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Abstract: This study was conducted to develop original benchmark datasets that simultaneously
include indoor–outdoor visual features. Indoor visual information related to images includes outdoor
features to a degree that varies extremely by time, weather, and season. We obtained time-series
scene images using a wide field of view (FOV) camera mounted on a mobile robot moving along
a 392-m route in an indoor environment surrounded by transparent glass walls and windows for two
directions in three seasons. For this study, we propose a unified method for extracting, characterizing,
and recognizing visual landmarks that are robust to human occlusion in a real environment in which
robots coexist with people. Using our method, we conducted an evaluation experiment to recognize
scenes divided up to 64 zones with fixed intervals. The experimentally obtained results using
the datasets revealed the performance and characteristics of meta-parameter optimization, mapping
characteristics to category maps, and recognition accuracy. Moreover, we visualized similarities
between scene images using category maps. We also identified cluster boundaries obtained from
mapping weights.

Keywords: counter propagation network; human detection; mobile robot; part-based features;
saliency maps; scene recognition; self-organizing maps; U-Matrix; visual landmarks

1. Introduction

With the rapid progress of recent artificial intelligence (AI) and robotic technologies [1],
widely various intelligent robots [2] have been developed for industrial utilization at factories
and warehouses. They have also been developed for collaborative utilization in human societies
and facilities in terms of homes [3], offices [4], kindergartens [5], nursing-care facilities [6], and hospitals
[7]. To perform autonomous locomotion, robots must have capabilities to perform accurate actions
and functions of self-localization, path planning and tracking, object recognition, and environmental
understanding [8]. Particularly for mutual dependence and coexistence in human society, robots must
have functions to detect people and to recognize human actions and activities effectively [9].

Simultaneous localization and mapping (SLAM) technologies [10] have been studied widely
as a fundamental approach for autonomous locomotion of mobile robots including drones [11].
For sequential processing and construction and update of a map for self-location estimation,
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the computational cost for SLAM increases because probability calculations are necessary for
extraction of various map-creation features and for updating real-time positional information.
Moreover, the storage capacity for creating environmental maps is expanded exponentially because of
the increased observation areas according to enhanced robot locomotion. As an alternative approach,
autonomous locomotion using landmarks has been specifically examined as a topic of computer
and robot vision (RV) studies [12]. Advance creation of maps is unnecessary for landmark-based
autonomous locomotion and navigation [13]. Therefore, this approach is effective for considerable
reduction of storage capacity and computational costs. However, a difficulty arises: how to set up
landmarks. Installing landmarks in advance is another difficulty inherent in this approach.

Landmarks with high discrimination accuracy installed in an environment beforehand according
to the purpose and resolution can minimize the ability and performance of a robot in terms of
their recognition capability. However, this approach not only involves a pre-installation burden
and periodic maintenance, it also involves restrictions for locomotion only in a pre-installed
environment. As an approach that requires no landmark pre-installation, visual landmarks (VLs)
have been attracting attention in the past two decades [14]. Herein, VLs are defined as visually
prominent objects including text and feature patterns in a scene [15]. Mohareri et al. [16] proposed
a navigation method using augmented reality (AR) markers as landmarks. Although AR markers have
high discriminative performance, their installation involves a great burden and various difficulties.
Unlike AR markers, we consider that VLs extracted from general objects have high affinity from
the viewpoint of semantic recognition among people because of the huge amounts of environmental
information from vision. However, a challenging task of robot-vision studies is to extract accurate
and suitable VLs that have both robustness and stability under environmental changes every moment.

As a pioneering study, Hayet et al. [12] proposed a VL framework for indoor mobile robot
navigation. They extracted quadrangular surfaces as VL candidates from scene images based on
horizontal and vertically oriented edges. Finally, VLs are extracted from doors and posters using
random sample consensus (RANSAC) [17]. The experimentally obtained results revealed that
the recognition accuracy achieved 80% for their original navigation benchmark datasets. Moreover,
they obtained 90% and greater accuracy for a wider environment. However, they considered no
environmental changes in their benchmark datasets.

Numerous datasets have been proposed for the classification, recognition, and understanding of
scenes and objects based on visual information [18–23]. These datasets comprise learning, validation,
and testing subsets for evaluating generalization capability in various and diverse environmental
changes. Recently, three-dimensional (3D) datasets obtained using drone-mounted cameras, especially
for multiple object tracking (MOT) tasks [24], have been expanding [25]. Therefore, scene recognition
has been extended from a two-dimensional (2D) plane to a 3D space [26]. In outdoor environments,
global navigation satellite system (GNSS) signals are used for precision position estimation combined
with vision sensors [27].

The numerous and diverse benchmark datasets developed for various purposes can be
classified roughly into two types: indoor scene datasets [28] and outdoor scene datasets [29].
Nevertheless, no dataset simultaneously including indoor–outdoor visual features has been proposed.
Scene recognition is evaluated separately for indoor datasets and outdoor datasets [30]. Realistically,
outdoor scene features are included in indoor scenes because transparent glass walls are used
occasionally for lighting and artistic building design. The occasions of indoor scene features including
outdoor areas are few.

