12]. The longitudinal stability of a fixed
wing system can be used to understand that of the flexible wing vehicle provided some conditions
are satisfied [37]. The lateral stability margins are shown to be larger compared to conventional fixed
wing aircraft.

The contribution of this work is four-fold:

1. An online adaptive learning control approach is proposed to solve the challenging weight-shift
control problem of flexible wing aircraft. The approach uses model-free control structures and
gradient-based solving value functions. This serves as a model-free solution framework for the
classical Action Dependent Dual Heuristic Dynamic Programming problems.

2. The work handles many concerns associated with implementing value and policy iteration
solutions for ADDHP problems, which either necessitate partial knowledge about the system
dynamics or involve difficulties in the evaluations of the associated solving value functions.

3. The relation between a modified form of Bellman equation and the Hamiltonian expression is
developed to transfer the gradient-based solution framework from the Bellman optimality domain
to an alternative domain that uses Hamilton–Jacobi–Bellman expressions. This duality allows
for a straightforward solution setup for the considered ADDHP problem. This is supported by
a Riccati development that is equivalent to solving the underlying Bellman optimality equation.

4. The proposed solution that is based on the combined-costate structure is implemented using
a novel policy iteration approach. This is followed by an actor-critic implementation that is free
of the computational expensive matrix inverse calculations.

The paper is organized as follows: Section 2 briefly explains the weight shift control mechanism
of a flexible wing aircraft. Section 3 highlights the model-based solutions within the framework of
optimal control theory along with the existing challenges. Section 4 discusses the duality between the
Hamiltonian function and Bellman equation leading to the Hamilton–Jacobi–Bellman formulation,
which is used to generalize the Action Dependent Dual Heuristic Dynamic Programming solution
with a policy iteration process. Section 5 introduces the model-free gradient-based solution and the
underlying Riccati development. Section 6 demonstrates the adaptive critics implementations for the
proposed model-free gradient-based solution. Section 7 tests the validity of the introduced online
adaptive learning control approach by applying it on two case studies. Finally, the paper is concluded
with some concluding remarks in Section 8.

2. Control Mechanism of a Flexible Wing Aircraft

This section briefly introduces the idea of weight shift control along with a basic aerodynamic
model of a flexible wing system. Herein, a flexible wing aircraft is modeled as a two-mass system
(fuselage/pilot and wing) coupled through nonlinear kinematic constraints at the hang strap, as shown
in Figure 1. The flexible wing is connected to the fuselage through a control bar. The aerodynamic
forces are controlled via a weight shift mechanism, where the fuselage’s center of gravity “floats”
with respect to that of the wing [8–12,37,44]. Such a system is governed by complex aerodynamic
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forces which makes it difficult to model to a satisfactory accuracy. Consequently, model-based control
approaches may not be appropriate for the auto-pilot control of such systems.

Figure 1. A flexible wing hang glider.

In this framework, the longitudinal and lateral motions are controlled through the force
components applied on the control bar of the hang glider [38,39]. This development takes into
account a nine-degree-of-freedom model that considers the kinematic interactions and the constraints
between the fuselage and the wing at the hang point, as shown in Figure 1. The longitudinal and
lateral dynamics are referred to the wing’s frame, where the forces (nonlinear state equations) at the
hang point are substituted for by some transformations in the wing’s frame [39].

The decoupled longitudinal and lateral aerodynamic models satisfy the following
assumptions [39]:

• The hang strap works as a kinematic constraint between the decoupled wing/fuselage systems.
• The fuselage system is assumed to be a rigid body connected to the wing system via a control

triangle and a hang strap.
• The force components applied on the control bar are the input control signals.
• External forces, such as the aerodynamics and gravity, the associated moments, and the internal

forces, are evaluated for both fuselage and wing systems.
• The fuselage’s pitch–roll–yaw attitudes and pitch–roll–yaw attitude rates are referred to the

wing’s frame of motion through kinematic transformations.
• The complete aerodynamic model of the aircraft is reduced by substituting for the internal forces

at the hang strap using the action/reaction laws.
• The pilot’s frames of motion (i.e., longitudinal and lateral states) are referred to the respective

wing’s frames of motion.

The dynamics of the flexible wing aircraft are decoupled into longitudinal and lateral systems,
such that [9,37,39,44].

δLo/La
(k+1) = ALo/La δLo/La

k + BLo/La uLo/La
k , (1)

where δLo =
[
νaw νnw θ̇w θ̇ f w θ f w θw

]T
is the longitudinal state vector, δLa =[

νlw φ̇w ψ̇w φ̇ f w ψ̇ f w φ f w ψ f w φw

]T
is the lateral state vector, the force Tcq =

1
2
(
TRq + TLq

)
is the collective force in direction q, the force Tdq =

1
2
(
TRq − TLq

)
is the differential force in direction q,

uLo =
[

Tcx Tcz

]T
represents the longitudinal control signals, and uLa =

[
Tcy Tdx Tdz

]T
denotes

the lateral control signals.
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The modeling results of the flexible wing aircraft are based on the experimental and theoretical
studies of [9], where the control mechanism employs force components on the control bar [39].

