
robotics

Article

Potential Field Method Parameters Tuning Using
Fuzzy Inference System for Adaptive Formation
Control of Multi-Mobile Robots

Basma Gh. Elkilany 1,* , A. A. Abouelsoud 2, Ahmed M. R. Fathelbab 3 and Hiroyuki Ishii 4

1 Mechatronics and Robotics Engineering Department, Egypt-Japan University of Science and
Technology (E-JUST), On leave from Computer and Automatic Control Engineering Department, Faculty of
Engineering, Tanta University, Tanta 31511, Egypt

2 Electronics and Electrical Communication Engineering Department, Faculty of Engineering, Cairo
University, Giza 12613, Egypt; aali711964@yahoo.com

3 Mechatronics and Robotics Engineering Department, Egypt-Japan University of Science and
Technology (E-JUST), On leave from the Mechanical Engineering Department, Faculty of Engineering,
Assiut University, Assiut 71515, Egypt; ahmed.elbab@eng.au.edu.eg

4 Faculty of Science and Engineering, Waseda University, Japan. TWIns Room\#3C-202, 2-2 Wakamatsu-cho,
Shinjuku-ku, Tokyo 162-8480, Japan; hiroyuki@aoni.waseda.jp

* Correspondence: basma.elkilany@ejust.edu.eg

Received: 1 January 2020; Accepted: 19 February 2020; Published: 25 February 2020
����������
�������

Abstract: Nowadays, employing more than one single robot in complex tasks or dangerous
environments is highly required. Thus, the formation of multi-mobile robots is an active field.
One famous method for formation control is the Potential Field Method due to its simplicity and
efficiency in dynamic environments. Therefore, we propose a Fuzzy Inference tuning of the potential
field parameters to overcome its limitations. We implement the modified method with tuned
parameters on MATLAB and apply it to three TurtleBot3 burger model robots. Then, several real-time
experiments are carried out to confirm the applicability and validity of the modified potential filed
method to achieve the robots’ tasks. The results assert that the TurtleBot3 robots can escape from a
local minimum, pass through a narrow passage, and pass between two closely placed obstacles.

Keywords: formation control; potential field method; fuzzy inference system; obstacle avoidance

1. Introduction

The multi-robot system is more robust, reliable, and precise than a single robot [1,2]. Thus,
the multi-robot system takes place in many applications such as reconnaissance and security patrol
operations and search and rescue missions [3]. One of the main problems in the multi-robot system
is the formation control. The formation of the multi-robot system is a cooperative behavior of the
interacting mobile robots sharing one goal [4]. Therefore, lots of research studies have been presented
in this field. Some of these researchers depend on a central controller such as [5–7]. However, these
methods are very prone to failure. Thus, they are not suitable for the formation problem [8]. Therefore,
decentralized formation control methods are suggested such as the Potential Field Method (PFM) [9].
The PFM was first introduced for robot navigation by Khatib in 1986 [10]. The PFM gains its popularity
due to its simple structure and it reduces the information used in the calculations. Thus, the PFM is
considered a suitable technique for navigation in the real-time application [11].

However, the PFM suffers from some limitations such as oscillation near obstacles or at narrow
passages. Also, it suffers from the local minima problem (LMP) where the obstacle is placed between

Robotics 2020, 9, 10; doi:10.3390/robotics9010010 www.mdpi.com/journal/robotics

http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0003-1204-9306
http://dx.doi.org/10.3390/robotics9010010
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/9/1/10?type=check_update&version=2

Robotics 2020, 9, 10 2 of 15

the robot and its target and they are placed on the same line [11,12]. So, many solutions were presented
to solve the PFM problems.

In this article, we propose a fuzzy tuning method for PF parameters to solve its limitations.
The tuning method online tunes the PF parameters according to various situations the robots may face.
Then, we apply the modified PFM to a group of TurlteBot3 robots. So, we conduct a set of real-time
experiments to verify the applicability of the modified PFM and verify its ability to solve the traditional
PFM limitations.

In the following section, we begin with a brief review of the related research. Next, we present the
modified PFM and the proposed FIS tuning method in Section 3. In Section 4, we demonstrate the
implementation of the modified PFM with the tuned parameters and the system’s hardware used in
the verification. Then, Section 5 shows a set of real-time experiments on Turtlebot3 robots and the
experimental results followed by the discussion in Section 6. Finally, a conclusion for our work is
presented in Section 7.

2. Review on the Related Research

The literature is rich in many solutions for PFM limitations. For example, Li et al. [13] proposed
an evolutionary Artificial Potential Fields (APF) approach for path planning. Their simulation result
showed that the evolutionary method is effective for solving the local minimum problem, but it did
not solve other problems. In addition, Wang et al. [14] proposed a formation control method where
the potential functions were used between agent–agent and between agent–obstacle. Their method
helped avoid local minima. Simulations showed the rationality of this control method but they did
not overcome other problems. In addition, Zhang et al. [15] constructed a dynamic APF based on the
local information to solve the problem of the traditional PFM where collisions among robots were
avoided by the repulsive PF among them. They proposed a solution for the global minimum point by
adjusting the movement direction of the robot within an escaping area. Simulation results validated
the effectiveness and practicability of the proposed formation control algorithm based on the proposed
dynamic APF.

Bennet and McInnes [16] proposed a pattern formation for a multi-robot system using a bifurcating
Potential Field (PF) control algorithm. They showed that changing free parameters could achieve various
patterns. Simulation results proved the stability of the system and ensured that desired multi-robot
behaviors always happen. In addition, Bennet et al. [17] developed a bounded bifurcating PF guidance
algorithm for the formation of unmanned aerial vehicles (UAVs). They proved that the formation of
UAVs can be controlled by the bifurcating PF approach where the verifiable autonomous patterns
were achieved with a simple parameter to switch between patterns. Simulations showed that the
three-dimensional formation flight for a swarm of UAVs could be achieved. Ranjbar-Sahraei et al. [18]
presented a decentralized adaptive control scheme for multi-agent formation control based on an
integration of APF with robust control techniques. They considered fully actuated mobile agents
with partially unknown models, where the unknown system dynamics were approximated by an
adaptive FIS. The proposed controller was robust to input nonlinearity, model uncertainties, and
external disturbances. Simulation results illustrated the effective attenuation of approximation errors
and external disturbances. Moreover, experimental results confirmed the validity of the presented
approach and verified the applicability of the scheme for a swarm of six real holonomic robots.

Furthermore, Kowdiki et al. [19] proposed a formation control of a group of mobile robots using
the APF where the leader robot of the group determined its navigation path via the PFM, avoided the
collisions with the obstacles, and followed an optimal path to reach its goal position. The other robots in
the group followed the leader, adapting their formation by controlling the desired separation distance
and the bearing angle. So, the formation could be recovered after being lost due to passage through a
narrow path. Therefore, the formation control scheme resulted in a robust and adaptive formation
control for a group of mobile robots. The effectiveness of the proposed formation control was verified
by simulation. Besides, Dang and Horn [20] presented an APF-based approach to control robots to

Robotics 2020, 9, 10 3 of 15

quickly find their swarm and avoid obstacles while tracking a moving target. The APF between each
free robot and the virtual attractive point of the swarm led them to the swarm. The connections between
member robots with their neighbors were controlled by the artificial force to avoid collisions and keep
the formation among them. Simulations verified the effectiveness of the proposed approach. They
also suggested in [21] an approach based on the PFM and a state feedback controller for the formation
control of a swarm of UAVs tracking a moving target in a dynamic environment. The effectiveness of
their proposed approach was verified in simulations.