Visual information in indoor images including outdoor features varies considerably in terms
of time, weather, and season. Figure 1 depicts daytime and nighttime scene images in the same
position. A great difference arises because of effects from the outside through a transparent glass
window. Scene recognition studies using a mobile robot are used in a few cases for accuracy
comparison in visual information changes at similar positions. The partial occlusion, corruption,
and distortion caused by a limited field of view (FOV) of a camera occur frequently everywhere,
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depending not only on environmental changes but also on locomotion paths with avoidance of static
and dynamic obstacles [31]. Evaluation criteria and benchmark datasets for these requirements are
under development.

Figure 1. Difference of similar scenes in daytime and nighttime at the same position.

For our earlier study [32], we proposed a unified method for extracting, characterizing,
and recognizing VLs that were robust to human occlusion in a real environment in which robots
coexist with people. Based on classically established machine-learning (ML) technologies, our earlier
method [32] comprised the following five procedures: VL extraction from generic objects using
a saliency map (SM) [33]; part-based feature description using accelerated KAZE (AKAZE) [34];
human region extraction using histograms of oriented gradients (HOGs) [35]; codebook creation
using self-organizing maps (SOMs) [36]; and positional scene recognition using counter propagation
networks (CPNs) [37]. The contributions of this study are the following.

1. We strove to evaluate the robustness of our improved semantic scene recognition method for
extending environmental changes using novel datasets.

2. We develop our original scene recognition benchmark datasets in which indoor–outdoor visual
features coexist.

3. We evaluate the effects of outdoor features for indoor scene recognition for weather and seasonal
changes outdoors.

4. We evaluate details and quantitative evaluation for visualizing classification results obtained
using category maps.

The rest of the paper is structured as follows. In Section 2, we present our proposed method
based on computer vision and machine-learning algorithms of several types. Section 3 presents our
original benchmark datasets of time-series scene images obtained using a wide FOV camera mounted
on a mobile robot in an indoor environment surrounded by transparent glass walls and windows for
two directions in three seasons. Subsequently, Section 4 presents evaluation experimentally obtained
results of the performance and characteristics of meta-parameter optimization, mapping characteristics
to category maps, and recognition accuracy. Finally, Section 5 concludes and highlights future work.
Herein, we had proposed this basic method in the proceeding [38] c©2018 IEEE. For this paper, we have
described detailed results using our novel benchmark datasets.

2. Proposed Method

Our proposed method comprises two modules: a feature-extraction module and a scene
recognition module. Figures 2 and 3 depict the flow processing and structures of the respective
modules. The feature-extraction module performs saliency-based VL extraction and feature description
from input images. This module comprises three algorithms: You Only Look Once (YOLO) [39],
SMs [33], and AKAZE [34]. First, using YOLO, human regions are extracted from a scene image.
Although HOG [35] was used for our earlier study [32], the human detection accuracy with HOG,
which includes insufficient robustness to rotation and scaling, was increased by only 60%. For this study,
we extract bounding boxes (BBs) that include pedestrians using YOLO. We remove feature points inside
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BBs from VL candidates. Subsequently, salient regions are extracted using SMs [33]. Finally, features are
described using AKAZE from highly salient regions as VLs. Although the feature-extraction module
from our earlier study is reused [32], we introduce YOLO for the novelty of this method.

Figure 2. Proposed method of the feature-extraction module for visual landmark (VL) extraction
and part-based feature description.

Figure 3. Proposed method of the recognition module for scene recognition and cluster boundary
extraction of category map.

Thereafter, positions are recognized as zones from scene images with the recognition module,
as depicted in Figure 3. The recognition module comprises three algorithms: SOMs [36], CPNs [37],
and U-Matrix [40]. Input features are compressed with SOMs for a unified dimension as codebooks.
The CPN learning phase performs category map generation and visualization of the similarity of
codebooks. The CPN verification phase recognizes scene images as zones using category maps for
verification scene images. Moreover, with reference to another earlier method [41], we use U-Matrix [40]
to extract cluster boundaries from weights on category maps. Cluster boundaries are enhanced
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for differences between labels and weights. Features and properties of these five algorithms are
explained below.

2.1. VL Extraction Using SM

Human stereo vision [42] provides numerous and diverse real-world information [43].
Although various decisions are made based on visual information, the speed of processing visual
information is rather slow because the amounts of information are large compared to those provided by
tactile, auditory, and olfactory senses. Therefore, we have limitations on the use of all visual information
for recognition and decision-making. In contrast, we have a mechanism to devote attention solely to
some things that should be noticed. Actually, SMs were developed as a mechanism for finding objects
that must command attention.

After appending return suppression in similar frames, as a novel application for this study,
we extend SMs, which are based on processing for a single image, to time-series images. In addition,
recovery was strengthened between consecutive frames for steady VL detection. The brief procedures
of saliency maps include the following five steps. First, a pyramid image is created from codebooks
for use as input data. Second, a Gaussian filter is applied to the pyramid image. Third, images of
the respective components of color phase, brightness, and direction are created. Fourth, feature
maps (FMs) are created as visual features of the respective components with center-surround
and normalization operations. Finally, saliency maps Ism are obtained from a winner-take-all (WTA)
competition for the linear summation of FMs.

