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Abstract: The overall control system for an open-frame Remotely Operated Vehicle (ROV) is typically
built from three subsystems: guidance, navigation and control (GNC). The control allocation plays
a vital role in the control subsystem. Typically, open-frame underwater vehicles have p actuators
(thrusters) for the motion in the horizontal plane, and the control allocation problem, in this case, is very
complex and hard to visualise, because the normalised constrained control subset is a p-dimensional
unit cube. The aim of this paper is to give a clear picture and a geometric interpretation of the problem
and to introduce a hybrid method, based on the integration of a weighted pseudoinverse and the
fixed-point method. The main idea of the hybrid method is visualised, and the deep geometric insight
is provided using a “virtual” ROV in low-dimensional control spaces, including visualisation of
the attainable command set, solution lines, control energy spheres and the role of pseudoinverse
and fixed-point iterations. The same concepts are then extended to higher-dimensional cases, for
open-frame ROV with four X-shaped (vectored) horizontal thrusters, which is one of the most
common thruster configurations for commercial ROVs. The proposed hybrid method has been
developed, integrated into a generic fault-tolerant ROV control system and evaluated in virtual
and real-world environments off the west coast of Ireland using observation-class ROV Latis and
work-class ROV Étaín.

Keywords: fault-tolerant control; control allocation; ROV

1. Introduction

In general, a fault is the primary cause of changes in the system structure or parameters that
eventually leads to degraded system performance or even the loss of the system function. A Fault-
Tolerant Control (FTC) system continuously analyses the behaviour of the plant in order to identify
faults and changes the control law to hold the closed-loop system in a region of acceptable performance.
Fault tolerance includes two steps [1]: (i) Fault diagnosis (the existence of faults has to be detected,
and the faults have to be identified); (ii) Control re-design (the controller has to be adapted to the
faulty situation so that the overall system continues to have satisfactory performance). Like faults,
disturbances and model uncertainties change the plant behaviour and have similar effects on the
system. Disturbances and model uncertainties are nuisances which are known to exist, but whose
effects on the system performance are handled by appropriate measures like filtering or robust design.
On another side, the FTC system is designed to detect the faults and remove their effects by remedial
actions, i.e., it is aimed to change the control law in order to cancel the effects of the faults or to attenuate
them to an acceptable level.
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Control allocation is an effective approach to implement fault-tolerant control. An overview of
control allocation methods is given in [2] (for aerospace applications) and [3] (for marine applications).
In survey article [4], authors intended to encourage the cross-disciplinary transfer of ideas between
various application fields, with emphasize on optimization-based methods.

Unmanned Underwater Vehicles are subject to faults or failures during underwater missions,
and thrusters are one of the most important and most common sources of faults. In all but the most
trivial cases, the existence of a fault may lead to mission abortion. Ship time is very expensive, and the
implication of small faults could be very costly and time-consuming.

Various fault-tolerant control strategies for unmanned underwater vehicles have been reported
in the literature. A fault-tolerant motion control method based on reconstructive approach has been
proposed in [5], which is used to ensure the X-rudder Autonomous Underwater Vehicle (AUV)
complete the mission in the case of motion actuators failure. An adaptive fault-tolerant controller
utilising Radial Basis Function (RBF) neural network sliding mode method was addressed in [6] for
a class of Remotely Operated Vehicles (ROVs) with redundant thrusters. Adaptive fault-tolerant
control and fault reconstruction problem for AUV subject to ocean current disturbance and modelling
uncertainty is investigated in [7]. A virtual closed-loop system is introduced to deal with the influence
of the initial tracking error in an ideal environment. Then, the second-order sliding mode observer
is constructed to estimate the thruster fault effect. A control allocation method for compensation for
the effect of thrusters’ dead zones is proposed in [8]. The Dynamic Surface Control (DSC) method for
underwater ROVs has been proposed in [9]. Exhaustive simulations have been carried out to compare
the performance of the DSC method with respect to different control techniques (PID, backstepping and
sliding mode approaches) in fault-free and faulty conditions, with included non-linear effects, such as
saturation, actuator dynamics, sensor noises etc. Design of thruster configuration and thrust allocation
control for an underactuated ROV is addressed in [10]. The paper proposes the one-norm algorithm
and modified singular value method to find appropriate thruster configuration and thrust allocation.
Energy-aware fault-mitigation architecture for underwater vehicles has been proposed in [11]. The
proposed architecture is capable of detecting faults and monitoring the performance of the thruster
subsystem in modern AUVs by observing the use of the onboard resources. Event-Triggered Active
Fault-Tolerant Control System is proposed in [12], based on event-triggered transmission mechanism
to reduce the amount of data sent to the observer module. The attractive fault-tolerant control scheme
for an omni-directional mobile robot with four mecanum wheels, based on the integration of Nonlinear
Model Predictive Control module and basic Fault Detection and Isolation scheme, is proposed in [13].
Thrust Distribution Control System for ROVs, based on adaptive back-stepping controller, is proposed
in [14]. An overview of existing fault detection and fault-tolerant schemes is presented in [15] and [16].

This paper introduces a geometric insight into the control allocation problem for over actuated
open-frame underwater vehicles. The work presented herein is applicable to a wide class of control
allocation problems, where the number of actuators is higher than the number of objectives. The paper
is aimed to provide deep insight into the geometry of the control allocation problem, and authors hope
that it will highlight the problem from a different perspective, based on geometric reasoning.

The paper expands upon the work previously reported by the authors. Thruster fault diagnosis
and accommodation system for open-frame underwater vehicles has been proposed in [17]. The
extension of the approach with the inclusion of fixed-point iterations is proposed in this paper,
and a hybrid method for control allocation is introduced, based on the integration of a weighted
pseudoinverse and the fixed-point method. The main idea of the hybrid method is visualised, and the
deep geometric insight is provided using a “virtual” ROV in low-dimensional control spaces. Then,
the same concepts are extended to higher-dimensional cases, for open-frame ROV with four X-shaped
(vectored) horizontal thrusters. The hybrid method for control allocation has been used as a foundation
to build the thruster Fault-Tolerant Control system (FTC). The performance of FTC has been evaluated
and validated in a virtual and real-world environment. Selected test cases from simulation and field



Robotics 2020, 9, 7 3 of 38

trials demonstrate the effectiveness of the method and the ability of the FTC to complete the mission in
the presence of a single (partial and total) fault in a single thruster.

2. Control Allocation Problem

2.1. Problem Definition

The interconnection between Guidance, Navigation and Control (GNC) subsystems for open-frame
ROV is shown in Figure 1.

• Guidance: subsystem that continuously computes the reference (desired) position, velocity and
acceleration of an ROV to be used by the motion control system.

• Navigation: subsystem to determine position/attitude, course, travelled distance and (optionally)
velocity and acceleration of an ROV.

• Control: subsystem to determine necessary control forces and moments to be provided by the
ROV to satisfy certain control objective (in conjunction with the guidance system).

Figure 1. GNC signal flow for open-frame ROV (inspired by [18]).

The control design problem consists of two steps [19]:

• STEP 1 (Regulation Task): Design a control law, which specifies desired virtual control input
(normalised vector of forces and moments τd) in the virtual control space;

• STEP 2 (Actuator Selection Task): Design control allocator, which finds the “best” feasible true
control input u (normalised command vector to be applied to individual actuators) in the true
control space.

In the GNC Signal Flow shown in Figure 1, the Motion Control System and the Control Allocation
components execute STEPS 1 and 2, respectively. After actuation with the control vector u, the Propulsion
System block will generate a total control effect (vector τ in Figure 1). After normalisation, this vector
should be equal to the desired virtual control input τd in the case of successful control allocation.

Decomposition of the virtual control input τd into the horizontal and vertical planes is presented
in Table 1.
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Table 1. Decomposition into horizontal and vertical planes.

Virtual Control
Input

Horizontal Plane τ
_HTd

Vertical Plane τ
_VTd

τd =



τXd
τYd
τZd
τKd
τMd
τNd


τHTd

=


τXd
τYd
τNd


τXd

—Surge Force
τYd

—Sway Force
τNd

—Yaw Moment
τVTd

=


τZd
τKd
τMd


τZd

—Heave Force
τKd

—Roll Moment
τMd

—Pitch
Moment

The main focus of the discussion in the following will be based on the control allocation
problem in the horizontal plane. However, a similar approach applies to the vertical plane with
minor modifications.

The open-frame ROV with four horizontal thrusters in X-shaped (vectored) configuration and three
controllable DOF is shown in Figure 2a, while the top view of thruster configuration in the horizontal
plane is shown in Figure 2b. This configuration is the most dominant configuration of horizontal
thrusters for commercial ROVs. However, the approach can be easily extended to other configurations.