3. Optimal Control Problem

This section explains the main challenges associated with the optimal solution of the control
problem using Action Dependent Dual Heuristic Dynamic Programming approaches. It should justify
the need for a model-free gradient-based optimal control solution.

3.1. Bellman Equation Formulation

Consider a flexible wing hang glider characterized by the following discrete-time state
space equation:

δk+1 = A δk + B uk, (2)

where δk ∈ Rn is a vector of the (longitudinal/lateral) states and uk ∈ Rm is a vector
of the (longitudinal/lateral) force components applied on the control bar, A and B are the
(longitudinal/lateral) state space matrices, and k is the time index.

A quadratic convex performance index is introduced to assess the quality of the taken control
actions, such that

J =
∞

∑
k=0

F(δk, uk), (3)

where F is a convex utility function given by

F(δk, uk) =
1
2

(
δT

k Q δk + uT
k R uk

)
, (4)

where Q ≥ 0 ∈ Rn×n and R > 0 ∈ Rm×m are symmetric time-invariant positive semi-definite and
positive definite weighting matrices, respectively.

The structure in Equation (3) is used to suggest a solution form. First, the solving value function
V(δk, uk) is assumed to depend on the the state δk and the control strategy uk so that

V(δk, uk) =
∞

∑
i=k

F(δi, ui). (5)

This yields a temporal difference (Bellman) equation defined by

V(δk, uk) =
1
2

(
δT

k Q δk + uT
k R uk

)
+ V(δk+1, uk+1). (6)

The value function in Equation (5) is assumed to have the following form

V(δk, uk) =
1
2
[δT

k uT
k ] S

[
δk
uk

]
, (7)

where S =

[
Sδδ Sδu
Suδ Suu

]
.

3.2. Model-Based Policy Formulation

Herein, a model-based optimal control strategy and the associated costate equation are derived by
applying the Bellman’s optimality principles to Bellman equation (Equation (6)). Below, a model-free
policy solution is introduced. To evaluate the optimal control strategy, the optimality principles are
applied to V(. . . ).
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argminuk
V(δk, uk) =

∂V(δk, uk)

∂uk
= 0

⇒ uo = −R−1BT

 In×n
∂uk+1
∂δk+1

T

∇δuk+1
V(δk+1, uk+1),

(8)

where ∇δuk+1
V(δk+1, uk+1) = S · [δT

k+1 uT
k+1]

T . Applying this model-based optimal policy
in Equation (6) yields the following Bellman’s optimality equation:

Vo(δk, uo
k
)
=

1
2

(
δT

k Qδk + uoT
k R uo

k

)
+ Vo(δ(k+1), uo

(k+1)
)
. (9)

The gradient-based solution requires the knowledge of the costate equation associated with the
system in Equation (2). The costate equation is evaluated as follows

∇δk V(δk, uk) = Qδk + AT

 In×n
∂uk+1
∂δk+1

T

∇δuk+1
V(δk+1, uk+1), (10)

The main concern about this gradient-based development is that both the optimal strategy in
Equation (8) and the associated costate Equation (10) depend on the dynamical model of the system
(i.e., A and B). The following development shows how it is possible to avoid this shortcoming using
dynamical information in deciding on the optimal control strategies.

3.3. Model-Free Policy Formulation

In the sequel, a model-free policy structure is introduced along with the optimal control solution
algorithms. Applying the Bellman’s optimality principles [22] yields the optimal control strategy uo

k
so that

argminuk
V(δk, uk) = argminuk

1
2
[δT

k uT
k ] S

[
δk
uk

]
.

Note that the optimality principle is applied to the left-hand-side of Equation (6). This yields the
following model-free control policy

uo
k = K · δk, (11)

where the control gain K is given by K = −S−1
ukuk
· Sukδk . Substituting Equation (11) into Equation (6)

yields a dual (equivalent) Bellman’s optimality equation (Equation (9)). The Bellman optimality
equation (Equation (9)) will be used to propose different Action Dependent Dual Heuristic Dynamic
solutions for the optimal control problem in hand, as shown below.

To propose gradient-based solutions, the gradient of the Bellman equation (Equation (6)) with
respect to the state δk is calculated.

∇δk V(δk, uk) = Q δk + AT

[
In×n

K

]T

∇δuk+1
V(δk+1, uk+1), (12)

where ∇δk V(δk, uk) = ∂V(δk, uk)/∂δk and ∇δuk V(δk, uk) = S · [δT
k uT

k ]
T , ∀k.

The optimal strategy (Equation (11)) and the costate (Equation (12)) are used to propose different
gradient-based solution forms. These are generalizations of the ADDHP solution, where a slight
modification on the approximation of the control policy is introduced. In the sequel, solutions based
on value iteration and policy iteration processes are presented.

Remark 1. Although Algorithm 1 and 2 use model-free policy structures (Equations (14) and (16)), the gradient
expressions (Equations (13) and (15)) depend on the system’s drift dynamics (matrix A), which is a real challenge
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for systems with uncertain or unknown dynamics. Moreover, it is difficult to evaluate the matrix S, and so
V, in Equation (15) using the policy iteration process. As such, a new approach is required to benefit the
gradient-based solution form without the need for a system’s dynamic model. To do that, a dual development
using the Hamiltonian framework is needed.