Moreover, Furferi et al. [22] presented a decentralized approach based on Artificial Neural
Networks (ANNs) for the cooperative mobile manipulation of underwater mobile robots. This approach
used the PFM for a multi-layer control structure to manage the coordination, the guidance, and the
navigation of underwater mobile robots. They simulated the transportation of an object that moved
along a desired trajectory in an unknown environment by four underwater mobile robots. Then,
they optimized the simulation results by ANNs for the tuning of PF parameters. In addition,
Elkilany et al. [23] proposed an adaptive formation control algorithm based on the PFM for robot
swarm. An ANN was employed to improve the performance of the PFM. The ANN optimized the
synaptic weights in each layer and then updated the PF parameters. MATLAB simulation verified the
modified PFM. Yin et al. [24] suggested a formation tracking control for multiple UAVs flying through
a constrained space. The proposed technique guaranteed to maintain a given formation among UAVs
while avoiding collisions. Simulation results illustrated the validity of proposed formation control.

In addition, Han et al. [25] proposed a control algorithm that combines the target allocation
algorithm with an obstacle avoidance algorithm to prevent the multi-robots forming an arbitrary
formation. They expressed the distance between the robots and target points by distance information
matrix to ensure that each robot finds its target point. The obstacle avoidance was achieved by
improving the APF integrated with obstacle avoidance. Simulation results showed that the proposed
method is feasible and effective. Besides, Elkilany et al. [26] presented a formation control algorithm
based on the PFM and Fuzzy Inference System (FIS). They added an interaction potential force to
maintain formation beside the attractive and repulsive potential forces. Moreover, they used an FIS to
adapt to the change of the relative distances among robots and other entities in the environment. They
tested the scalability and reliability of their proposed formation control algorithm by simulations.

These contributions solved one or two of the PFM problems, but they did not solve all of them.
In addition, most of these solutions were tested in a simulated environment, not in real-time, ignoring
real-time experiment problems and challenges. Thus, we aim to propose a solution to overcome the
limitations of the PFM and to use real-time experiments to verify our method.

3. The Modified Potential Field Method

In the formation problem, each robot should track a moving target, avoid obstacles, and keep
a fixed distance between the robot and other robots in the environment. As illustrated in Figure 1,
each robot is affected by three forces: the target tracking force f Target, the obstacle avoiding force
f Obstacle, and the formation maintaining force f Formation. In this case, f Target and f Formation are in the
same direction of the robot movement, while f Obstacle is in the opposite direction.

The applied potential forces depend only on the distances among the three objects in the
environment: the distance between a robot and a target, a robot and the detected obstacles, and a robot
and its neighboring robots. In the next subsections, we introduce the three applied forces in detail,
followed by the proposed tuning method via FIS.

Robotics 2020, 9, 10 4 of 15

Robotics 2020, 9, 10 4 of 15

𝑓 = ⎩⎪⎨
⎪⎧− 𝑝 − 𝑝𝑟 𝑖𝑓𝑑 < 𝑟− 𝑝 − 𝑝𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (1)

where 𝑝 is the instantaneous position of 𝑟𝑜𝑏𝑜𝑡 𝑖 and 𝑝 is the instantaneous position of the tracked
target according to the environment global frame. 𝑑 is the distance between 𝑟𝑜𝑏𝑜𝑡 𝑖 and the target,
and 𝑟 is the target tracking range.?

Figure 1. The applied forces on one robot in an environment with one obstacle and one neighbor,
following a target.

The obstacle avoiding force 𝑓 , is a repulsive force that pushes 𝑟𝑜𝑏𝑜𝑡 𝑖 away
from 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑜. The obstacle avoiding force depends on the robot–obstacle distance 𝑑 , . The
obstacle-avoiding force for 𝑟𝑜𝑏𝑜𝑡 𝑖 avoids 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑜 is given as:

𝑓 , = 1𝑑 ,
1𝑑 , − 1𝑟 − 𝑑 , − 𝑟 𝑛 , (2)

where 𝑟 is the obstacle detecting range and 𝑛 , is the unit vector from 𝑟𝑜𝑏𝑜𝑡 𝑖 to 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑜, 𝑛 , =𝑝 − 𝑝 |𝑝 − 𝑝 |⁄ where 𝑝 is the instantaneous position of 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑜 according to the
environment global frame.

The third force is the formation-maintaining force, which is an attractive force if the robot is far
from its neighbor and a repulsive force if the robots are very close to each other. This force depends
on the distance 𝑑 , between 𝑟𝑜𝑏𝑜𝑡 𝑖 and its neighbor 𝑟𝑜𝑏𝑜𝑡 𝑗. The formation-maintaining force 𝑓 , between a 𝑟𝑜𝑏𝑜𝑡 𝑖 and its neighbor 𝑟𝑜𝑏𝑜𝑡 𝑗, where 𝑖 ≠ 𝑗, is given by:

𝑓 , =
⎩⎪⎨
⎪⎧ 1𝑑 ,

1𝑑 , − 1𝑟 − 𝑑 , − 𝑟 𝑛 , 𝑖𝑓𝑑 , < 𝑟− 𝑝 − 𝑝𝑑 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)

where 𝑟 is the formation range. Thus, the control input controlling the motion of 𝑟𝑜𝑏𝑜𝑡 𝑖 is the
summation of the three forces as is given in the following equation:

𝑢 = 𝑘 𝑓 + 𝑘 𝑓 , + 𝑘 𝑓 , (4)

Figure 1. The applied forces on one robot in an environment with one obstacle and one neighbor,
following a target.

3.1. The Applied Potential Forces

The target tracking force is an attractive force that pulls the robot to its target. The target tracking
force f Target

i for robot i is defined as:

f Target
i =

−(pR

i −pT
i)

rT i f dT
i < rT

−(pR
i −pT

i)
dT

i
otherwise

(1)

where pR
i is the instantaneous position of robot i and pT

i is the instantaneous position of the tracked
target according to the environment global frame. dT

i is the distance between robot i and the target, and
rT is the target tracking range.

The obstacle avoiding force f Obstacle
i,o is a repulsive force that pushes robot i away from obstacle o.

The obstacle avoiding force depends on the robot–obstacle distance dO
i,o. The obstacle-avoiding force

for robot i avoids obstacle o is given as:

f Obstacle
i,o =

 1(
dO

i,o

)2

 1
dO

i,o

−
1

rO

− (
dO

i,o − rO
)nO

i,o (2)

where rO is the obstacle detecting range and nO
i,o is the unit vector from robot i to obstacle o, nO

i,o =(
pR

i − pO
o

)
/
∣∣∣pR

i − pO
o

∣∣∣ where pO
o is the instantaneous position of obstacle o according to the environment

global frame.
The third force is the formation-maintaining force, which is an attractive force if the robot is far

from its neighbor and a repulsive force if the robots are very close to each other. This force depends
on the distance dF

i, j between robot i and its neighbor robot j. The formation-maintaining force f Formation
i, j

between a robot i and its neighbor robot j, where i , j, is given by:

f Formation
i, j =

 1(
dF

i, j

)2

(
1

dF
i, j
−

1
rF

)
−

(
dF

i, j − rF
)nF

i, j i f dF
i, j < rF

−

(
pR

i −pR
j

)
dF

i
otherwise

(3)

Robotics 2020, 9, 10 5 of 15

where rF is the formation range. Thus, the control input controlling the motion of robot i is the
summation of the three forces as is given in the following equation:

ui = ktar f Target
i + kobs

M∑
o=1

f Obstacle
i,o + k f orm

N−1∑
j=1

f Formation
i, j (4)

where N is the number of robots and M is the number of obstacles detected by robot i. ktar, kobs, and k f orm
are the target tracking gain, obstacle avoiding gain, and formation maintaining gain, correspondingly.
They are also known as the PF parameters. These gains/parameters can change the magnitude of each
applied force according to its contribution to the robot’s movement. In the next subsection, we propose
an FIS to tune these gains to adapt to the changes in the environment around the robots.