Figure 2. ROV with 4 HT (X-shaped configuration): (a) Controllable DoF; (b) Thruster configuration.

The axes are chosen to coincide with the principal axes of inertia, and they are defined as:

• xb—longitudinal axes (directed to front side),
• yb—transversal axes (directed to starboard),
• zb—normal axes (directed from top to bottom).

For open-frame ROV, shown in Figure 2, dimensions of virtual and true control spaces are k = 3
and m = 4, respectively. For full geometric insight into underlying control allocation problem, the
main difficulty is the inability to easily visualise what is happening in 4D true control space during the
execution of control allocation solution steps.

To overcome this issue and to provide a clear picture into the geometry of the control allocation
solution steps, an artificial “virtual” ROV is introduced (Figure 3), with very specific star configuration
of the horizontal thrusters, such that the dimensions of control spaces are reduced by one, i.e.,
dimensions of virtual and true control spaces are k = 2 and m = 3, respectively. Introduction of the
“virtual” ROV provides a framework to visualise concepts and all steps of the solution using 2D/3D
figures, including the attainable command set, the shape of control energy spheres, solution lines,
pseudoinverse solution, and cases for triggering the fixed-point iterations. The most important feature
of the star configuration is the inability of thrusters to create a moment and rotate “virtual” ROV since



Robotics 2020, 9, 7 5 of 38

all thruster axes intersect in a common point, as indicated in Figure 3. Hence, two controllable DoFs
are Surge and Sway, while Yaw DoF is not controllable.

Figure 3. “Virtual” ROV with 3 HT (star thruster configuration).

To simplify notation, the underline and subscript d will be removed from normalised variables in
the following text. When vectors/variables are not normalised, it will be stated explicitly. Based on the
normalisation method described in [7], the general constrained problem for the “virtual” ROV, and the
open-frame ROV can be formulated using normalised variables as indicated in Table 2.

Table 2. Control Allocation Problem for “virtual” ROV and open-frame ROV.

Virtual ROV Open-Frame ROV

Virtual Control Input v =

[
v1
v2

]
∈ R2 (k = 2) τ =

 τX
τY
τN

 ∈ R3 (k = 3)

True Control Input u =

 u1
u2
u3

 ∈ R3 (m = 3) u =


u1
u2
u3
u4

 ∈ R4 (m = 4)

Control Effectiveness Matrix B =

[ 1
2 −

1
4 −

1
4

0 3
5 −

2
5

]
B =


1
4

1
4

1
4

1
4

1
4 −

1
4

1
4 −

1
4

1
4 −

1
4 −

1
4

1
4


Actuator Position Constraints u =

 −1
−1
−1

, u =

 +1
+1
+1

 u =


−1
−1
−1
−1

, u =


+1
+1
+1
+1



Control Allocation Problem
(Inequalities (2) and (4) apply
component-wise.)

For a given v, find u such that

Bu = v

subject to constraint

u ≤ u ≤ u

For a given τ, find u such that

Bu = τ

subject to constraint

u ≤ u ≤ u
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Bu = v (1)

u ≤ u ≤ u (2)

Bu = τ (3)

u ≤ u ≤ u (4)

In general case, the equation Bu = τ defines the set of hyperplanes in the true control space Rm.
The intersection of these hyperplanes is a convex set, denoted by N. The set of inequalities u ≤ u ≤ u
represents the hyper box in the same space. This hyper box is called constrained (admissible) control
subset and denoted by Ω. The solution set J is given by the intersection of N and Ω. Three cases are
possible:

• J is empty (i.e., no solution exists),
• J has exactly one element (i.e., there is one unique solution),
• J has more than one element (i.e., there are many solutions).

The following discussion is limited to Control Allocation Problem for the “virtual” ROV.
Equation (1) represents a system of equations

1
2 u1 −

1
4 u2 −

1
4 u3 = v1

0u1 +
3
5 u2 −

2
5 u3 = v2

(5)

Each Equation in (5) represents a plane in R3. Consequently, (5) can be rewritten as

π1 : NT
1 ·u = v1

π2 : NT
2 ·u = v2

(6)

where NT
1 =

[
1
2 −

1
4 −

1
4

]
and NT

2 =
[

0 3
5 −

2
5

]
are normal vectors, orthogonal on planes π1

and π2, respectively. Since the determinant ∆ = 0.1925 , 0, these planes are not parallel, and their
intersection is a line `:

` : p =


104
77 v1 +

10
77 v2 +

1
4 t

−
40
77 v1 +

85
77 v2 +

1
5 t

−
60
77 v1 −

65
77 v2 +

3
10 t

 (7)

where t is the parameter of the line. The line ` is a convex set, denoted by N in the previous discussion.
The constrained control subset Ω, which satisfies actuator position constraints (2), is a unit cube in R3:

Ω =
{
u ∈ R3 : ‖u‖∞ ≤ 1

}
(8)

Geometric interpretation of the control allocation problem can be obtained by reformulating the
problem as follows:

For a given v, find the intersection J of ` (7) and Ω (8) (9)

Three cases are possible:

• If the intersection is a segment, there is an infinite number of solutions (each point that belongs to
the segment is a solution),

• If the intersection is a point, there is only one solution,
• If the intersection is an empty set, no solution exists.

The output of the Control Allocation subsystem in Figure 1 must be a single vector for all three
cases. In the first case above, a secondary criterion (like minimum control energy) is introduced to
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select a unique solution. In the third case above, the “best” approximation is used as the output of the
algorithm. All three cases are discussed in the following in more details.

2.2. Nomenclature

The following nomenclature is adopted for referring to Ω, shown in Figure 4 [20]:

Figure 4. The constrained control subset Ω ⊂ R3 for “virtual” ROV.

The boundary of Ω is denoted by ∂(Ω). A true control vector belongs to ∂(Ω) if and only if at least
one of its components is at a limit (−1 or +1). Vertices are the points on ∂(Ω) where each component
receives a limit (min or max). In Figure 4, vertices are denoted as 0, 1, . . . , 7. In the general case,
the number of vertices is equal to 2m. Vertices are numerated using the following rule: if the vertex
is represented in a binary form, then “0” in the kth position of this representation indicates that the
corresponding component uk is at a minimum uk = −1, while ”1” indicates it is at a maximum uk = +1.
For example, binary representation for the vertex 1 is 001. Using the rule it can be decoded as u1u2u3,
which refers to the vertex generated by u1 = −1, u2 = −1, u3 = +1. Edges are lines that connect
vertices and that lie on ∂(Ω). In Figure 4 edges are denoted as 01, 02, . . . , 67. They are generated
by varying only one of the m components, while the remaining m − 1 are at their limits, associated

with the two connected vertices. In the general case, the number of edges is equal to 2m−1
(

m
1

)
. Two

vertices are connected by an edge if and only if their binary representations differ in only one bit. For
example, vertices 0 and 1 are connected by an edge 01, because their binary representations (000 for 0,
001 for 1) differ in only one (last) bit. In contrast, vertices 0 and 3 are not connected by an edge, because
their binary representations (000 for 0, 011 for 3) differ in more than one bit.

Facets are plane surfaces on ∂(Ω) that contain two adjacent edges, i.e., two edges that have a
common vertex. In Figure 4, facets are denoted as 0132, 0451, . . . , 7623. In the general case, the number

of facets is equal to 2m−2
(

m
2

)
. A facet is defined as the set in the true control space obtained by taking

all but two components at their limits and varying the two free components within their limits. For
example, for facet 0132 binary representations of its vertices are 000 for 0, 001 for 1, 011 for 3 and 010
for 2. It can be seen that the first digit in these representations is fixed, while the other digits are not
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fixed, indicating that on this facet the first component is fixed at the limit u1 = −1, while the other two
components u2 and u3 are free to vary between their limits [−1,+1].

In the virtual control space R2 the allowable virtual control subset Φ (Figure 5) is defined as a set
of all allowable virtual control inputs (unit square in R2):

Φ =
{
v ∈ <2 : ‖v‖∞ ≤ 1

}
(10)

Figure 5. The allowable virtual control subset Φ ⊂ R2 for “virtual” ROV.

2.3. Geometric Insight into Problem

Equation (1) defines a linear transformation B from the true control space R3 to the virtual
control space R2, which maps (projects) the constrained control subset (unit 3D cube) Ω into attainable
command set Φv ⊂ Φ (Figure 6).