Algorithm 1 Value Iteration Gradient-based Solution

1. Initialize ∇δk V0(δk, uk) and uo
k.

2. Evaluate ∇δk V`+1(..) using

∇δk V`+1(δk, uk) = Qδ`k + AT
[

In×n
K`

]T

∇δuk V`(δk+1, uk+1), (13)

where ` is the iteration index.

3. Update the approximation of the optimal strategy using

u`+1
k = −

[
S−1

ukuk
· Sukδk

]`+1
· δk. (14)

4. Halt on convergence of ‖S`+1(..)− S`(..)‖.

Algorithm 2 Policy Iteration Gradient-based Solution

1. Initialize ∇δk V0(δk, uk) and use admissible uo
k.

2. Evaluate ∇δk V`(..) using

∇δk V`(δk, uk) = Qδ`k + AT
[

In×n
K`

]T

∇δuk V`(δk+1, uk+1). (15)

3. Update the approximation of the optimal strategy using

u`+1
k = −

[
S−1

ukuk
· Sukδk

]`
· δk. (16)

4. Halt on convergence of ‖S`+1(..)− S`(..)‖.

4. Hamiltonian-Jacobi–Bellman Formulation

The following Hamilton–Jacobi and Hamilton–Jacobi–Bellman developments are necessary
to propose the model-free ADDHP control solutions. They find the relation between the costate
variable of the Hamiltonian function and the solving value function through Bellman equation via
a Hamilton–Jacobi framework. Then, the Hamilton–Jacob-Bellman development is used to propose
the model-free ADDHP solution.

4.1. The Hamiltonian Mechanics

Optimal control problems, in general, are solved using the Hamiltonian mechanics, where the
necessary conditions of optimality are found by means of Lagrange dynamics [22]. The objective of the
optimization problem is to chose a policy µk to minimize a cost function F such that argminµk

F(δk, µk),
subject to the following constraints:

µk = χ(δk) = C δk,
δ(k+1) ≡ $ (δk, µk),

(17)
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where χ ∈ Rm×1 and $ ∈ Rn×1 are some mapping functions, and C ∈ Rm×n is a row gain matrix.
The Hamiltonian expression for the problem is given by

H(δk, λ(k+1), µk) = λT
(k+1)

[
δk+1
µk+1

]
+ F(δk, µk), (18)

where λk ∈ R(n+m)×1 is the Lagrange multiplier or the costate variable. Merging Equation (17) into
Equation (18) leads to

H(δk, λ(k+1), µk) = λT
(k+1)

[
In×n

C

]
δk+1 + F(δk, µk). (19)

Remark 2. Similar to the optimal policy in Equation (8) derived using Bellman equation (Equation (6)),
an optimal model-based control strategy based on the Hamiltonian can be obtained so that

argminµk
H(δk,∇δµk+1

V(δk+1, µk+1), µk) =
∂H(. . . )

∂µk
= 0

⇒ µ∗ = − R−1 BT

 In×n
∂µk+1
∂δk+1

T

∇δµk+1
V(δk+1, µk+1).

(20)

The following Hamilton–Jacobi theorem finds the relation between the costate variable λk and the
value function V(δk, uk), ∀k.

Theorem 1. Let the Hamiltonian function be given by Equation (18) and the value function V
(
δk, µk

)
be

defined by Equation (6). Then, this value function satisfies the following Hamilton–Jacobi equation:

V
(
δk+1, µk+1

)
−V

(
δk, µk

)
+ H

(
δk,∇δµk+1

V(δk+1, µk+1), µk
)
−∇δµk+1

V(δk+1, µk+1)
T

[
δk+1
µk+1

]
= 0, (21)

where λk+1 = ∇δµk+1
V(δk+1, µk+1).

Proof. The augmented value function V(δk, µk) is

V
(
δk, µk

)
=

∞

∑
l=k

{
F
(
δk, µk

)
+ λT

(l+1)

[
In×n

C

] [
$(δ`, µ`)− δ(l+1)

]}
. (22)

The Hamiltonian in Equation (18) is rearranged such that

H(δ`, λ(`+1), µ`) = λT
(`+1)

[
In×n

C

]
δ`+1 + F(δ`, µ`).

Using this expression into the augmented function in Equation (22) yields

V
(
δk+1, µk+1

)
−V

(
δk, µk

)
+ H

(
δk, λ(k+1), µk

)
− λT

(k+1)

[
In×n

C

]
δ(k+1) = 0. (23)

Finding the gradient of Equation (23) with respect to δ(k+1) yields

∇δk+1
V
(
δk+1, µk+1

)
+
(∂λk+1

∂δk+1

)T(∂H
(
δk, λk+1, µk

)
∂λk+1

)
−
((∂λk+1

∂δk+1

)T
[

In×n

C

]
δk+1 +

[
In×n

C

]T

λk+1

)
= 0.
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This equation can be rearranged such that

∇δk+1
V
(
δk+1, µk+1

)
−
[

In×n

C

]T

λk+1 +
(∂λk+1

∂δk+1

)T(∂H
(
δk, λk+1, µk

)
∂λk+1

−
[

In×n

C

]
δk+1

)
= 0.