2.2. Feature Description Using AKAZE

For conventional generic object recognition, scale-invariant feature transform (SIFT) [44],
SURF [45], binary robust independent elementary features (BRIEF) [46], and oriented features from
accelerated segment test (FAST) and rotated BRIEF (ORB) [47] descriptors have been used widely
as outstanding descriptors of local features. Table 1 summerizes feature dimensions in respective
descriptors. Actually, SIFT descriptors are robust for rotation, scale, position, and brightness changes,
not only from static images but also from dynamic images. Alcantarilla et al. [48] proposed
KAZE using nonlinear scale-space filtering as a feature intended to exceed the SIFT performance.
Moreover, they proposed AKAZE [34], which accelerated the KAZE construction. In contrast to SIFT,
AKAZE was demonstrated as being approximately three times faster, although maintaining equivalent
performance and accuracy. Therefore, we use AKAZE, which is suitable for indoor environments
where environmental changes occurred frequently.

Table 1. Feature dimensions of representative descriptors [dimensions].

SIFT SURF ORB BRIEF KAZE AKAZE

128 128/64 32 64/32/16 128 61

To achieve acceleration of feature detection, AKAZE employs fast explicit diffusion (FED) [49],
which is embedded in a pyramidal framework in nonlinear scale-space filters. Comparison with
additive operator splitting [50] schemes used in their former descriptor KAZE [48] shows that
FED schemes are more accurate. They also provide extremely easy implementation. Moreover,
AKAZE introduced a highly efficient Modified-Local Difference Binary descriptor [51] to preserve
low computational demand and storage requirements. The numbers of features points differ
in the respective images. Letting Iakaze be a set of AKAZE features points, then each feature point
includes 64-dimensional feature vectors.
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2.3. Human Detection Using YOLO

Based on deep learning (DL) mechanisms [52], YOLO was proposed by Redmon et al. [39]
as a real-time algorithm for object detection and class recognition. For performing both functions,
YOLO is used widely for general object detection of various applications [53] such as pedestrians [54],
cars [55], license plates [56], and accidents [57]. Moreover, YOLO performs high recognition accuracy
and rapid processing speed compared with the single-shot multi-box detector [58]. Therefore, we used
YOLO for human detection instead of HOG [35], which was used in our earlier study [32]. However,
to keep accuracy in different shapes of human figures in terms of stand up, sitting, lying, and occluded
body parts is important. We consider that this is a challenging task for our method combined with
YOLO and OpenPose [59], which is an approach to efficiently detect the 2D pose of multiple people
in an image.

The procedures necessary for YOLO are the following. First, the original image is resized into
a square. Then the object is detected using a BB. Subsequently, divided grids perform object class
and BB extraction in parallel for each region. Finally, the integration result in Iyolo of both realizes
another class of object recognition.

YOLO learns the surrounding context because the entire image is targeted for learning.
This mechanism suppresses false detection in background areas. However, divided grids are limited
to a fixed size. Moreover, YOLO has a restriction by which the detected objects in each grid can be as
many as two because only a single class can be used for identification in each grid. As a shortcoming,
the small objects included in each grid degrade the detection accuracy. Generic object detection is
beyond the scope of this study. We intend to assess the accuracy of positional scene recognition from
scene images with occlusion or deficiency.

2.4. Codebook Description Using SOM

We use SOMs [36] to create codebooks from AKAZE features. Let xp(t) represent the output from
the input layer unit p (1 ≤ p ≤ P) at time t. As input features, Ivl are appended to xp(t) as VL features.

Ivl = Ism ∧ Iakaze ∧ Iyolo. (1)

Let wp,q(t) be a weight from p to mapping layer unit q (1 ≤ q ≤ Q) at time t. Herein, P and Q
respectively denote the total numbers of input layer units and mapping layer units. Before learning,
wp,q(t) are initialized randomly. Using the Euclidean distance between xp(t) and wp,q(t), a winner
unit cq(t) is sought for the following.

cq(t) = argmin
1≤q≤Q

√√√√ P

∑
p=1

(xp(t)− wp,q(t))2. (2)

A neighborhood region ψsom(t) is set from the center of cq as

ψsom(t) = bψsom(0) ·Q ·
(

1− t
Zsom

)
+ 0.5c, (3)

where Zsom represents the maximum of learning iterations. Subsequently, wp,q(t) in ψsom(t) is
updated as

wp,q(t + 1) = wp,q(t) + α(t)(xp(t)− wp,q(t)), (4)

where α(t) is a learning coefficient that decreases according to the learning progress. Herein, at time
t = 0, we initialized wp,q(0) with random numbers. After WTA learning, test data are entered into
the input layer. A winner unit is used for voting to create a histogram as a codebook: Isom.
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2.5. Scene Recognition Using CPN

We apply CPNs [37] to category maps from codebooks. For learning CPNs, Isom are entered as
input features to the input layer of CPNs. Let yr(t) be output from the input layer unit r (1 ≤ r ≤ R) at
time t. Let ur,s(t) be a weight from r to Kohonen layer unit s (1 ≤ s ≤ S) at time t. Moreover, let vs,k(t)
be a weight from Grossberg layer unit k to Kohonen layer unit s (1 ≤ s ≤ S) at time t. Herein, R and Q
respectively denote the total numbers of input layer units and Kohonen layer units. Before learning,
wr,s(t) are initialized randomly. Using the Euclidean distance between yr(t) and ur,s(t), a winner unit
cs(t) is sought for the following.

cs(t) = argmin
1≤s≤S

√√√√ R

∑
r=1

(yr(t)− ur,s(t))2. (5)

A neighborhood region ψcpn(t) is set as the following from the center of cs.