Figure 6. The control effectiveness matrix B maps (projects) the constrained control subset Ω into
attainable command set Φv ⊂ Φ.
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In the general case, the optimal true control input is given by the solution to a two-step optimisation
problem [9]:

u = arg min ‖Wu
(
u− up

)
‖

p
, u ∈ Ψ (11)

Ψ = arg min ‖Wv(Bu− v)‖p, u ∈ Ω (12)

where up represents preferred positions of the actuator inputs (preferred true control input) and Wu

and Wv are weighting matrices. The problem defined with (11)–(12) can be interpreted as follows:
given Ψ, the set of feasible control inputs that minimise Bu− v (weighted by Wv), find the true control
input u that minimises u − up (weighted by Wu). In Equations (11) and (12) up, Wu, and Wv are
design parameters. The choice of up may correspond, for example, to minimum control deflections in
aerospace applications. The non-actuated state of the horizontal thrusters is a preferred state for an
ROV, i.e., preferred true control input in (11) is up = 0. Matrix Wu can be used for actuator prioritisation,
i.e., which actuator should be used primarily. Similarly, matrix Wv allows for prioritisation among the
virtual control inputs when the problem (11)–(12) has no exact solution. Geometric interpretation of
(11)–(12) for “virtual” ROV is given in the following example.

Example 1. Consider the control allocation problem (1)–(2) and let v =
[
−0.5 0.6

]T
is the desired virtual

control input (Figure 7). Let the optimisation objective be given by (11)–(12), with up = 0, Wu = I3,
Wv = I2.

Figure 7. Position of the desired virtual control input v in Φv.

Since v ∈ Φv, i.e., v is attainable, the problem (11)–(12) can be reduced to

min
u
‖u‖p (13)
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subject to

Bu =

[
−0.5
0.6

]
(14)

u =


−1
−1
−1

 ≤ u ≤


+1
+1
+1

 (15)

Substituting v1 = −0.5 and v2 = 0.6 in (7) yields the following solution line

` : p =


−

46
77 + 1

4 t
71
77 + 1

5 t
−

9
77 + 3

10 t

 (16)

The intersection (solution set) J of ` (16) and Ω (8) is a segment J = P1P2, where P1 =[
−1 3

5 −
3
5

]T
(for t = t1 = −123/77) and P2 =

[
−

1
2 1 0

]T
(for t = t2 = 30/77) (see Figure 8).

The points P1 and P2 belong to facets 0132 and 7623, respectively. The solution of the problem is a
point on the segment P1P2 that minimises ‖u‖p. Hence, the solution depends on the choice of the norm.

Figure 8. Solution line ` and solution set J = `Ω = P1P2.

2.4. Choice of Norm

It is useful to analyse the relationship between the choice of the norm lp, the weighting matrix Wu

and the solution of the control allocation problem for fault-free and faulty situations.
A set of points u that satisfy the condition Wu

(
u− up

)
p
≤ r is called a weighted sphere SWu

(
up, r

)
p
.

A family of spheres can be obtained by varying radius r. The optimal solution u∗ is a point where a
family of these spheres, centred at up and weighted by Wu, “touch” the set J = P1P2.

Figure 9 illustrates the situation for l1 norm. The family of spheres is represented by concentric
diamond-shaped bodies. If the radius of spheres is increased, for certain value r1 the sphere SI3(0, r1)1
will touch the segment P1P2. The touching point is a solution, which minimises ‖u‖1 and min

u
‖u‖1 = r1.
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Figure 9. Family of spheres SI3 (0, r)1 for l1 norm.

Case p = 2 is illustrated in Figure 10. Now the shape of the sphere is familiar from the Euclidian
metric. The same procedure, as described above, can be applied again: if the radius of spheres is
increased, for certain value r2 the sphere SI3(0, r2)2 will touch the segment P1P2. The touching point is
a solution, which minimise ‖u‖2 and min

u
‖u‖2 = r2.

Figure 10. Family of spheres SI3 (0, r)2 for l2 norm.
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Remarks 1.

• In the case when Wu is the unity matrix, the l2 norm distributes the virtual control demand among the
control inputs in a uniform way, while the l1 solution utilises as few control inputs as possible to satisfy the
virtual control demand.

• The l2 solution varies continuously with the parameters (elements) of B, while the l1 solution does not.
Change in a parameter (element) b of B will produce the change in the slope of `. The l2 solution will vary
continuously with b, while it can be shown that the l1 solution will have discontinuity for some value of
b = b∗ and the solution in the breakpoint b∗ is not unique.

• If Wu is a non-singular, the problem min
u
‖Wuu‖p has a unique solution for p = 2. For p = 1, this is not

always the case, as discussed above. The reason lies in the fact that the sphere SWu(0, r)2 is a strictly convex
set, while this is not the case for SWu(0, r)1.

In the following, it is assumed that p = 2, i.e., that the l2 norm is used as a measure of how good a
solution (or approximation) is. This norm represents a measure of control effort and l2 norm of solution
(11) can be interpreted as control energy cost function.

2.5. Choice of the Weighting Matrix Wu

The matrix Wu is a design parameter typically used for actuator prioritisation. If all actuators
have the same priority, then Wu is equal to the unit matrix. Otherwise, the weight of the actuator with
less priority is increased. In this way, it is possible to accommodate actuator faults by changing the
weighting matrix Wu. For example, if Wu = diag(w1, w2, w3) = diag(1, 1, 1 + ∆w3), then the faulty
horizontal thruster HT3 is penalised for ∆w3 > 0 and its contribution to the total control effort is less
than in the fault-free case (∆w3 = 0). Consider the same problem as before, but this time ∆w3 = 1, i.e.,
Wu = diag(1, 1, 2). Since w3 = 2 > w1 = w2 = 1, the third actuator has a lower priority than the other
two. Geometrically, weighted spheres in the true control space are compressed along the third control
axis and become “flattened” spheres, i.e., ellipsoids, as indicated in Figure 11.

Figure 11. Family of spheres SI3 (0, r)2 for l2 norm and case Wu = diag(1, 1, 2).
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In this way, the solution (touching point of the family of ellipsoids with the segment P1P2) exhibits
a lower contribution of the third control and higher participation of the other two controls, compared
to the previous case, when all actuators had the same priority. The additional introduction of nonzero
off-diagonal elements into the symmetric matrix Wu yields to the rotation of these ellipsoids around
the centre.

3. Control Allocation Solution: Hybrid Method

3.1. Description

The hybrid method for control allocation is based on the integration of the weighted pseudoinverse
and the fixed-point method and implemented as a two-step process. The weighted pseudoinverse
solution is found in the first step. Then, the feasibility of the solution is examined analysing individual
components of the solution. If violation of actuator constraint(s) is detected, the fixed-point method is
activated in the second step, which results in a guaranteed feasible solution. In this way, the hybrid
method can allocate the exact solution, optimal in the l2 sense, inside the entire attainable command
set. This solution minimises the control energy cost function, which is the most suitable criteria for
underwater applications.

3.2. Weighted Pseudoinverse

3.2.1. Introduction

The first step of the hybrid method relies on the fact that an explicit solution to the unconstrained
control allocation problem

min ‖Wuu‖2 (17)

subject to Bu = v is given by
u = B†Wu

v (18)

where the matrix B†Wu

B†Wu
= W−1

u

(
BW−1

u

)†
= W−1

u BT
(
BW−1

u BT
)−1

(19)

is the weighted pseudoinverse of B [20]. For “virtual” ROV the matrix B†Wu
is given by

B†Wu
=

1
25w1 + 16w2 + 36w3


8(4w2 + 9w3) −10(2w2 − 3w3)

−40w1 5(5w1 + 12w3)

−60w1 −5(5w1 + 8w2)

 (20)

where

Wu =


w1 0 0
0 w2 0
0 0 w3

 (21)

For case Wu = I3 the weighted pseudoinverse (20) is given by (the change of weights in Wu

produces the change in slope of the parallelogram Ωv and, consequently, the change in shape of Ωp)

B†I3
=


b†11 b†12
b†21 b†22
b†31 b†32

 =


1.3506 0.1299
−0.5195 1.1039
−0.7792 −0.8442

 (22)

The weighted pseudoinverse (18) is mapping from k = 2-dimensional virtual control space to
m = 3-dimensional true control space (Figure 12). The allowable virtual control subset (unit square
Φ = V0V1V3V2) is mapped by the weighted pseudoinverse to a parallelogram Ωv = U0U1U3U2.
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intersection of the parallelogram Ωv with the constrained control subset Ω is a convex polygon
Ωp = R13R15R45R46R26R23, where the vertex Ri j lies on the edge i j of Ω.

Figure 12. The Weighted Pseudoinverse as a mapping from Virtual Control Space to True Control Space.
Partitions of the Virtual Control Space are: allowable virtual control subset Φ, attainable command
set Φv and feasible region for the weighted pseudoinverse Φp. Images of these partitions in the true
control space are: Ωv = B†Wu

(Φ), Ωe = B†Wu
(Φv) and Ωp = B†Wu

(
Φp

)
.