∂H
(
δk, λk+1, µk

)
∂λk+1

=

[
In×n

C

]
δk+1 ⇒ ∇δk+1

V
(
δk+1, µk+1

)
=

[
In×n

C

]T

λk+1.

This expression is equivalent to

[In×n CT]S

[
δk+1
µk+1

]
=

[
In×n

C

]T

λk+1,

which yields

λk+1 = S

[
δk+1
µk+1

]
. (24)

Then, the costate variable λk+1 can be written in terms of the gradient of the value function
∇δuk+1

V(. . . ), such that

λk+1 = ∇δµk+1
V(δk+1, µk+1) =


∂V(δk+1, µk+1)

∂δk+1
∂V(δk+1, µk+1)

∂µk+1

 .

Therefore, the value function V(. . . ) satisfies the HJ equation (Equation (21)).

4.2. Hamiltonian–Bellman Solutions Duality

The following results show the conditions at which the Hamiltonian and Bellman-based solutions
are dual.

Theorem 2. (a) Let V̂
(

. . .
)

satisfy the following Hamilton–Jacobi–Bellman equation

H
(

δk,∇δuk+1
V̂(δk+1, uo

k+1), uo
k

)
= 0 (25)

⇒ ∇δuk+1
V̂(δk+1, uo

k+1)
T

[
δk+1
uo

k+1

]
+ F(δk, uo

k) = 0, (26)

with V̂(0) = 0, where

uo = − R−1 BT

 In×n
∂uk+1
∂δk+1

T

∇δuk+1
V̂(δk+1, uk+1). (27)

Then, V̂(. . . ) satisfies the Bellman optimality (Equation (9)).
(b) Let (A, B) be reachable. If V∗(. . . ) satisfies Equation (9), then it satisfies the Hamilton–Jacobi–Bellman

Equation (25).

Proof. (a) The value function V̂
(
δk
)

with the optimal policy uo (Equation (27)) satisfies the HJB
equation (Equation (25)). Then, Theorem 1 yields

V̂
(
δk+1, uo

k+1
)
− V̂

(
δk, uo

k
)
= −∇δuo

k+1
V̂(δk+1, uo

k+1)
T

[
δk+1
uo

k+1

]
.
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Therefore, V̂(. . . ) satisfies Equation (9).
(b) The Hamiltonian with the value function V̂(. . . ), arbitrary policy uk, and optimal policy uo

k,
evaluated using the optimal value function V̂(. . . ) yields

H
(

δk,∇δuk+1
V̂(δk+1, uk+1), uk

)
= H

(
δk,∇δuk+1

V̂(δk+1, uo
k+1), uo

k

)
+

1
2
(uk − uo

k)
TR(uk − uo

k)

+∇δuk+1
V̂(δk+1, uk+1)

T

[
δk+1
uk+1

]
−∇δuk+1

V̂(δk+1, uo
k+1)

T

[
δk+1
uo

k+1

]
.

H
(

δk,∇δuk+1
V̂(δk+1, uo

k), uo
k+1

)
= 0. Then,

H
(

δk,∇δuk+1
V̂(δk+1, uk+1), uk

)
=

1
2
(uk − uo

k)
TR(uk − uo

k) +∇δuk+1
V̂(δk+1, uk+1)

T

[
δk+1
uk+1

]

−∇δuk+1
V̂(δk+1, uo

k+1)
T

[
δk+1
uo

k+1

]
.

(28)

Bellman equation (Equation (6)) can be rearranged such that

V(δk, uk) =
1
2
(
δT

k Q δk + uT
k R uk

)
+ V(δk+1, uk+1) +∇δuk+1

V̂(δk+1, uk+1)
T

[
δk+1
uk+1

]

−∇δuk+1
V̂(δk+1, uk+1)

T

[
δk+1
uk+1

]
.

(29)

Equations (28) and (29), and the results from Theorem 1, yield

V(δk, uk) = V(δk+1, uk+1) +
1
2
(uk − uo

k)
TR(uk − uo

k)−∇δuk+1
V̂(δk+1, uo

k+1)
T

[
δk+1
uo

k+1

]
.

Applying the optimality principles (i.e., taking the derivative of V(. . . ) with respect to uk) leads
to the optimal value function V∗(. . . ) and the respective optimal policy u∗k .

∂V(δk, uk)

∂uk
= 0 ⇒ u∗k − uo

k = − R−1 BT×
∣∣∣∣∣∣∣
 In×n

∂uk+1
∂δk+1

T

∇δuk+1
V∗(δk+1, uk+1)

∣∣∣∣∣∣∣
u=u∗

−

∣∣∣∣∣∣∣
 In×n

∂uk+1
∂δk+1

T

∇δuk+1
V̂(δk+1, uk+1)

∣∣∣∣∣∣∣
u=uo

 .
(30)

The Hessian of the Hamiltonian (as a function of δk, V̂(. . . ) and uk) and the Hessian of the Bellman
equation (as a function of δk, V∗(. . . ) and uk) are given by

∂2 H(. . . )
∂ u2

k
=

∂2 V̂(. . . )
∂ u2

k
= R + BT

 In×n
∂uk+1
∂δk+1

T

Ŝ

 In×n
∂uk+1
∂δk+1

 B,

∂2 V∗(. . . )
∂ u2

k
= R + BT

 In×n
∂uk+1
∂δk+1

T

S∗

 In×n
∂uk+1
∂δk+1

 B,

where Ŝ > 0 and S∗ > 0 are the positive-definite solution matrices associated with V̂(. . . ) and V∗(. . . ),
respectively.