3.2. The Proposed Fuzzy Inference System

Three potential forces are controlling each robot. Still, the magnitude of each force should
vary according to the situation the robot faces. Thus, the potential forces are weighted by the PF
gains/parameters ktar, kobs, and k f orm. To make the resultant force adaptively change according to the
various situations, we tune the PF gains, so the magnitude of each force is tuned to successfully escape
from the embarrassing situation the robot is facing. Therefore, we propose a Mamdani-FIS [27] to
adaptively tune the PF parameters according to the robot’s status in the environment. FIS is considered
an intelligent control system and it deals with the system’s uncertainty and nonlinearity [28,29].

The proposed FIS captures each robot’s status and produces the tuned PF parameters. The status
of each robot is defined by the distances among the robot and other entities in the environment.
The number of robot-to-obstacle distances depends on the number of obstacles around the robot during
the real-time experiment. As we use the LiDAR sensor, which gives a 360 reading per time (which is a
2D laser scanner that senses 360◦ with an angular resolution of 1◦), the maximum number of obstacles
around a robot is 360 obstacles. Thus, the maximum number of robot-to-obstacle distances is 360 and
the minimum number is 0 where no obstacles around the robot are detected. Thus, we depend only
on the distance between a robot and the nearest detected obstacle dobs. The number of robot-to-robot
distances depends on the number of the robots N and subsequently the number of neighbors for each
robot. Thus, the maximum number of neighbors is N − 1. In addition, as the minimum number of
robots in a group is 3, so the minimum number of neighbors is 2. Therefore, in our proposed FIS
model, we use only four distances: robot-to-target (dtar), robot-to-nearest obstacle (dobs), robot-to-the
first nearest neighbor (dneb1), and robot-to-second nearest neighbor (dneb2).

3.2.1. Fuzzy Inputs

The first step is to fuzzify the FIS inputs. In our proposed FIS, we have four inputs. The first
input is the robot-to-target distances (dtar). It is divided into three regions. The first is the “Target”,
where the robot is close to its target as determined by rT. The second region is "Nearby”, where the
robot is not close to the target. The third region is “Remote”, where the robot is very far from its
target. The second input is the robot-to-nearest obstacle distance (dobs). This distance is divided into
three regions from 0.1 mm to 0.5 mm according to the scan region, accuracy, and precision of the used
LiDAR sensor. The first region is “Safety”, where the obstacle is not close to the robot or not detected
by the LiDAR sensor. The second region is “Caution”, where the robot can detect a close obstacle.
The third region is “Danger”, the critical region, where the obstacle is very close to the robot. Similarly,
the third and fourth inputs are also divided into three regions. The first one is “Remote”, where the
robots are far from each neighbor. The second one is “Swarm”, where the distances among robots are
within the required range rF. The third one is “Danger”, where the robots are so close so that they may
collide. Figure 2 shows the fuzzification, the universe of discourse, and the corresponding degree of
membership for inputs.

Robotics 2020, 9, 10 6 of 15

Robotics 2020, 9, 10 6 of 15

shows the fuzzification, the universe of discourse, and the corresponding degree of membership for
fuzzy outputs.

Figure 2. The fuzzification of the proposed FIS inputs. (a) robot-target distance 𝑑 . (b) robot-

obstacle distance 𝑑 . (c) robot-nearest two neighbors 𝑑 and 𝑑 .

Figure 3. The fuzzification of the proposed FIS outputs. (a) Target tracking gain 𝑘 . (b) Obstacle

avoiding 𝑘 and formation maintaining gain 𝑘 .

3.2.3. Fuzzy Rule Base

After studying the relationship between distances, forces, and the gains, the fuzzy rules are
proposed. Figure 4 displays the fuzzy rules as implemented in MATLAB. As is illustrated in the
figure, the fuzzy rule base contains only 12 rules regardless of the number of robots or the number of
detected obstacles. This makes our proposed FIS scalable for any number of robots.

Figure 2. The fuzzification of the proposed FIS inputs. (a) robot-target distance dtar. (b) robot-obstacle
distance dobs. (c) robot-nearest two neighbors dneb1 and dneb2.

3.2.2. Fuzzy Outputs

Our proposed FIS has three outputs. The first output is the target gain ktar, which is divided into
four fuzzy sets: “S”, Small; “M”, Medium; “L”, Large; and “V.L”, Very Large. The second and third
outputs kobs and k f orm are divided into three membership functions: “S”, Small; “M”, Medium; and
“L”, Large. The universe of discourse of the three outputs is normalized (between 0 and 1). Figure 3
shows the fuzzification, the universe of discourse, and the corresponding degree of membership for
fuzzy outputs.

Robotics 2020, 9, 10 6 of 15

shows the fuzzification, the universe of discourse, and the corresponding degree of membership for
fuzzy outputs.

Figure 2. The fuzzification of the proposed FIS inputs. (a) robot-target distance 𝑑 . (b) robot-

obstacle distance 𝑑 . (c) robot-nearest two neighbors 𝑑 and 𝑑 .

Figure 3. The fuzzification of the proposed FIS outputs. (a) Target tracking gain 𝑘 . (b) Obstacle

avoiding 𝑘 and formation maintaining gain 𝑘 .

3.2.3. Fuzzy Rule Base

After studying the relationship between distances, forces, and the gains, the fuzzy rules are
proposed. Figure 4 displays the fuzzy rules as implemented in MATLAB. As is illustrated in the
figure, the fuzzy rule base contains only 12 rules regardless of the number of robots or the number of
detected obstacles. This makes our proposed FIS scalable for any number of robots.

Figure 3. The fuzzification of the proposed FIS outputs. (a) Target tracking gain ktar. (b) Obstacle
avoiding kobs and formation maintaining gain k f orm.

3.2.3. Fuzzy Rule Base

After studying the relationship between distances, forces, and the gains, the fuzzy rules are
proposed. Figure 4 displays the fuzzy rules as implemented in MATLAB. As is illustrated in the figure,

Robotics 2020, 9, 10 7 of 15

the fuzzy rule base contains only 12 rules regardless of the number of robots or the number of detected
obstacles. This makes our proposed FIS scalable for any number of robots.

Robotics 2020, 9, 10 7 of 15

4. System Implementation and Architecture

To test the modified PFM, we set up a system of physical robots and apply several real-time
experiments. Three Turtlebot3 robots equipped with some sensors and actuators are employed. Then,
we implement the modified PFM with FIS tuning and other functions to control the robots. In the
following, we present a detailed description of the hardware and the software in our system.

Figure 4. The fuzzy rules as implemented in MATLAB.

4.1. System Hardware

Three TurtleBot3 Burger Model robots are used to form a group of identical robots. The
TurtleBot3 robot [30] is a modular mobile robot provided with a 360° laser distance sensor LDS-01
(LiDAR). The LiDAR is a 2D laser scanner that senses 360° with an angular resolution of 1° and
collects data about the environment around the robot with scan rate equals to 300 ± 10 rpm and a
sampling rate equal to 1.8 kHz [31]. Its detection distance is 120 mm to 3500 mm with a distance
accuracy ± 15 mm, distance precision ± 10 mm for 120 mm to 499 mm, and distance accuracy ± 5%
and distance precision ± 3.5% for 500 mm to 3500 mm.