ψcpn(t) = bψcpn(0) · S ·
(

1− t
Zcpn

)
+ 0.5c (6)

In that equation, Zcpn stands for the maximum learning iteration. Subsequently, ur,s and vs,k
in ψcpn(t) are updated as

ur,s(t + 1) = ur,s(t) + β(t)(yr(t)− ur,s(t)), (7)

vs,k(t + 1) = vs,k(t) + γ(t)(zl(t)− vj
s,k(t)), (8)

where β(t) and γ(t) are learning coefficients, which decrease along with learning progress.
Herein, at time t = 0, we initialized ur,s(0) and vs,k(0) with random numbers.

As a learning result, ur,s is used for the input to CNNs. We define this interface as Icpn.

2.6. Boundary Extraction Using U-Matrix

We use U-Matrix [40] to extract boundaries from category maps. Let sx and sy be a unit index on
a 2D category map. Cluster boundaries are extracted from ur,sx,sy using U-Matrix. Based on metric
distances between weights, U-Matrix visualizes the spatial distribution of categories from the similarity
of neighbor units [40]. On a 2D category map of square grids, a unit has eight neighbor units except
for boundary units. Assuming U as the similarity calculated using U-Matrix, then for the component
of the horizontal and vertical directions, Uh± and Uv± are defined as shown below.

Uh± =

√√√√ R

∑
r=1

(ur,sx,sy − ur,sx±1,sy)2, (9)

Uv± =

√√√√ R

∑
r=1

(ur,sx,sy − ur,sx,sy±1)2. (10)

For components of the diagonal directions, Ud± are defined as the following.

Ud± =
1
2

√√√√ R

∑
r=1

(ur,sx,sy±1 − ur,sx±1,sy)2 +
1
2

√√√√ R

∑
r=1

(ur,sx±1,sy − ur,sx,sy±1)2 (11)
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3. Scene Recognition Benchmark Datasets

We obtained original benchmark datasets to evaluate the fundamental performance, usefulness,
and practicality of our proposed method using a mobile robot equipped with a camera. The primary
characteristic of this dataset is that a long corridor inside of our university buildings surrounded by
numerous transparent glass walls and windows affects outdoor features. For this study, we obtained
scene images in three outdoor conditions: daytime in summer, nighttime in autumn, and daytime
in winter.

3.1. Mobile Robot and Camera

We obtained video sequences using a fisheye lens camera mounted on a mobile robot. We used
a two-wheeled inverted-pendulum mobile robot (Double; Double Robotics, Inc. Burlingame, CA, USA).
The photograph on the right side of Figure 4 presents the robot appearance. The robot is 119 cm high
with its neck moving up and down to a 31-cm span. For this experiment, we fixed the lowest neck
position to maintain constant FOV and locomotion stability.

Figure 4. Mobile robot (Double; Double Robotics, Inc. Burlingame, CA, USA).), camera (PIXPRO SP360;
Eastman Kodak Co. Rochester, NY, USA).), and a scene image in an environment where indoor–outdoor
features are mixed.

For our earlier study [32], we obtained video sequences using a built-in camera of a tablet
computer (iPad; Apple Inc. Cupertino, CA, USA).) mounted on the robot head part. The image
resolution of 640× 480 pixels was insufficient to capture objects as VLs. Moreover, the captured video
sequences were sent to a laptop using a low-power wireless communication protocol because of a lack
of a storage function in the tablet. For this experiment, we used a fisheye lens camera (PIXPRO SP360;
Eastman Kodak Co. Rochester, NY, USA).) with high-resolution and wide-range FOV.

Table 2 shows major camera specifications. For this camera, the focal length of the lense is
0.805mm, which is equivalent to a length of 8.25 mm for a 35 mm film. This camera is fundamentally
used with a vertical upward arrangement for the lens. We originally developed a camera mount using
an L-shaped aluminum plate. Using this mount, we installed the camera at the front of the robot,
as depicted in Figure 4. To ensure good resolution, we used the FOV of the 235-deg mode instead of
the 360-deg mode.
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Table 2. Major specifications of the camera (PIXPRO SP360; Eastman Kodak Co.

Parameters Values

Imaging device 1/2.33 CMOS
FOV 235 degs

Resolution 1280× 720 pixels
Frame rate 60 fps

Focal length 0.805 mm (8.20 mm for 35 mm film equivalent)
Battery 3.6 V; 1250 mAh; Li-ion

Size 48.0× 50.0× 52.5 mm
Weight 103 g

3.2. Experimental Environment

Figure 5 presents a photograph and a map of the buildings at Honjo Campus (40◦ N, 140◦ E),
Akita Prefectural University, Akita, Japan. This campus is located in the countryside. There are three
buildings: a lecture building, a common building, and a faculty building. Each building is connected
by a crossing corridor. The approximate size of all buildings is 90 m measured longitudinally and 80 m
measured laterally.

Figure 5. Map of the experiment environment.