Thus, ∂2 H(. . . )/∂ u2
k > 0 and ∂2 V̂(. . . )/∂ u2

k > 0. Therefore, the optimal policies u∗k and
uo

k are unique and u∗k = uo
k. Consequently, according to Equation (30), V∗(. . . ) satisfies the HJB
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equation (Equation (25)) (i.e., V∗(. . . ) = V̂(. . . )) if the system is reachable. This can be explained by
incorporating the difference between the costate equations evaluated by the Hamiltonian function and
Bellman Equation in Equation (30) so that

∇δk V∗(δk, uk)−∇δk V̂(δk, uk) =

AT


∣∣∣∣∣∣∣
 In×n

∂uk+1
∂δk+1

T

∇δuk+1
V∗(δk+1, uk+1)

∣∣∣∣∣∣∣
u=u∗

−

∣∣∣∣∣∣∣
 In×n

∂uk+1
∂δk+1

T

∇δuk+1
V̂(δk+1, uk+1)

∣∣∣∣∣∣∣
u=uo

 .

These results conclude the duality between the Hamiltonian function and Bellman equation for
the Action Dependent Dual Heuristic Dynamic Programming solutions.

5. The Adaptive Learning Solution and Riccati Development

This section introduces the online gradient-based model-free adaptive learning solution which
uses the previous HJB development. Then, a Riccati development for the underlying optimal control
problem is introduced (it is equivalent to solving the underlying Bellman’s optimality (Equation (9)) or
the HJB equation (Equation (25)).

5.1. Model-Free Gradient-Based Solution

The results of Theorem 2 are used to develop a gradient-based algorithm which generalizes the
ADDHP solution for the optimal control problem using a model-free policy structure. This adaptive
learning solution is based on an online policy iteration process. The duality between the Hamilton–
Jacobi–Bellman (HJB) equation (Equation (25)) and Bellman optimality (Equation (9)) is leveraged
to propose a gradient-based approach that leads to a model-free control strategy. Algorithm 3 is
as follows:

Algorithm 3 Online Policy Iteration Process

1. Initialize the costate ∇V0(δk) and the policy uo
k.

2. Evaluate ∇δu V`(..)

∇δuk+1
V`(δk+1, u`

k+1)
T
[

δk+1
u`

k+1

]
= −F(δk, u`

k). (31)

3. Update the approximation of the optimal strategy,

u`+1
k = −

[
S−1

ukuk
· Sukδk

]`
· δk. (32)

4. Terminate on convergence of ‖∇V`+1(..)−∇V`(..)‖.

5.2. Riccati Development

The following result shows the equivalent Riccati development of the underlying optimal
control solution.

Theorem 3. Let the solution of Equation (9), or equivalently Equation (25), be given by V(δk, uk) =

1
2 [δ

T
k uT

k ]Ψ

[
δk
uk

]
and the optimal strategy follows Equation (8). Then, there is a Riccati solution that

is given by

Ψr+1 =

[
Q + AcTΨ̃r Ac ATΨ̃rBc

BcTΨ̃r Ac R + BcTΨ̃rBc

]
. (33)
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Note that the parameters of Equation (33) are defined in the proof below.

Proof. The optimal policy in Equation (8) can be written as uk = − Ψ̂ δk, where Ψ =

[
Ψδδ Ψδu
Ψuδ Ψuu

]
and Ψ̂ = Ψ−1

uu Ψuδ.
Therefore, the value function V(k+1) can be expressed as

V
(
δ(k+1), u(k+1)

)
=

1
2

δT
(k+1)Ψ̃ δ(k+1), (34)

where Ψ̃ = Ψδδ −ΨδuΨ−1
uu Ψuδ.

Substituting the policy in Equation (8) and the value function (Equation (34)) into
Equation (2), yields

δ(k+1) = Aδk − B R−1 BTΨ̃(A δk + B uk).

Then,
δ(k+1) = Ac δk + Bc uk, (35)

where Ac = A− B R−1 BTΨ̃A and Bc = −B R−1 BTΨ̃B.
Substituting Equations (35) and (34) into Bellman equation (Equation (9)) leads to

V
(
δk, uk

)
=

1
2

(
δT

k Q δk + uT
k R uk

)
+

1
2

δT
k AcTΨ̃Acδk +

1
2

uT
k BcTΨ̃Bcuk +

1
2

uT
k BcTΨ̃Acδk +

1
2

δT
k AcTΨ̃Bcuk.

Therefore,

[δT
k uT

k ]Ψ

[
δk
uk

]
= [δT

k uT
k ]

[
Q + AcTΨ̃Ac ATΨ̃Bc

BcTΨ̃Ac R + BcTΨ̃Bc

] [
δk
uk

]
.