In addition, each robot has two boards. First, the OpenCR board [32] is a low-level board for
controlling servo motors. It is equipped with an Inertial Measurement Unit (IMU) sensor reporting
the orientations of the robot. Second, the Raspberry Pi board [33] is used for high-level programming.
This kit is the latest revision of the third generation single-board computer. The speed of its CPU is 1.4
GHz. In addition, Model B+ has a dual-band wireless antenna, supporting both 2.4 GHz and 5 GHz
802.11 b/g/n/ac Wi-Fi. Therefore, communication among robots can be held through the Wireless
Local Area Network (WLAN). Furthermore, the robot is equipped with the DYNAMIXEL XL430-
W250-T smart actuator system [34]. The DYNAMIXEL is a high-performance actuator integrated with
DC Motor, Reduction Gear head, Controller, Driver, and Network. It has a contact-less absolute
encoder as a position sensor. Figure 5 shows the main components of the TurtleBot3 Burger Model
robot, as presented in [34].

4.2. System Software

To control the robots, we implement the PFM equations in MATLAB software. In addition, we
construct the proposed FIS using the fuzzy toolbox in MATLAB. Other functions are also created to
control sending and receiving data to or from the robots. Figure 6 displays the flowchart of our
proposed formation control, which runs independently on each robot. After initialization, the status
of the robot is recorded by receiving data from the robot’s sensors. The robot orientation is detected
by the IMU sensor, and the obstacles detected around the robot are sensed by LiDAR. The robot
calculates its position from the position sensor (encoder) and broadcasts its position to other robots.
It also listens to other robots to receive their current positions. To accelerate the performance of
MATLAB, we use Parallel Computing Toolbox. However, in this case, there is no shared memory, so
that each robot should broadcast some data about itself via a WLAN.

Figure 4. The fuzzy rules as implemented in MATLAB.

4. System Implementation and Architecture

To test the modified PFM, we set up a system of physical robots and apply several real-time
experiments. Three Turtlebot3 robots equipped with some sensors and actuators are employed. Then,
we implement the modified PFM with FIS tuning and other functions to control the robots. In the
following, we present a detailed description of the hardware and the software in our system.

4.1. System Hardware

Three TurtleBot3 Burger Model robots are used to form a group of identical robots. The TurtleBot3
robot [30] is a modular mobile robot provided with a 360◦ laser distance sensor LDS-01 (LiDAR).
The LiDAR is a 2D laser scanner that senses 360◦ with an angular resolution of 1◦ and collects data
about the environment around the robot with scan rate equals to 300 ± 10 rpm and a sampling rate
equal to 1.8 kHz [31]. Its detection distance is 120 mm to 3500 mm with a distance accuracy ± 15 mm,
distance precision ± 10 mm for 120 mm to 499 mm, and distance accuracy ± 5% and distance precision
± 3.5% for 500 mm to 3500 mm.

In addition, each robot has two boards. First, the OpenCR board [32] is a low-level board for
controlling servo motors. It is equipped with an Inertial Measurement Unit (IMU) sensor reporting the
orientations of the robot. Second, the Raspberry Pi board [33] is used for high-level programming.
This kit is the latest revision of the third generation single-board computer. The speed of its CPU is
1.4 GHz. In addition, Model B+ has a dual-band wireless antenna, supporting both 2.4 GHz and 5 GHz
802.11 b/g/n/ac Wi-Fi. Therefore, communication among robots can be held through the Wireless Local
Area Network (WLAN). Furthermore, the robot is equipped with the DYNAMIXEL XL430-W250-T
smart actuator system [34]. The DYNAMIXEL is a high-performance actuator integrated with DC
Motor, Reduction Gear head, Controller, Driver, and Network. It has a contact-less absolute encoder
as a position sensor. Figure 5 shows the main components of the TurtleBot3 Burger Model robot, as
presented in [34].

Robotics 2020, 9, 10 8 of 15

Robotics 2020, 9, 10 8 of 15

After exchanging these data, the distances between every two objects are calculated to call the
proposed FIS. FIS receives the distances 𝑑 , 𝑑 , 𝑑 , and 𝑑 and calculates the PF parameters 𝑘 , 𝑘 , and 𝑘 by calling the proposed rule base. Then, the PFM equations are applied to
compute the control input 𝑢 from Equation (4). Then, from 𝑢, the linear and angula/4r velocity 𝑣 and 𝑤 are computed and are sent to the robot to move. These steps are repeated until the predefined
maximum execution time 𝑡 . Time is measured by the ROS server (which is a platform allowing
data sending and receiving and control [35]).

Figure 5. TurtleBot3 Burger Model robot [34].

Figure 6. Flowchart of the modified Potential Field Method (PFM).

5. Experiments and Results
In this section, we test the applicability of the modified PFM with the tuned parameters using

FIS. We aim to illustrate how the FIS tuning of the PF parameters solves some of the limitations of
the traditional PFM such as oscillating near narrow passages or near closely placed obstacles.
Moreover, the modified PFM should help the robots achieve their main three tasks, avoid obstacles,
track a given trajectory, and maintain a formation among robots.

Thus, we conduct a set of real-time experiments for each PF limitation and set two criteria to
judge the performance of the robots. We examine the ability of the robots to pass through a narrow
passage, pass through closely placed obstacles, and escape from the LMP.

Figure 5. TurtleBot3 Burger Model robot [34].

4.2. System Software

To control the robots, we implement the PFM equations in MATLAB software. In addition, we
construct the proposed FIS using the fuzzy toolbox in MATLAB. Other functions are also created
to control sending and receiving data to or from the robots. Figure 6 displays the flowchart of our
proposed formation control, which runs independently on each robot. After initialization, the status of
the robot is recorded by receiving data from the robot’s sensors. The robot orientation is detected by
the IMU sensor, and the obstacles detected around the robot are sensed by LiDAR. The robot calculates
its position from the position sensor (encoder) and broadcasts its position to other robots. It also listens
to other robots to receive their current positions. To accelerate the performance of MATLAB, we use
Parallel Computing Toolbox. However, in this case, there is no shared memory, so that each robot
should broadcast some data about itself via a WLAN.

Robotics 2020, 9, 10 8 of 15

After exchanging these data, the distances between every two objects are calculated to call the
proposed FIS. FIS receives the distances 𝑑 , 𝑑 , 𝑑 , and 𝑑 and calculates the PF parameters 𝑘 , 𝑘 , and 𝑘 by calling the proposed rule base. Then, the PFM equations are applied to
compute the control input 𝑢 from Equation (4). Then, from 𝑢, the linear and angula/4r velocity 𝑣 and 𝑤 are computed and are sent to the robot to move. These steps are repeated until the predefined
maximum execution time 𝑡 . Time is measured by the ROS server (which is a platform allowing
data sending and receiving and control [35]).

Figure 5. TurtleBot3 Burger Model robot [34].

Figure 6. Flowchart of the modified Potential Field Method (PFM).

5. Experiments and Results
In this section, we test the applicability of the modified PFM with the tuned parameters using

FIS. We aim to illustrate how the FIS tuning of the PF parameters solves some of the limitations of
the traditional PFM such as oscillating near narrow passages or near closely placed obstacles.
Moreover, the modified PFM should help the robots achieve their main three tasks, avoid obstacles,
track a given trajectory, and maintain a formation among robots.

Thus, we conduct a set of real-time experiments for each PF limitation and set two criteria to
judge the performance of the robots. We examine the ability of the robots to pass through a narrow
passage, pass through closely placed obstacles, and escape from the LMP.

Figure 6. Flowchart of the modified Potential Field Method (PFM).