The following discussion will address these issues:

• Find Φp ⊂ Φv such that B†Wu

(
Φp

)
= ΩP,

• Find B†Wu
(Φv).

To find Φp it is sufficient to find points Pi j such that

Ri j = B†Wu

(
Pi j

)
(23)

Let Pi j =
[

vi j
1 vi j

2

]T
and Ri j =

[
ui j

1 ui j
2 ui j

3

]T
. Then (23) can be rewritten as

b†11vi j
1 + b†12vi j

2 = ui j
1

b†21vi j
1 + b†22vi j

2 = ui j
2

b†31vi j
1 + b†32vi j

2 = ui j
3

(24)

The fact that Ri j ∈ i j of Ω means that Ri j is bounded to the edge i j defined by vertices i and j,
i.e., two coordinates (controls) of Ri j are fixed to their limits, while one is free to vary. Recall that the
nomenclature for edges, introduced in Section 2.2, enables easy detection of free and fixed controls
for i j: binary representations of vertices i and j differ in only one bit and the position of this bit
indicates a free control for i j. For example, the edge 13 is determined by vertices 1 and 3. The binary
representations of 1 (001) and 3 (011) differ in the second bit, which means that free control is u13

2 ,
while fixed controls are u13

1 = u1 = −1 and u13
3 = u3 = +1. Once the fixed and free controls for i j

are obtained, it is easy to find coordinates vi j
1 and vi j

2 of Pi j from (24) by removing the equation that
corresponds to free control and replacing the right-hand sides of other equations with corresponding
limits for fixed controls. For example, for R13 system (24) can be rewritten as

b†11v13
1 + b†12v13

2 = u13
1

b†21v13
1 + b†22v13

2 = u13
2

b†31v13
1 + b†32v13

2 = u13
3

(25)
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Free control is u13
2 so the second equation is removed, while the right-hand sides of the first and

the third equation are replaced with u13
1 = u1 = −1 and u13

3 = u3 = +1, respectively:

b†11v13
1 + b†12v13

2 = −1
b†31v13

1 + b†32v13
2 = +1

(26)

which yields the solution v13
1 = −0.6875 and v13

2 = −0.5500. Other vertices can be found similarly, and
results are shown in Table 3 (vertices Pi j) and Table 4 (vertices Ri j). Hence, the subset Φp ⊂ Φv such
that B†Wu

(
Φp

)
= Ωp is a convex polygon P13P15P45P46P26P23, whose vertex Pi j lies on the edge i j of Φv

(Figure 12).

Table 3. Vertices of Φp .

P23 P45 P13 P46 P15 P26

v1 −0.7917 0.7917 −0.6875 0.6875 −0.2000 0.2000
v2 0.5333 −0.5333 −0.5500 0.5500 −1.0000 1.0000

Table 4. Vertices of Ωp = B†Wu

(
Φp

)
.

R23 R45 R13 R46 R15 R26

u1 −1.0000 1.0000 −1.0000 1.0000 −0.4000 0.4000
u2 1.0000 −1.0000 −0.2500 0.2500 −1.0000 1.0000
u3 0.1667 −0.1667 1.0000 −1.0000 1.0000 −1.0000

The pseudoinverse image of Φv is a convex polygon Ωe = B†Wu
(Φv). Vertices 1, 2, 3, 4, 5 and 6 of

Φv are mapped to vertices 1, 2, 3, 4, 5, 6 of Ωe that lie outside Ω, while nodes 0 and 7 of Φv are mapped to
nodes 0 and 7 of Ωe that lie inside Ω. The virtual control space can be partitioned into three characteristic
regions (Figure 12): feasible region for the pseudoinverse Φp (polygon P13P15P45P46P26P23), Φv\Φp

(union of triangles 1P15P13, 3P13P23, . . . , 5P45P15) and Φ\Φv (union of triangles V0 1 3, . . . , V2 4 5). The
weighted pseudoinverse image of each partition lies inside the parallelogram Ωv (Figure 12). Table 5
displays cross-relation between these polygons in the virtual and the true control space.

Table 5. Cross-relation between the virtual and the true control space.

Virtual Control Space True Control Space

Partition Polygon Partition Polygon

Φp P13P15P45P46P26P23 Ωp R13R15R45R46R26R23

Φv\Φp

1 P15P13

Ωe\Ωp

1 R15R13
3 P13P23 3 R13R23
2 P23P26 2 R23R26
6 P26P46 6 R26R46
4 P46P45 4 R46R45
5 P45P15 5 R45R15

Φ\Φv

V0 1 3

Ωv\Ωe

U0 1 3
V1 3 2 U1 3 2
V3 6 4 U3 6 4
V2 4 5 U2 4 5

Subset Φp represents a part of the allowable virtual control subset Φ attainable (feasible) by
weighted pseudoinverse. That is, if v ∈ Φp, then u∗ = B†Wu

(v) = ` ∩ Ωp and ‖u‖∗2 = min
Bu=v
‖u‖2 (see

Figure 13). The sphere with the centre at 0 and radius ‖u‖∗2 is also shown in Figure 13. This sphere
touches the solution line ` at u∗. In other words, if the virtual control input lies in Φp, then the weighted
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pseudoinverse solution is the intersection of the solution line ` and parallelogram Ωp = B†Wu

(
Φp

)
,

it is feasible and has a minimal l2 norm compared to any other solution. Otherwise, if v < Φp,
then u = B†Wu

(v) < Ω, which means that the virtual control input v is not feasible with weighted
pseudoinverse, although some other choice of general inverse or application of other methods, like
the fixed-point method, could find a feasible solution. This aspect of the relationship between the
position of the virtual control input and the feasibility of the solution is important and discussed in the
following example.

Figure 13. Geometric interpretation of pseudoinverse: for a given v ∈ Φp, the weighted pseudoinverse
solution is an intersection of the solution line and Ωp = B†Wu

(
Φp

)
and has a minimal l2 norm compared

to any other solution.

Example 2. Consider the control allocation problem (1)–(2) and let S =
[

v1 v2
]T

denotes an arbitrary point
from the allowable virtual control subset Φ. Recall that a total solution set J is given by the intersection of the
line ` (7) and Ω. When a point S moves inside Φ, the corresponding line ` moves in the true control space. For a
given S, the weighted pseudoinverse will select the solution from J where the line ` intersects the parallelogram
Ωv. Three characteristic cases are possible, regarding the position of S relative to the partitions of Φ (Figure 14):

1. S = S1 ∈ Φp,
2. S = S2 ∈ Φv\Φp,
3. S = S3 ∈ Φ\Φv.
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Figure 14. Three typical cases for the position of virtual control inputs relative to Φp and Φv.

Case 2.1: In this case, point S1 lies inside Φp and the weighted pseudoinverse solution is
T1 = B†Wu

(S1) that lies inside Ωp (Figure 15). A solution set is a segment J1 = `1 ∩ Ω. This segment
intersects the parallelogram Ωv in the point T1 = J1 ∩ Ωv. From all solutions in J1, the solution T1,
selected by weighted pseudoinverse, is optimal in l2 sense.

Figure 15. Case S1 ∈ Φp yields to the pseudoinverse solution T1 ∈ Ωp ⊂ Ω that is optimal in l2 sense.

For example, if S1 =
[
−0.6 0.4

]T
, then the solution set is a segment J1 = P1P2 = `1 ∩ Ω,

P1 =
[
−1 14/25 −4/25

]T
, P2 =

[
−9/20 1 1/2

]T
(Figure 15). The weighted pseudoinverse

solution (T1 = B†Wu
(S1) =

[
−0.7584 0.7532 0.1299

]T
) represents the point where the segment

P1P2 intersects the parallelogram Ωv. This solution is feasible since it belongs to Ω.
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Case 2.2: In this case, point S2 lies outside Φp, but inside Φv. The image T2 = B†Wu
(S2) lies outside

Ωp, but inside Ωe (Figure 16). Geometrically, a solution set is the segment J2 = `2 ∩ Ω that does not
intersects with Ωv, which means that the weighted pseudoinverse solution T2 lies on J2 = `2 but
outside J2, i.e., T2 < Ω. Hence, the virtual control input S2 is unfeasible (unattainable) by weighted
pseudoinverse, but, because J2 is not empty, some other methods (like fixed-point method) can allocate
solution from J2, optimal in l2 sense.

Figure 16. Case S2 ∈ Φv\Φp yields to the unfeasible weighted pseudoinverse solution T2 ∈ Ωe\Ωp that
lies outside Ω.