Then,

Ψ =

[
Q + AcTΨ̃Ac ATΨ̃Bc

BcTΨ̃Ac R + BcTΨ̃Bc

]
.

This equation yields the Riccati form of Equation (33).

6. Adaptive Critics Implementations

This section shows the neural network approximation for the online policy iteration solution
proposed by Algorithm 3. This implementation represents the optimal value approximation separately
form the policy approximation. However, they are both coupled through the Bellman equation or the
Hamiltonian function.

6.1. Actor-Critic Neural Networks Implementation

Herein, a simple layer of actor and critic neural network structures is considered. The actor is
used to approximate the optimal strategy of Equation (32) while the critic approximates the optimal
value in Equation (31). The learning environment involves selecting the values that minimize a cost
function along with the associated approximation of the optimal strategies resulting from the feedback
and the assessment of the taken strategies. This is done online in real-time where the system dynamics
are not required. The weights are adapted through a gradient descent approach.

The value function V(δk, uk) is approximated by the following quadratic form:

V̂(.|Wc) =
1
2
[δT

k uT
k ] WT

c

[
δk
uk

]
,
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where WT
c =

 WT
cδδ WT

cδu

WT
cuδ WT

cuu

 ∈ R(n+m)×(n+m) is a critic weight matrix.

Consequently, the approximation of ∇δuk V̂(. . . ) follows

∇δuk V̂(.|Wc) = WT
c

[
δk
uk

]
.

Similarly, the optimal strategy of Equation (32) is approximated by û = WT
a δk, where WT

a ∈ Rm×n

is the actor’s weight matrix.
To proceed with the policy iteration solution of Algorithm 3, the matrix Wc needs to be transformed

to a vector form, such that

WT
c

[
δk
uk

]
= W̄T

c γ̄k,

where W̄T
c ∈ R1×(n+m)(n+m+1)/2 and γ̄k ∈ R(n+m)(n+m+1)/2×1 are the vector transformations of the

matrix Wc (upper triangle entries) and its respective combination vector evaluated using the entries

from

[
δk
uk

]
.

This can be used to formulate Equation (31), such as

W̄T
c γ̄(k+1) +

1
2
(δT

k Q δk + ûT
k R ûk) = 0.

Therefore, the target value of the critic approximation of −∇δûk+1
V̂(δk+1, ûk+1)

T

[
δk+1
ûk+1

]
is

expressed as

Tcritic =
1
2
(δT

k Q δk + ûT
k R ûk). (36)

Similarly, the target value of the actor approximation, or the optimal strategy, is defined by

Tactor = −
[
WT

cukuk

−1 ·WT
cukδk

]
δk. (37)

The error in the critic approximation is

εcritic = ζ
(
−W̄T

c γ̄k+1 − Tcritic
)

, (38)

where ζ(. . . ) is a stacking factor that stores (n+m)× (n+m+ 1)/2 consecutive values of its argument.
In a similar fashion, the error in the actor’s approximation may be written as

εactor = WT
a δk − Tactor. (39)

A gradient decent tuning approach is used to tune the actor and the critic weights as follows:

W(`+1)T
a = W`T

a − ηa εactorδ`T
k , (40)

W̄(`+1)T
c = W̄`T

c − ηcεcriticζγ̄`
(k+1), (41)

where ηa and ηc are the learning rates for the actor and critic weights, respectively.
The following Algorithm 4 shows the online implementation of Algorithm 3 using the actor-critic

neural network approximations.
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Algorithm 4 Online Model-Free Actor-Critic Neural Network Solution

1. Initialize the neural network weights W0
a and W0

c .

2. Start outside loop (` iterations)

(a) Initialize the states δ0
0 .

Start inner loop (q iterations)

• Transfer the outer critic weights Wq
c = W`

c .

• Evaluate δ
q
(k+1) and ûq using Equations (2) and (37).

End inner loop when q = (n + m)× (n + m + 1)/2.

(b) Evaluate the critic weights using Equation (41).

(c) Update the actor weights using Equation (40).
3. Terminate on convergence of

∥∥∥W`+1
c (. . . )−W`

c (. . . )
∥∥∥.

7. Simulation Results

A flexible wing hang glider is used to validate the developed model-free online adaptive learning
approach [9]. The continuously varying dynamics of the flexible wing system poses a challenging
control problem. This means that the controller operates in a highly uncertain dynamical environment.

The simulation results highlight the stability properties achieved by the controller in addition to
monitoring its robustness against the disturbances and the dynamics’ uncertainties. Two simulation
scenarios are considered: Case I shows the controller’s performance in nominal conditions (i.e.,
at a certain trim speed), while Case II tests the robustness of the developed controller by comparing its
performance to the classical Riccati control approach under various disturbances.

7.1. Simulation Parameters

The longitudinal and lateral state space matrices of the flexible wing system, ALo, BLo, ALa,
and BLa, at a given trim speed, are used to generate the online measurements [9].