The total locomotion distance of the robot is 392 m per round. The robot was operated manually
using a keyboard on a laptop computer. An operator practiced adequately in advance. The robot
moved at a constant speed when obtaining all datasets with no meandering locomotion.

Initially, we divided the route into four zones based on the four right-angle corners, as depicted
in Figure 6a. Subsequently, the respective zones were divided into 2, 4, 8, and 16 refined zones of
equal length. As depicted in Figure 6, 4, 8, 16, 32, and 64 zones were defined for evaluation granularity.
We assigned ground truth (GT) labels for five patterns: Zones 1–4, Zones 1–8, Zones 1–16, Zones 1–32,
and Zones 1–64.

We obtained video sequences in two directions: clockwise (CW) and counter-clockwise (CCW).
The robot moved along the route three rounds in each direction. We obtained six video sequences
for one outside condition. Moreover, we conducted experiments to obtain video sequences in three
seasons: summer, autumn, and winter. The outside conditions differ among seasons: a summer sunny
day in August, a cloudy autumn moonless night in October, and a snowy winter day in December.
These weather conditions are typical of this region of northern Japan. For this study, we designated
the respective datasets as summer datasets (SD), autumn datasets (AD), and winter datasets (WD).
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1 
 

 

Figure 6. Zones of five division types with fixed intervals.

3.3. Obtained Indoor–Outdoor Mixed Scene Images

For this study, we obtained video sequences using a fish-eye lens camera that was set to
the locomotion direction of the robot. The 235-deg FOV provided wide differences in the scene
appearances depending on the locomotion direction, even at similar points. Figure 7 depicts sample
images of appearance differences CW and CCW at a similar point. These images indicate that
vision-based location recognition is a challenging task of computer vision (CV) studies.

Figure 7. Scene appearance differences depending on locomotion directions at similar positions.

Figure 8 depicts appearance differences of scene images at the same points in the three seasons.
High-salience regions and extracted feature points are superimposed on the images with color curves
and dots. Feature points on the SD images included various indoor objects in addition to lush trees
and lawns outdoors. Moreover, feature points appeared in the buildings through transparent glass
walls and windows.
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Figure 8. Scene appearance differences depending on season at similar positions.

Feature points on AD images included indoor objects in addition to halation from indoor lighting
reflected in transparent glass. Images without halation have no feature points. Compared with those
of the SD images, the feature points are few. For WD images, the ground surface was covered slightly
with snow. Although the sunlight was not intense, the indoor brightness was sufficient to extract
object features for VL candidates. Numerous feature points were extracted both indoors and outdoors,
similarly to the SD images.

3.4. Extraction of Image Features

Figure 9 depicts comparison results of extracted features. This example image includes a person
as a moving object in the left panels. The middle panels depict saliency regions as VL candidates.
The right panels depict extracted features from high saliency regions. The feature points are distributed
over the person. Using YOLO, the human region is excluded from salient regions. The AKAZE features
overlapped on the person disappeared.

Figure 9. Results of comparison of extracted features with and without You Only Live Once (YOLO).
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4. Evaluation Experiment

4.1. Benchmark and Evaluation Criteria

We conducted an evaluation experiment to develop VL-based positional scene recognition from
scene images obtained using a mobile robot. Table 3 presents details of 18 datasets in each season
and the locomotion direction. We used leave-one-out cross-validation [60] as evaluation criteria.
Specifically, a set of datasets in each season and direction was divided into two groups: one dataset was
left for validation; the other datasets were used for training. We calculate the respective recognition
accuracies for the five patterns of divided zones.

Table 3. Attributes of datasets [images].

First Round Second Round Third Round

Datasets CW CCW CW CCW CW CCW Average

SD 2366 2350 2366 2356 2361 2354 2359
AD 2403 2346 2350 2357 2362 2352 2362
WD 2359 2371 2356 2355 2351 2344 2356

Average 2376 2356 2357 2356 2358 2350 2359

For evaluation criteria, the recognition accuracy Racc [%] for a validation dataset is defined as

Racc =
Ncorrect

Ntotal
× 100, (12)

where Ntotal and Ncorrect respectively represent the total numbers of validation images and correct
recognition images that matched zone labels as GT.

4.2. Optimization of Parameters

Before the scene recognition evaluation experiment, we conducted a preliminary experiment to
optimize meta-parameters for the regulation of our proposed method. The optimization subjects are
the following four parameters: S, which is related to expression and granularity and expression of
codebooks; Q, which is related to the resolution and expression of category maps; SOM learning
iterations; and CPN learning iterations. Herein, the computational cost for the simultaneous
optimization of these four parameters is an exponential multiple compared with a single case.
Therefore, we optimized them sequentially. For this parameter optimization experiment, we merely
used the SD images.

Figure 10 depicts the optimization result of the number of mapping layer units: S for SOMs and S
for CPNs. We changed S = 2n from n = 5 to n = 10 at n = 1 intervals. The optimization experiment
results revealed that Racc improved steadily from n = 5 to n = 7. The local maximum of 52.3% was
obtained at n = 7, which corresponds to Q = 128 units. The accuracies were reduced in other unit
sizes. Therefore, the optimal size of the SOM mapping layer was ascertained as 128 units.