For example, if S2 =
[
−0.9375 0.1600

]T
, then the solution set is a segment J2 = P1P2 = `2 ∩Ω,

P1 =
[
−1 43/50 89/100

]T
, P2 =

[
−9/20 1 1/2

]T
(Figure 16). The weighted pseudoinverse

solution (T2 = B†Wu
(S2) =

[
−1.2455 0.6636 0.5955

]T
) represents the point where the line `2

intersects the parallelogram Ωv. This solution is unfeasible since it lies on the line `2 outside J2, and
does not belong to Ω.

Case 2.3: Finally, in the last case point S3 lies outside Φv, but inside Φ (Figure 17). The image
T3 = B†Wu

(S3) lies outside Ωe, but inside Ωv (Figure 17). In this case line `3 does not intersect with Ω, i.e.,
J3 is an empty set, and the exact solution of the problem does not exist. The weighted pseudoinverse
solution T3 is unfeasible, since it does not belong to Ω.
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Figure 17. Case S3 ∈ Φ\Φv yields to the unfeasible weighted pseudoinverse solution T3 ∈ Ωv\Ωe that
lies outside Ω.

For example, if S3 =
[
−0.9000 0.5000

]T
, then the solution line ` = `3 (7) is given by

`3 : p =


−

493
385 + 1

4 t
−

13
154 + 1

5 t
173
154 + 3

10 t

 (27)

The line `3 does not intersect Ω, and the exact solution of the control allocation problem does
not exist (Figure 17). However, the intersection of `3 and Ωv is the weighted pseudoinverse solution

T3 = B†Wu
(S3) =

[
−1.2805 −0.0844 1.1234

]T
. This solution lies outside Ω and is not feasible.

This example demonstrated that the weighted pseudoinverse could allocate the exact solution
(optimal in l2 sense) only if the virtual control input v lies in Φp. Otherwise, if v ∈ Φ\Φp, the weighted
pseudoinverse finds solutions that lie outside Ω, i.e., that violate control constraints. The approximation
of these solutions is the topic of the following section.

3.2.2. Approximation of Unfeasible Solution

If a virtual control input v lies outside Φp (for example, S2 and S3 in Figure 14), then the weighted
pseudoinverse solution u = B†Wu

v is unfeasible and lies outside Ω, i.e., it violates control constraints
(T2 in Figure 16 and T3 in Figure 17). In this case, it is necessary to approximate unfeasible u < Ω with
feasible u∗ ∈ Ω such that Bu∗ ≈ v.

Definition 1. (Approximation Error): The approximation error is defined as e = v− v∗, where v is the virtual
control input, v∗ = Bu∗ is an approximation of v and u∗ is an approximation of u = B†Wu

v. To be able to

compare different approximations, two scalar errors are introduced: direction error θ = cos−1 vT
·v∗

‖v‖2‖v‖
∗
2

and magnitude error ‖e‖2 = ‖v− v∗‖2. The direction error represents the angle between v and v∗, while the
magnitude error represents the module of the approximation error vector e (Figure 18). In the case when θ = 0,
the approximation v∗ preserves the direction of the original vector v.
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Figure 18. Approximation error e = v− v∗ = v−Bu∗: (a) Case θ , 0; (b) Case θ = 0.

Two common approximations (Truncation and Scaling) are defined in the following:
Truncation (T-approximation): In this case approximation u∗t is obtained from u by truncating

(clipping) all controls that exceed their control constraints.
Scaling (S-approximation): In this case approximation u∗s is obtained from u by scaling all

components by factor f such that u∗s = f u ∈ ∂
(
Ωp

)
.

T-approximations (T∗2t and T∗3t) and S-approximations (T∗2s and T∗3s) of unfeasible weighted
pseudoinverse solutions T2 (Case 2.2) and T3 (Case 2.3) are shown in Figure 19, respectively.

Figure 19. Approximation of unfeasible pseudoinverse solutions in the true control space.

Remarks 2.

• T-approximation u∗t of the unfeasible pseudoinverse solution, u introduces direction error θt , 0, i.e., vectors
v and v∗t have not the same direction. At the same time, the direction error θs = 0 for S-approximation u∗s,
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i.e., vectors v and v∗s always have the same direction, but the magnitude error ‖es‖2 = ‖v−v∗s‖2 is greater
than ‖et‖2 = ‖v− v∗t‖2.

• The fixed-point method (Section 3.3) is able to improve the T- or S-approximation of the unfeasible weighted
pseudoinverse solution u. Approximations u∗t or u∗s can be used as the initial iteration u0 and the algorithm
will find the solution u∗f such that v∗f = Bu∗f is a better approximation of v than v∗t or v∗s. This feature is
the main idea of the hybrid approach for control allocation.

3.3. Fixed-Point Method

Introduction

The fixed-point method [21] finds the control vector u that minimises

J(u) = (1− ε)Wv‖(Bu− v)‖22 + ε‖Wuu‖22 (28)

subject to (2), where |ε| < 1. The algorithm proceeds by iterating on the equation

uk+1 = sat
[
(1− ε)ηBTQ1v− (ηH− I)uk

]
(29)

where
Q1 = WT

v Wv (30)

Q2 = WT
u Wu (31)

H = (1− ε)BTQ1B + εQ2 (32)

η = 1/‖H‖2 (33)

and sat[u] is the saturation function that clips the components of the vector u to their limits. The
condition for stopping the iteration process is∣∣∣J(uk+1) − J(uk)

∣∣∣ < tol (34)

The fixed-point algorithm is very simple, and most computations need to be performed only once
before iterations start. The only condition for the initial point is u0 ∈ Ω. However, the number of
iterations depends on the desired accuracy and the choice of the initial point (solution). To improve
efficiency, authors [22] suggest selecting the initial point u0 as the true control input calculated at the
previous time sample, i.e., u0(t) = u(t− T). Design parameters of the fixed-point method are Wu, Wv,
ε and tol.

Example 3. In this example, the fixed-point method is used to find a feasible solution for Case 2.2 from Example 2,
optimal in l2 sense. Design parameters are Wu = I3, Wv = I2, ε = 10−6 and tol = 10−6. Results are shown in
Figure 20 and Table 6. Since the (unfeasible) pseudoinverse solution u2 = T2 has been already found (Figure 16),
it is natural to choose the feasible approximation of this solution as the initial point for the iteration. Two

choices are available: the T-approximation u∗2t = T∗2t =
[
−1.0000 0.6636 0.5955

]T
and S-approximation

u∗2s = T∗2s =
[
−1.0000 0.5328 0.4781

]T
, obtained by scaling T2 by factor f2 = 0.8029. Fixed-point

iterations in the True Control Space are shown in Figure 20a. Individual iterations are shown as black dots if they
start from the T-approximation, and as red dots, if they start from the S-approximation. Details about iterations
are given in Table 6. If v2 ∈ Φv\Φp, the fixed-point algorithm converges toward the exact solution T∗2 f = P1,
which lies on the solution set J2 and has a lower l2 norm than any other point in J2. The corresponding sequence
in the virtual control space converges toward the desired S∗2 f = S2 (Figure 20b).
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Figure 20. Fixed-points iterations for v2 ∈ Φv\Φp: (a) True Control Space: Black dots (Red dots)
represent iterations starting at T∗2t (T∗2s); (b) Virtual Control Space: Black dots (Red dots) represent
virtual control inputs related to iterations starting at T∗2t (T∗2s).

Table 6. Iterations of the fixed-point method for v2 ∈ Φv\Φp .

Initial
Point

# Of
Iterations

Last
Iteration Limit

Obtained
Virtual Control

Input

Desired Virtual
Control Input

Direction
Error

Magnitude
Error

u0 k ufk
u f vfk

v θk ‖ek‖2

u∗2t 19

 −1.0000
0.8585
0.8874


 −1.0000

0.8600
0.8900


[
−0.9365
0.1601

] [
−0.9375
0.1600

]
0.0181◦ 0.0010

u∗2s 20

 −1.0000
0.8582
0.8870


 −1.0000

0.8600
0.8900


[
−0.9363
0.1601

] [
−0.9375
0.1600

]
0.0208◦ 0.0012

3.4. Algorithm (Hybrid Method)

Step 1: For a given τd (vd), find the weighted pseudoinverse solution.
Step 2: If the solution is feasible, go to Step 4.
Step 3: Use the fixed-point method (Section 3.3) to find a feasible solution.
Step 4: Perform additional modifications (correction for non-symmetrical thrust-speed curves,

scaling, type casting, etc.).
Step 5: Deliver the output to the Thruster Interface module.