After exchanging these data, the distances between every two objects are calculated to call the
proposed FIS. FIS receives the distances dtar, dobs, dneb1, and dneb2 and calculates the PF parameters ktar,
k f orm, and kobs by calling the proposed rule base. Then, the PFM equations are applied to compute
the control input u from Equation (4). Then, from u, the linear and angula/4r velocity v and w are
computed and are sent to the robot to move. These steps are repeated until the predefined maximum
execution time tmax. Time is measured by the ROS server (which is a platform allowing data sending
and receiving and control [35]).

Robotics 2020, 9, 10 9 of 15

5. Experiments and Results

In this section, we test the applicability of the modified PFM with the tuned parameters using
FIS. We aim to illustrate how the FIS tuning of the PF parameters solves some of the limitations of the
traditional PFM such as oscillating near narrow passages or near closely placed obstacles. Moreover,
the modified PFM should help the robots achieve their main three tasks, avoid obstacles, track a given
trajectory, and maintain a formation among robots.

Thus, we conduct a set of real-time experiments for each PF limitation and set two criteria to
judge the performance of the robots. We examine the ability of the robots to pass through a narrow
passage, pass through closely placed obstacles, and escape from the LMP.

5.1. Passing Through A Narrow Passage

In this test, we set up a narrow passage for the three TurtleBot3 robots and record the robots’
response. The time response is displayed in Figure 7, which shows that the three robots are passing
through the narrow passage in the x-y plan. It also shows that the robots do not oscillate around the
obstacles and succeed in passing through the passage. Besides, the robots manage to track the given
trajectory with high accuracy, as shown in Figure 8. Moreover, the robots maintain a fixed distance
among themselves while tracking the trajectory, as shown in Figure 9. Where the distances between
each two robots are initially very large, then, they oscillate around the formation range r f . Finally, they
steady state at the required value.

Robotics 2020, 9, 10 9 of 15

5.1. Passing Through A Narrow Passage

In this test, we set up a narrow passage for the three TurtleBot3 robots and record the robots’
response. The time response is displayed in Figure 7, which shows that the three robots are passing
through the narrow passage in the x-y plan. It also shows that the robots do not oscillate around the
obstacles and succeed in passing through the passage. Besides, the robots manage to track the given
trajectory with high accuracy, as shown in Figure 8. Moreover, the robots maintain a fixed distance
among themselves while tracking the trajectory, as shown in Figure 9. Where the distances between
each two robots are initially very large, then, they oscillate around the formation range 𝑟 . Finally,
they steady state at the required value.

Figure 7. The time response of three TurtleBot3 robots following a moving target passing through a
narrow passage.

Figure 8. Time profile of the distance between each TurtleBot3 robot and its target.

Figure 7. The time response of three TurtleBot3 robots following a moving target passing through a
narrow passage.

Robotics 2020, 9, 10 9 of 15

5.1. Passing Through A Narrow Passage

In this test, we set up a narrow passage for the three TurtleBot3 robots and record the robots’
response. The time response is displayed in Figure 7, which shows that the three robots are passing
through the narrow passage in the x-y plan. It also shows that the robots do not oscillate around the
obstacles and succeed in passing through the passage. Besides, the robots manage to track the given
trajectory with high accuracy, as shown in Figure 8. Moreover, the robots maintain a fixed distance
among themselves while tracking the trajectory, as shown in Figure 9. Where the distances between
each two robots are initially very large, then, they oscillate around the formation range 𝑟 . Finally,
they steady state at the required value.

Figure 7. The time response of three TurtleBot3 robots following a moving target passing through a
narrow passage.

Figure 8. Time profile of the distance between each TurtleBot3 robot and its target. Figure 8. Time profile of the distance between each TurtleBot3 robot and its target.

Robotics 2020, 9, 10 10 of 15
Robotics 2020, 9, 10 10 of 15

Figure 9. Time profile of the distance between every two TurtleBot3 robots passing through a narrow
passage.

We repeat this test for five independent runs to extract some statistical data. Table 1 presents the
maximum and average of the tracking error 𝐸 , which indicates the robot’s success in the tracking
task. A low value of the tracking error 𝐸 means a high tracking accuracy. From the data, we find that
the maximum 𝐸 in five sequential independent runs for the three robots ranges from a minimum
value equal to 0.6822 to 0.7043 m, and the average of 𝐸 ranges from 0.0738 to 0.1272 m. In addition,
we find that during the run time, the accuracy of tracking reaches 97.9%, 98.3%, and 97.8% for Robot
1 (R1), Robot 2 (R2), and Robot 3 (R3), respectively. Thus, the overall tracking accuracy for all the
robots is approximately 98%.

For formation accuracy, we calculate the formation error, which shows how the distance
between two robots is far from the required distance or the formation range. Table 2 shows the
minimum, maximum, and average values of the formation error 𝐸 . As is shown, the maximum value
of the minimum 𝐸 is 0.0487 m, where the maximum 𝐸 value of the maximum is 0.4 m, and the
minimum value reaches 0.11 m. In addition, the average 𝐸 ranges from 0.0132 to 0.0451 m. Thus, the
formation accuracy reaches 99.5%, 99.4%, and 99.2% for R1, R2, and R3, respectively. Thus, the overall
formation accuracy for all the robots is approximately 99.4%.

Table 1. Statistical data for tracking error 𝑬𝒕 for five sequential independent runs.

Tracking Error 𝑬𝒕

Max. 𝑬𝒕 Avg. 𝑬𝒕
R1 R2 R3 R1 R2 R3

Run 1 0.6837 0.6958 0.6836 0.0986 0.0738 0.0912
Run 2 0.683 0.6935 0.6841 0.1086 0.0826 0.0998
Run 3 0.6836 0.6977 0.7043 0.0956 0.0977 0.1267
Run 4 0.6822 0.6969 0.6836 0.1071 0.0857 0.0933
Run 5 0.6833 0.6963 0.6921 0.113 0.0943 0.1272

Table 2. Statistical data for formation error 𝑬𝒇 for five sequential independent runs.

Formation Error 𝑬𝒇

Min. 𝑬𝒇 Max. 𝑬𝒇 Avg. 𝑬𝒇

R1 R2 R3 R1 R2 R3 R1 R2 R3

Run 1 0.0112 0.0077 0.025 0.1296 0.1196 0.3999 0.0278 0.0245 0.034

Run 2 0.0132 0.0212 0.0487 0.1363 0.1203 0.4 0.0318 0.0254 0.0396

Run 3 0.0202 0.0233 0.0302 0.153 0.1426 0.4 0.0132 0.0391 0.0451

Run 4 0.0.038 0.0122 0.0142 0.1167 0.1059 0.3999 0.0274 0.0175 0.0315

Run 5 0.0105 0.0038 0.0097 0.1402 0.1608 0.3999 0.0293 0.0394 0.04

Figure 9. Time profile of the distance between every two TurtleBot3 robots passing through a
narrow passage.

We repeat this test for five independent runs to extract some statistical data. Table 1 presents the
maximum and average of the tracking error Et, which indicates the robot’s success in the tracking task.
A low value of the tracking error Et means a high tracking accuracy. From the data, we find that the
maximum Et in five sequential independent runs for the three robots ranges from a minimum value
equal to 0.6822 to 0.7043 m, and the average of Et ranges from 0.0738 to 0.1272 m. In addition, we find
that during the run time, the accuracy of tracking reaches 97.9%, 98.3%, and 97.8% for Robot 1 (R1),
Robot 2 (R2), and Robot 3 (R3), respectively. Thus, the overall tracking accuracy for all the robots is
approximately 98%.

Table 1. Statistical data for tracking error Et for five sequential independent runs.