For CPN, we changed Q from 30 × 30 units to 80 × 80 units at 10 × 10 unit intervals.
The optimization experiment results revealed that Racc improved steadily from 30 × 30 units to
70× 70 units. The local maximum of 51.1% was obtained at 70× 70 units. Subsequently, Racc dropped
to 48.9% at 70× 70 units. Therefore, the optimal size of the CPN mapping layer was ascertained as
70× 70 units.

In addition, Figure 11 depicts the optimization result of learning iterations for SOMs and CPNs.
Herein, 100× 10m denotes learning iterations. We changed this parameter from m = 1 to m = 6 at
m = 1 intervals. The optimization experiment results of SOM learning iterations revealed that Racc

improved steadily according to the greater number of learning iterations. The maximum Racc = 52.9%
was obtained at 10,000,000 iterations for SOMs.
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Figure 10. Parameter experiment results of the number of self-organizing maps (SOMs) and counter
propagation networks (CPNs) mapping units (S, Q).

Figure 11. Parameter experiment results of learning iterations.

For CPN learning iterations, Racc improved rapidly up to 1,000,000 iterations. Subsequently, Racc

improved gradually according to the greater number of learning iterations. Maximum Racc = 67.7%
was obtained at 100,000,000 iterations. However, the accuracy difference compared with
10,000,000 iterations was only 0.7 percentage points. Moreover, the accuracy difference compared
with 1,000,000 iterations was a mere 0.8 percentage points. In addition to those slight differences
achieved, the computation time increased exponentially. Therefore, this study showed the optimal CPN
learning iterations at 1,000,000 iterations, given reasonable limitations of engineering, with balanced
computational costs and accuracy.

4.3. Positional Scene Recognition Results

Figures 12–14 depict recognition accuracies for the respective datasets as shown in Table 3.
As an overall tendency, the recognition accuracies vary depending on the season and the number of
zones. The mean Racc values of SD, AD, and WD were found, respectively, as 82.4%, 79.1%, and 78.1%.
The experimentally obtained results revealed 4.3 percentage point difference in accuracy among
the three datasets.
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Figure 12. Recognition accuracy of summer datasets (SD).

Figure 13. Recognition accuracy of autumn datasets (AD).

Figure 14. Recognition accuracy of winter datasets (WD).

For the locomotion direction for SD, the mean Racc of CW is 1.9 percentage points higher than that
of CCW. For AD, the mean Racc of CCW was 2.2 percentage points higher than that of CW. As a similar
tendency to that of WD, the mean Racc of CCW was 4.7 percentage points higher than that of CW.

Recognition accuracy decreases according to a greater number of divided zones because of
increasingly challenging levels for similar and overlapped images. Although Racc of 64 zones
of CW persists to the maximum of 69.3% for SD, Racc is maintained at a minimum of 60.4% for
WD. Herein, a single-zone length for the case of 64 divisions with a total path length of 392 m is
approximately 6 m. When we subdivide the routes, we extract more information that is normally
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found in time series. However, our proposed method includes no mechanism to extract time-series
features due to no recurrent structure. Therefore, the recognition accuracies were decreased according
to the increased number of divided zones. Regarding seasonal changes, we assumed that AD images
would have fewer outdoor features and improved recognition accuracy because of the fall of leaves on
trees, as opposed to SD images. Similarly, we assumed that the WD images would be further improved
by the snowfall. Although the overall recognition accuracy varies with the season, the experimentally
obtained results revealed no contribute to the reduction of the decline as the number of zones increases.
On the other hand, the results revealed that our proposed method provided Racc of more than 60%
with a resolution of 6 m for a monotonous indoor environment such as this corridor, which is greatly
affected by the outdoors. That result was achieved solely using visual information obtained using
a monocular camera with no GNSS or odometry.

4.4. Analysis and Discussion

We analyzed detailed recognition results in each zone using a confusion matrix. For this
experiment, we visualized the whole tendency of recognition results obtained using a heatmap
because the maximum division is 64 zones. Figure 15 depicts confusion matrixes using a heatmap.
We designate it as a heatmap confusion matrix (HCM), which can check all zone results at a glance.

Figure 15. Heatmap confusion matrix.

In HCMs, correct results are distributed diagonally from the upper left to the lower right.
A high color temperature result of this diagonal line represents high recognition accuracy.
The distribution of higher color temperature distant from the diagonal line represents false recognition.
Therefore, the HCM displays correct recognition as a high color temperature and false recognition
as a low color temperature

For all HCMs, as depicted in Figure 15, we integrated CW and CCW results because we evaluated
the difference of the locomotion direction, as depicted in Figures 12–14. The experimentally obtained
HCMs revealed that a greater number of zone divisions corresponds to decreased diagonal color
temperature. Nevertheless, no distribution of false recognition resembling hot spots, diffused false
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recognition appeared overall. In three datasets associated with different seasons, SD achieved
the highest recognition accuracy.

Particularly, Figure 16 depicts the results of 16 zones in SD. For this result, Zones 1–4 and Zones
13–16 show high accuracy. In contrast, false recognition occurred in Zones 5–12. Particularly, numerous
instances of false recognition occurred in Zones 6 and 12. The left panel of Figure 16 depicts images
in Zones 1–4 with high accuracy. The path along which the robot moved in the corridor surrounded by
lecture rooms has a small effect from outdoors. The right panel depicts images in Zones 9–12 with
low accuracy. The scenes surrounded by transparent glass walls and windows of both sides exhibit
a strong effect from outdoors.