The actor and critic learning parameters are set to ηa = ηc = 0.001. The weight matrices for the
longitudinal (RLo, QLo) and lateral (RLa, QLa) directions are taken as

RLo = 10−4 ×
[
0.1000 0.4000

]
,

QLo =
[
0.0100 0.0400 0.1013 0.1013 0.4053 0.4053

]
,

RLa = 10−4 ×
[
0.0250 0.1000 0.4000

]
,

QLa =
[
0.0400 0.1013 0.1013 0.1013 0.1013 0.4053 0.4053 0.4053

]
.

The eigenvalue structures of the simulated case studies are given the following graphical notations.
The open-loop eigenvalues are denoted by ���. The ∗ refer to the closed-loop eigenvalues during the
learning process. The eigenvalues resulting from the model-free approach are symbolized by ×. The
eigenvalues evaluated by the Riccati solution are shown as ◦.

7.2. Simulation Case I

This case shows the simulation outcome when the adaptive learning algorithm is applied to control
the decoupled longitudinal and lateral dynamical systems in real-time. The open- and closed-loop
poles are tabulated in Table 1. The online controller was able to asymptotically stabilize the longitudinal
and lateral open-loop systems. The dominant modes are damped much faster than the open-loop
system, as shown by the eigenvalue structures in Figure 2. This is further emphasized by Figure 3,
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The state space matrices for the longitudinal decoupled dynamics ALo and BLo are

ALo =


0.9906 0.0272 −0.0982 0.0006 0.1400 −0.0927
−0.0065 0.9828 0.0737 0.0002 0.0504 −0.0312

0.0018 0.0084 0.9501 0.0000 0.0018 −0.0002
0.0057 −0.0024 0.0990 0.9990 −0.1735 −0.0002
0.0000 −0.0000 0.0005 0.0100 0.9991 −0.0000
0.0000 0.0000 0.0097 0.0000 0.0000 1.0000

 ,

BLo =


−0.0004 0.0002
−0.0002 0.0001
−0.0005 0.0002

0.0011 −0.0005
0.0000 −0.0000
−0.0000 0.0000

 .

The state space matrices for the lateral decoupled dynamics ALa and BLa are

ALa =



0.9923 0.0437 −0.0939 −0.0012 0.0000 −0.2393 −0.0806 0.0924
−0.0150 0.7661 0.0816 0.0000 −0.0000 0.0019 0.0003 −0.0007

0.0009 −0.0009 0.9949 0.0000 0.0000 0.0011 0.0004 0.0000
0.0078 0.2202 −0.0748 0.9985 0.0000 −0.2791 −0.0937 0.0004
−0.0060 −0.0796 0.0328 0.0000 1.0000 0.0027 −0.0004 −0.0003

0.0001 0.0013 −0.0005 0.0100 −0.0037 0.9986 −0.0005 0.0000
−0.0000 −0.0004 0.0002 0.0000 0.0106 0.0000 1.0000 −0.0000
−0.0001 0.0088 0.0038 0.0000 −0.0000 0.0000 0.0000 1.0000


,

BLa =



−0.0008 −0.0000 0.0002
0.0002 −0.0000 −0.0000
−0.0000 0.0000 −0.0000
−0.0010 −0.0000 0.0002

0.0006 −0.0003 −0.0000
−0.0000 0.0000 0.0000

0.0000 −0.0000 −0.0000
0.0000 −0.0000 −0.0000


.

where the dynamics and the input force control signals are shown to be stable. The adaption process of
the actor and the critic neural network weights for both motion frames are shown in Figure 4. The plots
demonstrate the converging behavior of the controller. Note that the weights appear in groups as they
are too close to show individually. The actor weights are updated after (n + m)× (n + m + 1)/2 steps.

0.9 0.92 0.94 0.96 0.98 1

(a)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.8 0.85 0.9 0.95 1

(b)

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

Figure 2. Case I. The eigenvalue structures during the learning process: (a) the longitudinal system;
and (b) the lateral system.
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Table 1. Open and closed-loop eigenvalues (Case I).

Longitudinal Dynamics

Open-Loop System 0.9394, 0.9950 e±0.0431

0.9954, 0.9994 e±0.0084

Closed-Loop system 0.9053, 0.9904 e±0.0082

0.9932 e±0.0454, 0.9937

Lateral Dynamics

Open-Loop System
0.7687, 0.9945 e±0.0120

0.9971 e±0.0539

1.0000 e±0.0036, 1.0016

Closed-Loop system
0.7684, 0.9937 e±0.0116

0.9957 e±0.0535

0.9961 e±0.0035, 0.9995

Figure 3. Case I. The longitudinal and lateral force control signals and the dynamics: (a) the longitudinal
force control signals; (b) the lateral force control signals; (c) the longitudinal dynamics; and (d) the
lateral dynamics.
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Figure 4. Case I. The variations in the neural networks’ weights: (a) the variations in the actor’s weights
for the longitudinal case; (b) the variations in the actor’s weights for the lateral case; (c) the variations
in the critic’s weights for the longitudinal case; and (d) the variations in the critic’s weights for the
lateral case.