Tracking Error Et

Max. Et Avg. Et

R1 R2 R3 R1 R2 R3

Run 1 0.6837 0.6958 0.6836 0.0986 0.0738 0.0912

Run 2 0.683 0.6935 0.6841 0.1086 0.0826 0.0998

Run 3 0.6836 0.6977 0.7043 0.0956 0.0977 0.1267

Run 4 0.6822 0.6969 0.6836 0.1071 0.0857 0.0933

Run 5 0.6833 0.6963 0.6921 0.113 0.0943 0.1272

For formation accuracy, we calculate the formation error, which shows how the distance between
two robots is far from the required distance or the formation range. Table 2 shows the minimum,
maximum, and average values of the formation error E f . As is shown, the maximum value of the
minimum E f is 0.0487 m, where the maximum E f value of the maximum is 0.4 m, and the minimum
value reaches 0.11 m. In addition, the average E f ranges from 0.0132 to 0.0451 m. Thus, the formation
accuracy reaches 99.5%, 99.4%, and 99.2% for R1, R2, and R3, respectively. Thus, the overall formation
accuracy for all the robots is approximately 99.4%.

Robotics 2020, 9, 10 11 of 15

Table 2. Statistical data for formation error Ef for five sequential independent runs.

Formation Error Ef

Min. Ef Max. Ef Avg. Ef

R1 R2 R3 R1 R2 R3 R1 R2 R3

Run 1 0.0112 0.0077 0.025 0.1296 0.1196 0.3999 0.0278 0.0245 0.034

Run 2 0.0132 0.0212 0.0487 0.1363 0.1203 0.4 0.0318 0.0254 0.0396

Run 3 0.0202 0.0233 0.0302 0.153 0.1426 0.4 0.0132 0.0391 0.0451

Run 4 0.0.038 0.0122 0.0142 0.1167 0.1059 0.3999 0.0274 0.0175 0.0315

Run 5 0.0105 0.0038 0.0097 0.1402 0.1608 0.3999 0.0293 0.0394 0.04

5.2. Passing between Two Closely Placed Obstacles

Another challenge of the traditional PFM is to pass between two closely placed obstacles. The robot
may oscillate near obstacles and not pass these obstacles. Thus, in this test, we verify the ability of
the TurtleBot3 robots to pass through closely placed obstacles. The robots give a higher priority to
passing the obstacles than they give to formation. The time response of the three robots is illustrated in
Figure 10. The robots break the formation, follow each other, pass the obstacles, and then return to
their formation again. Figure 11 also shows the distances between every two TurtleBot3 robots where
the distances start from the required distance or the formation range r f . Then, the distances reduce to
reach 0.2 m while the robots pass the two closely placed obstacles. Finally, the distances increase again
to reach the required formation distance.

Robotics 2020, 9, 10 11 of 15

5.2. Passing between Two Closely Placed Obstacles

Another challenge of the traditional PFM is to pass between two closely placed obstacles. The
robot may oscillate near obstacles and not pass these obstacles. Thus, in this test, we verify the ability
of the TurtleBot3 robots to pass through closely placed obstacles. The robots give a higher priority to
passing the obstacles than they give to formation. The time response of the three robots is illustrated
in Figure 10. The robots break the formation, follow each other, pass the obstacles, and then return to
their formation again. Figure 11 also shows the distances between every two TurtleBot3 robots where
the distances start from the required distance or the formation range 𝑟 . Then, the distances reduce
to reach 0.2 m while the robots pass the two closely placed obstacles. Finally, the distances increase
again to reach the required formation distance.

Figure 10. The time response of three TurtleBot3 robots following a moving target passing between
two closely placed obstacles.

Figure 11. Time profile of the distance between every two TurtleBot3 robots passing between two
closely placed obstacles.

5.3. Escaping from the LMP

Traditional PFM also suffers from the LMP where an obstacle is placed between the robot and
its target. In this situation, the target tracking force that pulls the robot to the target is equal to the
obstacle avoiding force that pushes the robot away. Thus, the robot does not move or oscillate. In our
case, each robot is controlled by three types of forces. The LMP occurs when the summation of the
applied forces equals zero, preventing the robot from moving. Thus, in this test, we examine the
ability of the modified PFM to escape from the LMP. Figure 12 shows the real TurtleBot3 robots
avoiding various obstacles during the experiments. In the first experiment, one obstacle is placed on

Figure 10. The time response of three TurtleBot3 robots following a moving target passing between
two closely placed obstacles.

Robotics 2020, 9, 10 11 of 15

5.2. Passing between Two Closely Placed Obstacles

Another challenge of the traditional PFM is to pass between two closely placed obstacles. The
robot may oscillate near obstacles and not pass these obstacles. Thus, in this test, we verify the ability
of the TurtleBot3 robots to pass through closely placed obstacles. The robots give a higher priority to
passing the obstacles than they give to formation. The time response of the three robots is illustrated
in Figure 10. The robots break the formation, follow each other, pass the obstacles, and then return to
their formation again. Figure 11 also shows the distances between every two TurtleBot3 robots where
the distances start from the required distance or the formation range 𝑟 . Then, the distances reduce
to reach 0.2 m while the robots pass the two closely placed obstacles. Finally, the distances increase
again to reach the required formation distance.

Figure 10. The time response of three TurtleBot3 robots following a moving target passing between
two closely placed obstacles.

Figure 11. Time profile of the distance between every two TurtleBot3 robots passing between two
closely placed obstacles.

5.3. Escaping from the LMP

Traditional PFM also suffers from the LMP where an obstacle is placed between the robot and
its target. In this situation, the target tracking force that pulls the robot to the target is equal to the
obstacle avoiding force that pushes the robot away. Thus, the robot does not move or oscillate. In our
case, each robot is controlled by three types of forces. The LMP occurs when the summation of the
applied forces equals zero, preventing the robot from moving. Thus, in this test, we examine the
ability of the modified PFM to escape from the LMP. Figure 12 shows the real TurtleBot3 robots
avoiding various obstacles during the experiments. In the first experiment, one obstacle is placed on

Figure 11. Time profile of the distance between every two TurtleBot3 robots passing between two
closely placed obstacles.

Robotics 2020, 9, 10 12 of 15

5.3. Escaping from the LMP

Traditional PFM also suffers from the LMP where an obstacle is placed between the robot and
its target. In this situation, the target tracking force that pulls the robot to the target is equal to the
obstacle avoiding force that pushes the robot away. Thus, the robot does not move or oscillate. In our
case, each robot is controlled by three types of forces. The LMP occurs when the summation of the
applied forces equals zero, preventing the robot from moving. Thus, in this test, we examine the ability
of the modified PFM to escape from the LMP. Figure 12 shows the real TurtleBot3 robots avoiding
various obstacles during the experiments. In the first experiment, one obstacle is placed on the path
of the central gravity of the three TurtleBot3 robots. We observe that the robot in the middle avoids
the obstacle, goes around it, and then returns to its desired trajectory. The obstacle slightly affects the
paths of the other two robots, as shown in Figure 13.

Robotics 2020, 9, 10 12 of 15

the path of the central gravity of the three TurtleBot3 robots. We observe that the robot in the middle
avoids the obstacle, goes around it, and then returns to its desired trajectory. The obstacle slightly
affects the paths of the other two robots, as shown in Figure 13.

In the second experiment, we put four obstacles in the path of the three TurtleBot3 robots where
the robots should follow a sinusoidal trajectory. The results are shown in Figure 14 where the
TurtleBot3 robots manage to avoid obstacles and escape from three local minima. The robots avoid
the obstacles and return to their path to track the trajectory.