As a benefit of our proposed method, the relation between zones can be visualized as a similarity
in a low-dimensional space using a category map that is generated through learning based on
competition and the neighborhood. Figure 17 depicts category maps created as learning results
for the respective seasonal datasets. Each column of the figure depicts the category maps for which
the number of divided routes is changed from 4 zones to 64 zones. The heatmap bars presented on
the right side of each category map are divided according to the total number of divided zones. Clusters
are created on a category map from similarities among categories. By contrast, complex features
with inconsistent relations are distributed in multiple small clusters. The respective category maps
demonstrated that clusters are distributed at multiple locations. This distribution property suggests
the complexity of image features in each zone in VL-based semantic positional scene recognition.

For analysis of mapping properties of category maps, we used U-Matrix to extract cluster
boundaries. Based on distances among weights on a category map, U-Matrix extracted similarity of
neighbor units. We visualized boundary depths using a heatmap. Low similarity weights, which are
also regarded as having low similarity between units, are displayed for lower color temperatures.
In contrast, high similarity weights, which are considered to have high similarity among units,
are displayed for higher color temperatures.

Figure 16. Heatmap confusion matrix (HCM) example with 16 zones.
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Figure 17. Results of category maps that visualize inter-zone relations.

Figure 18 depicts extraction results of cluster boundaries obtained using U-Matrix for all datasets
of the respective divided zones. The white circles depict independent clusters that are surrounded
by boundaries as high temperatures. Ideally, a suitable model comprises boundaries with low color
temperatures inside clusters and high temperatures outside clusters. In this case, clear boundaries are
obtained on a category map. Such a model is derived from highly independent feature distributions
in a scene image. Nevertheless, scene appearances include similar and contradictory features for
zones that are divided evenly along with the locomotion path, as depicted in Figure 6. Therefore,
U-Matrix provided no distribution clusters according to the number of zones, similar to the results
of category maps. The tendency obtained from this experimentally obtained result demonstrated
that the clusters changed from a large cluster to a small cluster on U-Matrix for the number of zone
increases. Our method handled the difficulty by which sets for dividing a scene are more complicated
and difficult.

Rapidly progressed DL networks have been applied to various challenges posed by CV and RV.
Our method, which used YOLO [39] to some degree, showed benefits from advanced DL performance.
Dramatic improvement of recognition accuracy is expected to be sufficient using DL networks for
the feature-extraction module for preprocessing and for the recognition module for recognition.
Based on our earlier study [32], this study was aimed at developing original indoor benchmark
datasets that include numerous transparent glass walls and windows to evaluate robustness for
environmental changes outdoors. Our method was developed using classical ML-based algorithms
without using DL because we visualized relations and similarities of scene images using category
maps and U-Matrix for zone-based positional recognition with several granularity types.

For application to different purposes and benchmarks, we replaced the ML with a DL recognition
module in our earlier study [41]. We then demonstrated the accuracy and computational cost
differences between DL and ML. Actually, CV algorithms require both offline batch processing
and online real-time processing. By contrast, RV algorithms fundamentally require online real-time
processing from limited computational resources, especially for small robots including drones.
Technological development and evolution related to cutting-edge AI devices [61] are expected to
improve the shortcomings related to computational costs for DL algorithms. As a present optimal
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solution, we used ML algorithms with efficiency for current robots with no computational enhancement.
The recognition module can be replaced with DL if accuracy is the highest priority for a target system.
The input interface for this case can be set to the feature-extraction module but also directly to
the recognition module. In consideration of such a replacement, we divided our proposed method
into two independent modules.

Figure 18. Results of U-Matrix extraction of cluster boundaries.

5. Conclusions

This paper presented a vision-based positional scene recognition method for an autonomous
mobile robot using visual landmarks in an actual environment of coexisting humans and robots.
We developed original benchmark datasets that include indoor–outdoor visual features
in environments surrounded by transparent glass walls and windows. To include various and diverse
changes of scene appearances, the datasets include two locomotion directions and three seasons.
We conducted evaluation experiments for VL-based location recognition using datasets of time-series
scene images obtained from a wide FOV camera mounted on a robot that ran a 392 m route that
was divided into 64 zones with fixed intervals. We verified the performance and characteristics of
meta-parameter optimization, mapping characteristics to category maps, and GT-based recognition
accuracy. Moreover, we visualized similarity between scene images using category maps. We also
visualized the relation of weights using U-Matrix.