It should be emphasized that the number of fixed-point iterations, performed to find the feasible
solution for cases when the weighted pseudoinverse solution is unfeasible, depends on the desired
accuracy and the choice of the design parameters. The desired accuracy is closely related to requirements
imposed by the Thruster Interface module. For example, some thruster control protocols require desired
velocities to be presented as integer numbers between −100 and +100. This means that the true control
space for motion in the horizontal plane is discretised by the uniform grid of 2014 = 1.632240801× 109

discrete control vectors and each solution must be rounded to the closest point in the grid. Design
parameters must be chosen to take into account these issues.
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3.5. Extension of Concepts from “virtual” ROV to Open-Frame ROV

In previous sections, the main idea of the hybrid method is visualised, and the deep geometric
insight is provided using a “virtual” ROV in low-dimensional control spaces, including visualisation
of the attainable command set, solution lines, control energy spheres and the role of pseudoinverse
and fixed-point iterations. In this section, the same concepts are extended to higher-dimensional cases,
for open-frame ROV with four X-shaped (vectored) horizontal thrusters.

Condition (4) for open-frame ROV determines the constrained control subset Ω, that is, the unit
4D cube (the tesseract) in true control space:

Ω =
{
u ∈ R4 : ‖u‖∞ ≤ 1

}
(35)

The tesseract Ω (35) has 8 cells, 24−2
(

4
2

)
= 24 faces, 24−1

(
4
1

)
= 32 edges and 24 = 16 vertices.

Equation (3) defines a linear transformation from the true control space R4 to the virtual control space
R3, which maps (projects) the tesseract Ω into attainable command set Φv (see Figure 21), a subset of
the allowable virtual control subset Φ (the unit 3D cube), defined as

Φ =
{
τ ∈ R3 : ‖τ‖∞ ≤ 1

}
(36)

Figure 21. The allowable virtual control subset Φ ⊂ R3 and the attainable command set Φv for
open-frame ROV.

Coordinates of vertices of Ω and Φv are shown in Table 7. Recall from Section 2.2 that the
component values (controls) of u in a vertex can be decoded from its binary representation. For
example, decoding the binary representation 1000 of the vertex 8 yields u1 = +1, u2 = −1, u3 = −1
and u4 = −1.
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Table 7. Coordinates of vertices of Ω and Φv.

Vertices of Ω Vertices of Φv

Label Coordinates Label Coordinates

0 −1 −1 −1 −1 0 −1.0 0.0 0.0
1 −1 −1 −1 +1 1 −0.5 −0.5 0.5
2 −1 −1 +1 −1 2 −0.5 0.5 −0.5
3 −1 −1 +1 +1 3 0.0 0.0 0.0
4 −1 +1 −1 −1 4 −0.5 −0.5 −0.5
5 −1 +1 −1 +1 5 0.0 −1.0 0.0
6 −1 +1 +1 −1 6 0.0 0.0 −1.0
7 −1 +1 +1 +1 7 0.5 −0.5 −0.5
8 +1 −1 −1 −1 8 −0.5 0.5 0.5
9 +1 −1 −1 +1 9 0.0 0.0 1.0
A +1 −1 +1 −1 A 0.0 1.0 0.0
B +1 −1 +1 +1 B 0.5 0.5 0.5
C +1 +1 −1 −1 C 0.0 0.0 0.0
D +1 +1 −1 +1 D 0.5 −0.5 0.5
E +1 +1 +1 −1 E 0.5 0.5 −0.5
F +1 +1 +1 +1 F 1.0 0.0 0.0

Considering Equation (3) (system of three linear equations with four unknown variables) from a
row perspective, the solution set is the hyper line ` (the intersection of three hyperplanes in 4D space).
The overall solution of the control allocation problem (3)–(4) is a solution set =, the intersection of
hyper line ` and Ω. The existence and uniqueness of the solution u depends on the position of the
virtual control input τ relative to the attainable command set Φv:

• If τ lies inside Φv, then = has an infinite number of points, and the control allocation problem has
an infinite number of solutions.

• If τ lies on the boundary of Φv, then = is a single point, the unique solution for the control
allocation problem.

• If τ lies outside Φv, then = is an empty set, i.e., no exact solution exists, only approximation.

For the X-shaped configuration of horizontal thrusters the matrix B†Wu
is given by

B†Wu
=

2∑4
i=1 wi


w3 + w4 w2 + w3 w2 + w4

w3 + w4 −(w1 + w4) −(w1 + w3)

w1 + w2 w1 + w4 −(w2 + w4)

w1 + w2 −(w2 + w3) w1 + w3

 (37)

Feasibility of the weighted pseudoinverse solution

u = B†Wu
τ (38)

depends on the position of virtual control input τ inside the allowable virtual control subset Φ.
For a fault-free case, when Wu is the identity (unit) matrix, the shape of the feasible region for the
pseudoinverse Φp, defined as a set of virtual control inputs τ that satisfy (38) subject to u ∈ Ω, is shown
in Figure 22. The boundary of a convex polyhedron Φp represents a set of all virtual control inputs
for which at least one component of the pseudoinverse solution (38) receives extreme value. This
boundary is determined by the intersection of the four pairs of parallel planes π+k (π−k ), k = 1, 4, where
the plane π+k (π−k ) represents a set of all virtual control inputs for which kth component of solution (38)
satisfies uk = +1 (−1).
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Figure 22. The feasible region for the weighted pseudoinverse Φp inside the allowable virtual control
subset Φ for X-shaped configuration of horizontal thrusters (fault-free case).

The weighted pseudoinverse can find the exact feasible solution of the control allocation problem,
optimal in the l2 sense, only if τd ∈ Φp. Geometrically, Equation (38) defines a linear transformation
from the virtual control space to the hyperplane Π in the true control space<4. The intersection of this
hyperplane with the hyper line ` (solution of Bu = τ) is the point u∗ where the family of weighted
hyperspheres “touch” the hyper line `. Since τ ∈ Φp, this intersection determines a feasible solution
u∗ = B†Wu

τ ∈ Ω, optimal in l2 sense. The main issue with the weighted pseudoinverse is that the
feasible region for the weighted pseudoinverse Φp is a subset of attainable command set Φv (Φp ⊂ Φv),
and the weighted pseudoinverse cannot find an optimal feasible solution on the entire Φv.

Extending ideas from Section 3.2, the allowable virtual control subset Φ can be partitioned
into characteristic regions, as indicated in Figure 23. The two characteristic regions inside Φ are Φp

and Φv ⊃ Φp. The weighted pseudoinverse is able to find the exact feasible solution of the control
allocation problem, optimal in l2 sense, only if τ ∈ Φp. Otherwise, for τ ∈ Φv\Φp, the solution obtained
by weighted pseudoinverse is unfeasible. However, the fixed point method can find the solution,
optimal in l2 sense, for case τ ∈ Φv\Φp. Finally, for case τ ∈ Φ\Φv, the solution does not exist, and
approximation must be used (for example, T-approximation (truncation) or S-approximation (scaling),
as described in Section 3.2.2).

It is useful to visualise the change in shapes of the attainable command set Φv and the feasible
region for the weighted pseudoinverse Φp depending on faulty thruster states. In the fault-free state,
all thrusters are equally prioritised, and the actuator position constraint in (4) is |uk| ≤ 1 for each
component. In faulty case, faulty thruster HTi is penalised such that |ui| ≤ si < 1. The numerical value
of the constraint bound si depends on the type of fault.

Change in the constraint bound yields to increase of corresponding weight in the weighting matrix
Wu

wi = 1 + ∆wi (39)

where

∆wi = 2
(

1
si
− 1

)
(40)

In the faulty case, restriction of constraints bounds reduces the size of the constrained control
subset Ω, i.e., Ω is “clipped” to new actuator position constraint si for an ith component of u. The
image of the “clipped” Ω under mapping (3) is reduced attainable command set Φv. Hence, the
feasible region for the pseudoinverse Φp and the attainable command set Φv decrease in the case of a
fault in the single thruster. In particular, Figure 24a displays Φp only and Figure 24b shows Φp&Φv

for the case of a partial fault in HT2 (s2 = 0.5, w2 = 3). Analysing (37) and (38), the geometrical
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interpretation of change in the shape of Φp can be obtained by observing that the change of weight
w2 yields the change of slopes of the planes π−k and π+k , k ∈ {1, 3, 4}, while the planes π−2 and π+2 with
actuator position constraints −0.5 and +0.5 respectively moved closer to the origin, staying parallel,
without changing their slopes. The image of the “clipped” constrained control subset Ω is the reduced
attainable command set Φv, as shown in Figure 24b. It can be seen that the relation Φv ⊃ Φp is still
valid, i.e., the weighted pseudoinverse is not able to find a feasible solution for case τd ∈ Φv\Φp.
Similar to the fault-free case, the fixed-point method is triggered in this case, able to find a feasible
solution optimal in l2 sense. In this way, the hybrid method allocates the entire attainable command
set optimally, despite the limited (restricted) usage of a faulty thruster.