Figure 12. TurtleBot3 robots avoiding obstacles in the real-time experiments.

Figure 13. The time response of three TurtleBot3 robots following a straight line.

Figure 14. The time response of three TurtleBot3 robots following a sinusoidal trajectory.

Figure 12. TurtleBot3 robots avoiding obstacles in the real-time experiments.

Robotics 2020, 9, 10 12 of 15

the path of the central gravity of the three TurtleBot3 robots. We observe that the robot in the middle
avoids the obstacle, goes around it, and then returns to its desired trajectory. The obstacle slightly
affects the paths of the other two robots, as shown in Figure 13.

In the second experiment, we put four obstacles in the path of the three TurtleBot3 robots where
the robots should follow a sinusoidal trajectory. The results are shown in Figure 14 where the
TurtleBot3 robots manage to avoid obstacles and escape from three local minima. The robots avoid
the obstacles and return to their path to track the trajectory.

Figure 12. TurtleBot3 robots avoiding obstacles in the real-time experiments.

Figure 13. The time response of three TurtleBot3 robots following a straight line.

Figure 14. The time response of three TurtleBot3 robots following a sinusoidal trajectory.

Figure 13. The time response of three TurtleBot3 robots following a straight line.

In the second experiment, we put four obstacles in the path of the three TurtleBot3 robots where
the robots should follow a sinusoidal trajectory. The results are shown in Figure 14 where the TurtleBot3
robots manage to avoid obstacles and escape from three local minima. The robots avoid the obstacles
and return to their path to track the trajectory.

Robotics 2020, 9, 10 13 of 15

Robotics 2020, 9, 10 12 of 15

the path of the central gravity of the three TurtleBot3 robots. We observe that the robot in the middle
avoids the obstacle, goes around it, and then returns to its desired trajectory. The obstacle slightly
affects the paths of the other two robots, as shown in Figure 13.

In the second experiment, we put four obstacles in the path of the three TurtleBot3 robots where
the robots should follow a sinusoidal trajectory. The results are shown in Figure 14 where the
TurtleBot3 robots manage to avoid obstacles and escape from three local minima. The robots avoid
the obstacles and return to their path to track the trajectory.

Figure 12. TurtleBot3 robots avoiding obstacles in the real-time experiments.

Figure 13. The time response of three TurtleBot3 robots following a straight line.

Figure 14. The time response of three TurtleBot3 robots following a sinusoidal trajectory.

Figure 14. The time response of three TurtleBot3 robots following a sinusoidal trajectory.

6. Discussion

The formation control problem using PFM is very effective in real-time applications due to its
simple structure. However, the PFM limitations are considered a challenging area for researchers.
Thus, in this article, we try to solve some of the traditional PFM limitations using a modified PFM with
FIS tuning where the FIS online tunes the parameters of the PF according to the various situations the
robots face. Tuning the parameters during execution time enhances the performance of the PFM. This
is proven by several real-time experiments, where the robots can pass through a narrow passage, pass
between closely placed obstacles, and escape from an LMP. Moreover, the overall performance of the
PFM is enhanced.

In our modified PFM, each robot is controlled by three potential forces: the target tracking force,
the obstacle avoiding force, and the formation maintaining force. These forces help the robots achieve
their main tasks. Then, the FIS tunes the PF parameters according to the current situation the robots face.
The FIS receives the distances among entities in the environment as inputs representing the current
situation the robots face. Then, FIS calls the proposed rule base to calculate the outputs. The outputs
of the FIS are the PF parameters, which change the total force applied on the robots. Varying the
PF parameters during the execution time enhances the overall performance of the traditional PFM.
In addition, it overcomes the limitations of the PFM. The fuzzy rule base contains 12 rules that do not
depend on the number of neighboring robots or the number of the detected obstacles.

The modified PFM with tuned parameters for each robot is implemented via MATLAB software,
and the proposed FIS is constructed by the MATLAB fuzzy toolbox. Then, we apply the controller
on three TurtleBot3 burger model robots. These robots are equipped with several sensors to collect
data from the surrounding environment. The robots communicate through a WLAN under the
ROS platform.

Next, different real-time experiments are held, proving the success of the modified PFM with
tuned parameters to achieve the robots’ main goals. The robots manage to track different trajectories
such as straight lines and sinusoidal trajectories with an average tracking accuracy equal to 98%.
In addition, the robots maintain formation by keeping a given distance among themselves during
tracking with an average formation accuracy equal to 99.8%.

Additionally, tuning the parameters of the PFM solves the LMP and oscillation near the obstacles
problem as the TurtleBot3 robots manage to escape from a local minimum, pass through a narrow
passage, and pass between two closely placed obstacles.

Thus, our modified PFM achieves the main goals of the formation control problem. In addition,
using FIS to online tune the PF parameters overcomes the traditional PFM limitations. Although our
modified PFM is verified on real-time experiments, a whole real-time task is lacking. Thus, many
enhancements to increase tracking accuracy and maintain more complex formation in a larger task are
needed as further developments.

Robotics 2020, 9, 10 14 of 15

7. Conclusions

The effectiveness of the modified PFM is proven through real-time experiments. The experiments
verify our modified PFM, taking into consideration the real-time parameters such as delays due to
communication among robots through a WLAN and/or noises due to the environments and the sensors.

The results confirm that the robots manage to track different trajectories such as straight lines and
sinusoidal trajectories with an average tracking accuracy equals to 98%. In addition, it shows that the
robots maintain formation among themselves during tracking with an average formation accuracy
equal to 99.8%.

Furthermore, tuning the PF parameters overcomes the traditional PFM problems by succession in
passing through narrow passages, passing between two closely placed obstacles, and escaping from
the LMP.

Author Contributions: Conceptualization, B.G.E. and A.A.A.; methodology, B.G.E. and A.A.A.; software, B.G.E.
and H.I.; validation, B.G.E., A.A.A. and H.I.; resources, A.M.R.F. and H.I.; writing—original draft preparation,
B.G.E. and A.A.; writing—review and editing, A.M.R.F. and H.I.; supervision, A.A.A. and A.M.R.F. All authors
have read and agreed to the published version of the manuscript.

Funding: This research is funded by the Ministry of Higher Education.

Acknowledgments: The authors would like to thank the Egypt-Japan University of Science and Technology
(E-JUST) for continuous help and support.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Bahr, A.; Leonard, J.J.; Fallon, M.F. Cooperative localization for autonomous underwater vehicles. Int. J.
Robot. Res. 2009, 28, 714–728. [CrossRef]

2. Murray, R.M. Recent research in cooperative control of multivehicle systems. J. Dyn. Syst. Meas. Control.
Trans. ASME 2007, 129, 571–583. [CrossRef]

3. Martin, M.; Klupar, P.; Kilberg, S.; Winter, J. TechSat 21 and Revolutionizing Space Missions using Microsatellites;
American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2001; pp. 1–10.

4. Olfati-Saber, R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory. IEEE Trans. Autom.
Control 2006, 51, 1–20. [CrossRef]

5. Saber, R.O.; Dunbar, W.B.; Murray, R.M. Cooperative Control of Multi-Vehicle Systems Using Cost Graphs
and Optimization. In Proceedings of the 2003 American Control Conference, Denver, CO, USA, 4–6 June
2003; Volume 3, pp. 2217–2222.

6. Lot, A.; Zelinski, S.; Koo, T.J.; Sastry, S. Optimization-based formation reconfiguration planning for
autonomous vehicles. In Proceedings of the 2003 IEEE International Conference on Robotics and Automation,
Taipei, Taiwan, 14–19 September 2003; Volume 3, pp. 3758–3763.