As a subject of future work, we expect to introduce Elman-type feedback neural networks
combined with deep learning mechanisms as a framework for learning time-series feature changes.
We expect to extract flexible and variable zones based on visual changes obtained from category maps
and U-Matrix. Moreover, we expect to implement our proposed method as online processing instead
of the current offline processing for applying human-symbiotic robots of various types and various
environments. Furthermore, we would like to open all the images as a novel open benchmark dataset
after inserting semantic information including segmentation, recognition, labeling, GT, annotations,
and security and privacy treatment.
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Abbreviations

The following abbreviations are used in this manuscript:

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
AD Autumn datasets
AI Artificial intelligence
AKAZE Accelerated KAZE
AR Augmented reality
BB Bounding boxes
BRIEF Binary robust independent elementary features
CPN Counter propagation networks
CV Computer vision
CW Clockwise
CCW Counter-clockwise
DL Deep learning
GT Ground truth
FAST features from accelerated segment test
FED Fast explicit diffusion
FM Feature map
FOV Field of view
HCM Heatmap-colored confusion matrix
HOG Histograms of oriented gradient
RANSAC RANdom SAmple Consensus
MOT Multiple object tracking
ML Machine learning
ORB Oriented FAST and rotated BRIEF
RV Robot vision
SLAM Simultaneous localization and mapping
SD Summer datasets
SM Saliency map
SOM Self-organizing maps
SIFT Scale-invariant feature transform
VL Visual landmarks
WD Winter datasets
WTA Winner-take-all

References

1. Alsamhi, S.H.; Ma, O.; Ansari, M.S. Survey on Artificial Intelligence Based Techniques for Emerging Robotic
Communication. Telecommun Syst. 2019, 72, 483–503. [CrossRef]

2. Vanzo, A.; Riccio, F.; Sharf, M.; Mirabella, V.; Catarci, T.; Nardi, D. Who is Willing to Help Robots? A User
Study on Collaboration Attitude. Int. J. Soc. Robot. 2019, 12, 589–598. [CrossRef]

http://dx.doi.org/10.1007/s11235-019-00561-z
http://dx.doi.org/10.1007/s12369-019-00571-6


Robotics 2020, 9, 40 20 of 22

3. Do, H.M.; Pham, M.; Sheng, W.; Yang, D.; Liu, M. RiSH: A Robot-Integrated Smart Home for Elderly Care.
Robot. Auton. Syst. 2019, 101, 74–92. [CrossRef]

4. Talbot, B.; Lam, O.; Schulz, R.; Dayoub, F.; Upcroft, B.; Wyeth, G. Find My Office: Navigating Real Space From
Semantic Descriptions. In Proceedings of the IEEE International Conference on Robotics and Automation,
Stockholm, Sweden, 16–21 May 2016.

5. Khaliq, A.A.; Pecora, F.; Saffiotti, A. Children Playing with Robots Using Stigmergy on a Smart Floor.
In Proceedings of the IEEE International Conferences on Ubiquitous Intelligence & Computing, Advanced
and Trusted Computing, Scalable Computing and Communications, Cloud and Big Data Computing, Internet
of People, and Smart World Congress, Toulouse, France, 18–21 July 2016.

6. Shibata, T.; Kawaguchi, Y.; Wada, K. Investigation on People Living with Paro at Home. In Proceedings
of the 19th International Symposium in Robot and Human Interactive Communication, Viareggio, Italy,
12–15 September 2010.

7. Kumar, B.; Sharma, L.; Wu, S. Job Allocation Schemes for Mobile Service Robots in Hospitals. In Proceedings
of the IEEE International Conference on Bioinformatics and Biomedicine, Madrid, Spain, 3–6 December 2018.

8. Alatise, M.B.; Hancke, G.P.A Review on Challenges of Autonomous Mobile Robot and Sensor Fusion Methods.
IEEE Access 2020, 8, 39830–39846. [CrossRef]

9. Koppula, H.S.; Saxena, A. Anticipating Human Activities Using Object Affordances for Reactive Robotic
Response. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 14–29. [CrossRef]

10. Cadena, C.; Carlone, L.; Carrillo, H.; Latif, Y.; Scaramuzza, D.; Neira, J.; Reid, I.; Leonard, J.J. Past, Present,
and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age. IEEE Trans. Robot.
2016, 32, 1309–1332. [CrossRef]

11. Stumberg, L.; Usenko, V.; Engel, J.; Stúckler, J.; Cremers, D. From monocular SLAM to autonomous
drone exploration. In Proceedings of the European Conference on Mobile Robots (ECMR), Paris, France,
6–8 September 2017.

12. Hayet, J.B.; Lerasle, F.; Devy, M. A Visual Landmark Framework for Indoor Mobile Robot Navigation.
In Proceedings of the IEEE International Conference on Robotics and Automation, Washington, DC, USA,
11–15 May 2002.

13. Lazanas, A.; Latombe, J. Landmark-Based Robot Navigation. Algorithmica 1995, 13, 472–501. [CrossRef]
14. Mata, M.; Armingol, J.M.; Escalera, A.; Salichs, M.A. A visual landmark recognition system for topological

navigation of mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation,
Seoul, Korea, 21–26 May 2001.

15. Watman, C.; Austin, D.; Barnes, N.; Overett, G.; Thompson, S. Fast Sum of Absolute Differences Visual
Landmark Detector. In Proceedings of the IEEE International Conference on Robotics and Automation,
New Orleans, LA, USA, 26 April–1 May 2004.

16. Mohareri, O.; Rad, A.B. Autonomous humanoid robot navigation using augmented reality technique.
In Proceedings of the IEEE International Conference on Mechatronics, Istanbul, Turkey, 13–15 April 2011.

17. Fischler, M.A.; Bolles, R.C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to
Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [CrossRef]
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