Figure 23. Partitions of the allowable virtual control subset Φ for X-shaped configuration of horizontal
thrusters (fault-free case).

Figure 24. Partitions of the allowable virtual control subset Φ for X-shaped configuration of horizontal
thrusters (partial fault in HT2, s2 = 0.5, w2 = 3): (a) Φp; (b) Φp&Φv.

Partitions of the allowable virtual control subset for the extreme case (shutdown of HT2) is
shown in Figure 25. In particular, Figure 25 displays Φp ≡ Φv. for the case of a total fault in HT2

( s2 = 0.0, w2 →∞) . This means that the thruster HT2 is disabled and the redundancy is eliminated by
removing the variable u2 and the second column of matrix B from (3). The modified thruster control
matrix B is a non-singular 3× 3 square matrix, and the problem can be solved in a standard way. The
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ratio of volumes of attainable command sets in Figures 24b and 25 relative to the full size Φv (Figure 23),
can be used as a measure of loss in manoeuvring capabilities.

Figure 25. Partitions of the allowable virtual control subset Φ for X-shaped configuration of horizontal
thrusters (total fault in HT2, s2 = 0.0, w2 →∞ ): Φp ≡ Φv.

The constrained control subset Ω becomes the 3D unit cube, a subset in 4D virtual control space,
defined as

Ω =
{
(u1, 0, u3, u4) ∈ <

4 : |u1| ≤ 1, |u3| ≤ 1, |u4| ≤ 1
}

(41)

Ω is mapped by modified B to Φv, which coincides with Φp, as indicated in Figure 25.

4. Testing and Validation

The hybrid method for control allocation, described in this paper, has been used as a foundation
to build the thruster Fault-Tolerant Control system (FTC). The performance of FTC has been evaluated
and validated in a virtual and real-world environment.

4.1. Evaluation of the FTC in Virtual Environment

In the virtual (simulated) environment thruster faults are simulated by varying properties of the
dynamic thruster model (load, friction, etc.) inside the propulsion subsystem of the ROV dynamics
simulator. More information about simulation models can be found in (Omerdic, 2009). To enhance
the graphical presentation of simulation results, a virtual underwater world has been developed with
open-frame ROV model moving in an underwater environment. The relative position of different
objects in the underwater world is shown in Figure 26. Three particular objects (the rock with a hole in
the middle, long pipe and ”Stonehenge”-like group of rocks) were used throughout the number of test
cases to evaluate the manoeuvring capabilities and performance of the ROV when equipped with the
FTC. Selected test cases will demonstrate the ability of the FTC to complete the mission in the presence
of a single (partial and total) fault in HT2. Diagrams for fault-free and faulty cases are shown next
to each other, to provide an easier comparison. Command inputs in test cases were generated using
pre-defined signals read from a file.

Two criteria are introduced to measure control effort over time:

Weighted criterion : JWu = uTWuu (42)
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and
Normal criterion : Jn = uTu (43)

The weighted criterion JWu , minimised by the hybrid method, can be interpreted as a weighted
control energy cost function. In contrast, the normal criterion Jn represents the actual control energy
cost function, that is, a real measure of control effort. In fault-free case JWu = Jn, whereas in faulty
situations, JWu ≥ Jn. Criteria JWu and Jn are denoted in diagrams as JW and Jn, respectively.

Figure 26. Virtual underwater world.

4.1.1. Partial Fault in HT2

This test case compares the performance of the FTC for two cases. In the first case, a simulation
was performed assuming fault-free states in all thrusters. The second case considered fault-free
states in thrusters HT1, HT3 and HT4, and a faulty state in thruster HT2 (partial fault, s2 = 0.5). The
same command input vector τd(t) was used to drive the ROV model in both cases. The mission
objective was to move the vehicle from the start point A through the pipe along the straight line.
Figure 27a displays time diagrams of τd(t), τ(t), u(t), JWu(t), Jn(t), v(t) and Ψ(t), the plan view
of the trajectory (xE(t), yE(t)) and partitions Φp & Φv of the allowable virtual control subset Φ for
the first case. Diagrams for the second case are shown in Figure 27b. It can be seen that, in the
fault-free case, the vehicle performs the perfect straight-line motion, vector τd(t) lies inside Φv for
all time and τd(t) ≡ τ(t), JWu(t) ≡ Jn(t), ∀t. The situation is different for the second case, where the
limited usage of HT2 reduction in the size of the Φp and Φv (see Figure 24), and the trajectory τd(t)
becomes partially unfeasible, i.e., τ(t) lies partially outside Φv. The FTC uses the S-approximation to
approximate unfeasible solutions in these cases, which leads to an approximation τ(t) = τs(t) with
the same direction as unattainable command input τd(t), but lower magnitude. The unfeasible part
of trajectory τd(t) is characterised by relationship τ(t) = τd(t) and indicated as shadowed regions
in time responses shown in Figure 27b. Pairs of thrusters HT1 & HT2 and HT3 & HT4 are equally
actuated for straight-line motion (u1(t) = u2(t) and u3(t) = u4(t), respectively). The velocity profile
v(t) follows the profile of τX(t), which is now different than τXd(t), and the vehicle moves slower in
shadowed region than in the fault-free case. However, heading Ψ(t) is constant in both cases, but
trajectories (xE(t), yE(t)) are slightly different. The first difference stems from the fact that the higher
forward velocity in the fault-free case means that the vehicle covers a longer distance than in the faulty
situation, i.e., AB f ault− f ree > ABpartial f ault in HT2. The second difference comes from the shapes of the
trajectories (xE(t), yE(t)). In the first case, it is a perfectly straight line, whereas, in the second case,
although symmetrical pairs of thrusters have opposite spin direction coefficients, the vehicle is shifted
from the straight line, such that the drift at the endpoint B is approximately 2.7cm. The drift is caused
by unequal actuation of symmetrical thrusters in the second case, which leads to non-zero angular
moments from these pairs, resulting in non-perfect straight-line motion of the vehicle.
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Figure 27. Partial fault in a single thruster: (a) All thrusters healthy; (b) HT2 is faulty (s2 = 0.5).

This test case demonstrates that, in the presence of a single partial fault in HT2, the faulty vehicle
is able to perform straight-line motion with satisfactory performance. An unavoidable effect is a drop
in forward velocity for cases when the command input vector τd(t) lies outside reduced Φv.
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4.1.2. Total Fault in HT2

This is an extreme case, where HT2 is switched off, and the mission must be accomplished with
three remaining horizontal thrusters. Recall from Figure 25 that Φp and Φv have the same shape (small
parallelepiped inside the virtual control space), as indicated in Figure 28b. The volume of Φp and Φv is
smaller than in Section 4.1.1, which yields the wider shadowed region, i.e., the larger unfeasible part of
the trajectory τd(t). Besides, a drop in velocity v(t), is larger for this test case. The faulty vehicle covers
the shorter distance (AB f ault− f ree > ABtotal f ault in HT2) and the drift at the endpoint B is approximately
2.7cm. Nevertheless, again the heading Ψ(t) is constant for all time.

Figure 28. Total fault in a single thruster: (a) All thrusters healthy; (b) HT2 is faulty (s2 = 0.0).
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This test case reveals an important feature of the FTC; that is, despite the presence of a total
fault in HT2, which is switched off, the vehicle, equipped with the FTC, is able to continue the
straight-line motion and complete the mission with acceptable performance. As in previous cases, the
unavoidable consequence is a drop in velocity for cases when the command input vector τd(t) lies
outside reduced Φv.

Materials and Methods should be described with sufficient details to allow others to replicate
and build on published results. Please note that publication of your manuscript implicates that you
must make all materials, data, computer code, and protocols associated with the publication available
to readers. Please disclose at the submission stage any restrictions on the availability of materials
or information. New methods and protocols should be described in detail while well-established
methods can be briefly described and appropriately cited.