7. Chaimowicz, L.; Kumar, V. Aerial Shepherds: Coordination among UAVs and Swarms of Robots. In Distributed
Autonomous Robotic Systems 6; Springer: Tokyo, Japan, 2008; pp. 243–252.

8. Barnes, L.; Alvis, W.; Fields, M.; Valavanis, K.; Moreno, W. Swarm formation control with potential fields
formed by bivariate normal functions. In Proceedings of the 2006 14th Mediterranean Conference on Control
and Automation, Ancona, Italy, 28–30 June 2006.

9. Dang, A.D.; Horn, J. Formation adaptation control of autonomous robots in a dynamic environment.
In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March
2015; pp. 3190–3195.

10. Khatib, O. Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 1986, 5, 90–98.
[CrossRef]

11. Aboutajdine, D. Institute of Electrical and Electronics Engineers. In Proceedings of the 2013 International
Conference on Industrial Engineering and Systems Management (IESM), Rabat, Morocco, 28–30 October 2013.

12. Koren, Y.; Borenstein, J. Potential field methods and their inherent limitations for mobile robot navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation, Sacramento, CA, USA,
7–12 April 1991; Volume 2, pp. 1398–1404.

http://dx.doi.org/10.1177/0278364908100561
http://dx.doi.org/10.1115/1.2766721
http://dx.doi.org/10.1109/TAC.2005.864190
http://dx.doi.org/10.1177/027836498600500106

Robotics 2020, 9, 10 15 of 15

13. Li, F.; Wang, Y.; Tan, Y.; Ge, G. Mobile Robots Path Planning Based on Evolutionary Artificial Potential Fields
Approach. In Advances in Intelligent Systems Research; Atlantis Press: Paris, France, 2013; pp. 1314–1317.

14. Wang, J.; Wu, X.; Xu, Z. Potential-based obstacle avoidance in formation control. J. Control Theory Appl. 2008,
6, 311–316. [CrossRef]

15. Zhang, M.; Shen, Y.; Wang, Q.; Wang, Y. Dynamic artificial potential field based multi-robot formation control.
In Proceedings of the 2010 IEEE International Instrumentation and Measurement Technology Conference,
I2MTC 2010—Proceedings, Austin, TX, USA, 3–6 May 2010; pp. 1530–1534.

16. Bennet, D.J.; McInnes, C.R. Distributed control of multi-robot systems using bifurcating potential fields.
Robot. Auton. Syst. 2010, 58, 256–264. [CrossRef]

17. Bennet, D.J.; MacInnes, C.R.; Suzuki, M.; Uchiyama, K. Autonomous Three-Dimensional Formation Flight
for a Swarm of Unmanned Aerial Vehicles. J. Guid. Control. Dyn. 2011, 34, 1899–1908. [CrossRef]

18. Ranjbar-Sahraei, B.; Shabaninia, F.; Nemati, A.; Stan, S.D. A novel robust decentralized adaptive fuzzy control
for swarm formation of multiagent systems. IEEE Trans. Ind. Electron. 2012, 59, 3124–3134. [CrossRef]

19. Kowdiki, K.H.; Barai, R.K.; Bhattacharya, S. Leader-follower formation control using artificial potential functions: A
kinematic approach. In Proceedings of the IEEE-International Conference on Advances in Engineering, Science and
Management, ICAESM-2012, Nagapattinam, Tamil Nadu, India, 30–31 March 2012; pp. 500–505.

20. Joachim, D.A.D.H. Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving
Target. World Acad. Sci. Eng. Technol. Int. J. Mech. Mechatron. Eng. 2014, 8, 561–567.

21. Dang, A.; Horn, J. Formation Control of Leader-Following UAVs to Track a Moving Target in a Dynamic
Environment. J. Autom. Control Eng. 2014, 2, 1–8. [CrossRef]

22. Furferi, R.; Conti, R.; Meli, E.; Ridolfi, A. Optimization of potential field method parameters through networks
for swarm cooperative manipulation tasks. Int. J. Adv. Robot. Syst. 2016, 13. [CrossRef]

23. Elkilany, B.G.; Abouelsoud, A.A.; Fathelbab, A.M.R. Adaptive formation control of robot swarms using
optimized potential field method. In Proceedings of the IEEE International Conference on Industrial
Technology, Toronto, ON, Canada, 22–25 March 2017.

24. Yin, H.; Cam, L.; Roy, U. Formation control for multiple unmanned aerial vehicles in constrained space using
modified artificial potential field. Math. Model. Eng. Probl. 2017, 4, 100–105. [CrossRef]

25. Han, M.; Zhang, Z.; He, Y.; Chen, Q. Research on Arbitrary Formation Control of Multiple Robots in Obstacle
Environment. J. Phys. Conf. Ser. 2018, 1069, 012172. [CrossRef]

26. Elkilany, B.G.; Abouelsoud, A.A.; Fathelbab, A.M.R.; Ishii, H. A proposed formation control algorithm
for robot swarm based on adaptive fuzzy potential field method. In Proceedings of the IECON 2018-44th
Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018;
pp. 2189–2194.

27. Drahansky, M. We Are IntechOpen, the World’s Leading Publisher of Open Access Books BUILT by Scientists, for
Scientists TOP 1%; Intech: London, UK, 2016.

28. Uzunsoy, E. A Brief Review on Fuzzy Logic Used in Vehicle Dynamics Control. J. Innov. Sci. Eng. (JISE) 2018,
2, 1–7.

29. Dadios, E. Fuzzy Logic—Controls, Concepts, Theories and Applications; InTech: Rijeka, Croatia, 2012.
30. Fuzzy Logic Toolbox—MATLAB. Available online: https://ww2.mathworks.cn/en/products/fuzzy-logic.html

(accessed on 31 December 2019).
31. TurtleBot3. Available online: http://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/

(accessed on 31 December 2019).
32. TurtleBot3. Available online: http://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_opencr1_0/

(accessed on 31 December 2019).
33. Buy a Raspberry Pi 3 Model B+—Raspberry Pi. Available online: https://www.raspberrypi.org/products/

raspberry-pi-3-model-b-plus/ (accessed on 31 December 2019).
34. XL430-W250-T. Available online: http://emanual.robotis.com/docs/en/dxl/x/xl430-w250/ (accessed on 31

December 2019).
35. O’Kane, J.M. A Gentle Introduction to ROS; CreateSpace: Scotts Valley, CA, USA, 2016.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11768-008-6222-z
http://dx.doi.org/10.1016/j.robot.2009.08.004
http://dx.doi.org/10.2514/1.53931
http://dx.doi.org/10.1109/TIE.2012.2183831
http://dx.doi.org/10.12720/joace.3.1.1-8
http://dx.doi.org/10.1177/1729881416657931
http://dx.doi.org/10.18280/mmep.040207
http://dx.doi.org/10.1088/1742-6596/1069/1/012172
https://ww2.mathworks.cn/en/products/fuzzy-logic.html
http://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_lds_01/
http://emanual.robotis.com/docs/en/platform/turtlebot3/appendix_opencr1_0/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/
http://emanual.robotis.com/docs/en/dxl/x/xl430-w250/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Review on the Related Research
	The Modified Potential Field Method
	The Applied Potential Forces
	The Proposed Fuzzy Inference System
	Fuzzy Inputs
	Fuzzy Outputs
	Fuzzy Rule Base

	System Implementation and Architecture
	System Hardware
	System Software

	Experiments and Results
	Passing Through A Narrow Passage
	Passing between Two Closely Placed Obstacles
	Escaping from the LMP

	Discussion
	Conclusions
	References