7.3. Simulation Case II

This case tests the robustness of the online reinforcement learning algorithm against the
uncertainties in the dynamic environment of the flexible wing system (i.e., the matrices ALo/La

and BLo/La) on top of the disturbances in the longitudinal and lateral states δLo/La. The dynamic
uncertainties and disturbances in the states are sampled from a normal Gaussian distribution with
amplitudes of up to ±50% and ±20% of the nominal values, respectively. This scenario combines the
Riccati classical control technique and the developed online adaptive learning approach such that

δk+1 = (A + Ãk)(δk + δ̃k) + BuRic
k + (B̃− B)uRL

k .

where Ãk and B̃k are the real-time uncertainties in the drift dynamics A and the control input matrices
B. The terms uRic

k and uRL
k are the control input signals calculated by the Riccati and the online

reinforcement learning approaches, respectively.
The eigenvalue structures in Table 2 reveal that the disturbed open-loop systems are unstable.

However, the combined approach was able to asymptotically stabilize them. Furthermore, it is able to
provide faster longitudinal and lateral dominant modes compared to those obtained by the Riccati
solution. This is further emphasized by the dynamics and the force control signals shown in Figure 5.
The comparison between the eigenvalue structures obtained in Tables 1 and 2 reveals that the combined
approach resulted in faster response compared to the Riccati solution and the original response of the
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longitudinal and the lateral systems. The convergence behavior of the actor-critic weights is shown
in Figure 6, where the adaptation of the weights takes longer this time due to the higher complexity
of the problem in hand. The eigenvalues evolution during the learning process is shown in Figure 7.
The eigenvalues eventually converge to a stable region.
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Figure 5. Case II. The longitudinal and lateral force control signals and the dynamics: (a) the
longitudinal force control signals; (b) the lateral force control signals; (c) the longitudinal dynamics;
and (d) the lateral dynamics.

Table 2. Open and closed-loop eigenvalues (Case II).

Longitudinal Dynamics

Open-Loop System 0.9387, 0.9938, 0.9940 e±0.0404

(Disturbed System) 1.0002 e±0.0080

Closed-Loop System 0.8289, 0.9551, 0.9818 e±0.0308

(Riccati Solution) 0.9953 e±0.0092

Closed-Loop System 0.8271, 0.9533, 0.9824 e±0.0298

(Model-Free Solution) 0.9932 e±0.0104

Lateral Dynamics

Open-Loop System 0.7346, 0.9972 e±0.0578

(Disturbed System) 0.9948 e±0.0121,
0.9996 e±0.0038, 1.0021

Open-Loop System 0.6685, 0.7963, 0.9778 e±0.0254

(Riccati Solution) 0.9944 e±0.0126

0.9750, 0.9945

Closed-Loop system 0.6622, 0.7956, 0.9492

(Model-Free Solution) 0.9799 e±0.0156, 0.9942 e±0.0102

0.9942
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Figure 6. Case II. The variations in the neural networks’ weights: (a) the variations in the actor’s
weights for the longitudinal case; (b) the variations in the actor’s weights for the lateral case; (c) the
variations in the critic’s weights for the longitudinal case; and (d) the variations in the critic’s weights
for the lateral case.

Figure 7. Case II. The eigenvalue structures during the learning process: (a) the longitudinal system;
and (b) the lateral system.
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8. Conclusions

A novel online policy iteration process is developed to generalize model-free gradient based
solutions for optimal control problems. The approach is considered a sub-class of the classical
action dependent dual heuristic dynamic programming. The mathematical layout showed the
duality between the Hamilton–Jacobi–Bellman formulation and the underlying model-free Bellman’s
optimality setup. Unlike traditional costate-based solutions, the suggested method does not depend
on the system’s dynamics. A Riccati solution is developed and is shown to be equivalent to solving
the Bellman’s optimality equation. Artificial neural network-based approximations are employed
to provide a real-time implementation of the policy iteration solution. This is accomplished using
separate neural network structures to approximate the optimal strategy and the associated gradient
of the solving value function. The performance of the proposed control scheme is demonstrated on
a flexible wing aircraft. The simulation scenarios proved the effectiveness of the proposed controller
under a wide range of uncertainties and disturbances in the system dynamics.
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Abbreviations

The following abbreviations are used in this manuscript:

Variables
νaw, νlw, νnw Axial, lateral, and normal velocities in the wing’s frame of motion.
θw, φw, ψw Pitch, roll, and yaw angles in the wing’s frame of motion.
θ̇w, φ̇w, ψ̇w Pitch, roll, and yaw angle rates in the wing’s frame of motion.
θ f w, φ f w, ψ f w Pitch, roll, and yaw angles of the fuselage relative to the wing’s frame of motion.
θ̇ f w, φ̇ f w, ψ̇ f w Pitch, roll, and yaw angle rates of the fuselage relative to the wing’s frame of motion.
TR, L Right and left internal forces on the control bar.
Subscripts
(·)x, y, z X, Y, and Z Cartesian components of (·), respectively.
Abbreviations
ADP Adaptive Dynamic Programming
ADDHP Action Dependent Dual Heuristic Dynamic Programming
DHP Dual Heuristic Dynamic Programming
HJB Hamilton–Jacobi–Bellman
RL Reinforcement Learning
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