4.2. Evaluation of the FTC in Real-World Environment

The FTC has been used as a foundation for the development of OceanRINGS, a set of smart
technologies for subsea operations. The OceanRINGS [23] is a generic fault-tolerant ROV control
system, built to make complex subsea tasks simple, and which combines state-of-the-art navigation
equipment with the best control algorithms and emerging VR technologies to provide smart, intuitive
and easy to use user interface, enabling average pilots to achieve exceptional results. The performance
of FTC has been evaluated and validated during several research cruises in period 2009–2019 off the
West coast of Ireland using observation-class ROV Latis and work-class ROV Étaín. Smart, multiple
modes of operation observation-class ROV Latis [23] (Figure 29a) has been designed at UL in period
2006–2009 and used as a prototype platform to design and develop OceanRINGS modules. The
work-class ROV Étaín (modified ROV Comanche by SubAtlantic, Figure 29b) has been extended
with OceanRINGS control suite. Dual-mode of operation provides an opportunity to evaluate the
performance of both control systems under the same conditions. Selected results from these trials,
related to testing of fault-tolerant control system features, are described in the following.

Figure 29. Underwater robots: (a) observation-class ROV Latis; (b) work-class ROV Étaín.

4.2.1. Path Following: Simulated Faults

The path following test with simulated faults has been performed during the research cruise in
Bantry Bay (Figure 30) when ROV Latis has been deployed from support vessel Celtic Voyager in
free-swimming mode. Since the vessel Celtic Voyager was not equipped with Dynamic Positioning
(DP) system, it used an anchor to hold the position during the test.
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Figure 30. Location of the research cruise.

The path was defined as a set of waypoints 0, 1, 2, 3, 4 & 5, connected with straight-line segments
01, 12, 23, 34 & 45, as indicated in Figure 31. The main objective was an evaluation of the FTC
performance in path following, with simulated faults in single thrusters along the path. Thruster states
along path segments are given in Table 8. The main sensor system for navigation, integrated on ROV
Latis, was iXBlue PHINS, with several aiding sensors: GAPS USBL, RDI DVL, GPS and Digiquartz
pressure depth sensor.

Figure 31. Path segments.

Table 8. Thruster states, along with path segments.

Segment HT1 HT2 HT3 HT4

01 ON ON ON ON
12 ON ON ON ON
23 ON ON ON OFF
34 ON ON ON OFF
45 ON OFF ON ON

Figure 32 shows path-following performance along segment 01, with all thrusters ON. Desired
speed was set to 0.3 m/s. 3D real-time view is shown in the upper right corner, while schematic
showing thruster states is shown in the lower right corner. Above ROV 3D model, desired and actual
velocity vectors are displayed as green and red cylinders, respectively. Raw ROV position estimation
data obtained from the USBL system are shown as a red trace, while the position estimation from
PHINS is shown as a yellow trace. The PHINS output has been used for path-following algorithm.
“Jumps” in USBL raw data are due to multi-path issues while operating in shallow water (7 m depth).
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The anchored support vessel Celtic Voyager was moving in lateral direction oscillating around the fixed
position due to high winds. This motion introduced significant pull out forces on ROV via umbilical
and the FTC had to compensate this disturbance while performing path following.

Figure 32. Path Following: segment 01, all thrusters ON (healthy).

After the way-point 2 has been reached, the total fault in HT4 has been simulated by setting
the saturation bound s4 = 0.0. Figure 33 shows path-following performance along segment 23, with
thruster HT4 disabled. No significant deviation from the desired path was noticeable during the
transition stage, and ROV continued to follow the path without the change in speed, as indicated in 3D
view in the upper right corner (the actual velocity vector (red) has the same module and direction as
the desired velocity vector (green)). This performance has been predicted in Section 4.1.2, since the
command input vector τd(t) required to follow desired speed 0.3m/s lies inside reduced Φv (Figure 25)
all the time on the path segments 23 and 34.

After the way-point 4 has been reached, thruster HT4 has been re-enabled (s4 = 1.0), but the
total fault in HT2 has been simulated by setting the saturation bound s2 = 0.0. Figure 34 shows
path-following performance along segment 45, with thruster HT2 disabled. Similar to the previous
case, no significant deviation from the desired path was noticeable during the transition stage, and
ROV continued to follow the path without the change in speed, as indicated in 3D view in the upper
right corner.



Robotics 2020, 9, 7 34 of 38

Figure 33. Path following: segment 23, HT4 OFF (simulated total fault).

Figure 34. Path following: segment 45, HT2 OFF (simulated total fault).
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4.2.2. Complex Tasks with Faulty Thruster

The performance of FTC has been evaluated and validated during research cruise CE-19001 in
January 2019, when the work-class ROV Étaín (Figure 29b), deployed from support vessel Celtic
Explorer via Tether Management System (TMS), successfully performed several complex subsea tasks
with a simulated fault in the horizontal front-left thruster HT1 ( s1 = 0.0, w1 →∞) (Figure 35c).

Figure 35. Testing performance with a fault in single thruster HT1 (c); Circular arc: (a) CCW motion,
(b) CW motion; Path following: (d) before WP1, (e) after WP1.

Circular Arc
The main task was to move the ROV with a constant velocity of 0.2m/s along the circular arc, with

heading pointing toward the centre P4 (Figure 35a,b). The screenshots of CCW and CW trajectories are
shown in Figure 34a,b respectively. Desired surge speed was set to 0.0m/s, while desired sway speed
was set to +0.2m/s (CCW motion) and −0.2m/s (CW motion). The heading controller used the “Fixed
Point” mode, with the ROV heading directed toward the fixed point P4. In both cases, ROV trajectories
were almost perfect circles, demonstrating a high quality of the thruster FTC in performing complex
subsea manoeuvring. The same task has been trialled in the manual mode (with a joystick as an input
device) by professional ROV pilot with disabled FTC, but the performance was not satisfactory.
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Path Following
For this test, ROV had to follow the path (square) defined with four points 0, 1, 2 & 3 with

constant speed 0.2m/s and constant heading 300◦. The screenshots of the main pilot screen during
the subsea path following with a fault in a single thruster are shown in Figure 35d,e. In particular,
the ROV position approaching the point 1 is shown in Figure 35d. After reaching waypoint 1, the
vehicle continued to move toward 2 along the straight-line segment (Figure 35e). The same task has
been given to a professional ROV pilot to execute under the same fault conditions, with disabled FTC
(Figure 36). The ROV pilot had to maintain the heading and speed by applying manual compensation
for unbalanced moment components, due to lack of contribution from the faulty thruster. Non-perfect
compensation led to the poor tracking performance and oscillatory character of the heading response,
as shown in Figure 36.

Figure 36. Path following performed by professional ROV pilot in manual mode, with disabled FTC.

5. Conclusions

This paper presented a hybrid method for control allocation, able to allocate a feasible solution of
the control allocation problem, optimal in l2 sense, on the entire attainable command set in real-time.
The paper provides a clear geometric interpretation of the underlying control allocation problem and
deep insight into each step of the solution using a “virtual” ROV in low-dimensional control spaces.
Then, the same concepts are extended to higher-dimensional cases, for open-frame ROV with four
X-shaped (vectored) horizontal thrusters.

The hybrid method for control allocation is based on the integration of the weighted pseudoinverse
and the fixed-point method. The weighted pseudoinverse method is a member of a family of generalised
inverses and is the one that yields minimum control energy. The main disadvantage of the weighted
pseudoinverse method is its inability to find the exact solution of the control allocation problem on the
entire attainable command set, i.e., the feasible region for pseudoinverse is a subset of the attainable
command set. In contrast, the fixed-point method can find the exact solution on the entire attainable
command set. The price paid is the necessity to perform iterations at each program step. The number of
iterations depends on design parameters and choice of initial iteration. The hybrid approach for control
allocation originates from the integration of features of the weighted pseudoinverse and fixed-point
method: the weighted psudoinverse method is used for cases when control inputs lie inside the feasible
region for pseudoinverse, and the fixed-point method is used otherwise.

The performance of the thruster FTC system, whose main pillar is the hybrid method, has
been evaluated not just in simulation, but in a real-world environment with observation-class ROV
and work-class ROV through a series of complex, challenging subsea tasks in order to examine the
performance of the FTC in fault-free and faulty conditions. Simulation results show that the FTC
provides adequate reallocation in faulty situations, keeping all three DOF in the horizontal plane
fully controllable, making it possible to control the motion of the faulty vehicle in a satisfactory
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way. Using different indicators and visualisation tools, the FTC can inform the ROV pilot about the
position of actual command inputs relative to attainable command set. Using this information, even
an inexperienced ROV pilot can detect the situation when thruster velocity saturation occurs and to
correct the command inputs such that it becomes attainable. Results of real-world tests show that
piloting of faulty ROV in pure manual mode was too hard task for a professional ROV pilot, i.e.,
disabling the faulty thruster without appropriate reallocation led to poor tracking performance and
oscillatory character of yaw response during the way-point path following task. Execution of the same
task with the FTC enabled led to a redistribution of available control energy among remaining operable
thrusters, resulting in significant improvements in the global control performance of the vehicle in
faulty situations.
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