robotics MBPY

Review

Possible Life Saver: A Review on Human Fall
Detection Technology

Zhuo Wang 1*(, Vignesh Ramamoorthy !, Udi Gal 2 and Allon Guez !

1 Department of Electrical and Computer Engineering, Drexel University, Philadelphia, PA 19131, USA;

vr376@drexel.edu (V.R.); guezal@drexel.edu (A.G.)
2 GraceFall Inc., Penn Valley, PA 19072, USA; udigal@yahoo.com

*  Correspondence: zw383@drexel.edu

check for
Received: 10 June 2020; Accepted: 17 July 2020; Published: 19 July 2020 updates

Abstract: Among humans, falls are a serious health problem causing severe injuries and even death
for the elderly population. Besides, falls are also a major safety threat to bikers, skiers, construction
workers, and others. Fortunately, with the advancements of technologies, the number of proposed fall
detection systems and devices has increased dramatically and some of them are already in the market.
Fall detection devices/systems can be categorized based on their architectures as wearable devices,
ambient systems, image processing-based systems, and hybrid systems, which employ a combination
of two or more of these methodologies. In this review paper, a comparison is made among these
major fall detection systems, devices, and algorithms in terms of their proposed approaches and
measure of performance. Issues with the current systems such as lack of portability and reliability
are presented as well. Development trends such as the use of smartphones, machine learning, and
EEG are recognized. Challenges with privacy issues, limited real fall data, and ergonomic design
deficiency are also discussed.
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1. Introduction

A fall is defined as an event which results in a person coming to rest inadvertently on the ground
or floor or the lower level [1]. Fall related injuries include wrist, arm, ankle, and hip fractures and
traumatic brain injuries. People are incessantly facing the risk of falls while performing daily activities,
even when sleeping. The risk is even higher for those who engage in outdoor sport activities or
construction work. Elderly people are the ones facing the highest risk of falls and the most severe
consequences. According to the CDC, in the United States, more than one in four adults (30%) aged 65
and older report falling each year, which results in about 30 million falls annually [2]. Falls are the
leading cause of injury-related death among adults age 65 and older, about 62 deaths per 100,000 older
adults, and this rate is still increasing by more than 30% from 2007 to 2016 [3]. While not all falls are
fatal, about 38% of those who fall reported an injury that required medical treatment or restricted
their activity for at least one day [2]. Falls among adults age 65 and older are very costly, even with
insurance, Medicare or Medicaid. Each year about $50 billion is spent on non-fatal fall injuries and
$754 million is spent on fatal falls [4]. Except physical injuries, psychological trauma such as fear of
falling leads to a reduction of daily activities that makes a person even weaker and more likely to fall
again [5]. In fact, stride-to-stride temporal variations of gait are significantly larger in elderly fallers
than non-fallers [6].

A fall detection system or device can act as a remedy for the above risks. Such a system will
identify falls, ideally take preventive measures for fall injuries, and alert people of an emergency
when a fall event has just occurred. The elderly population is most affected by fall injuries as the time

Robotics 2020, 9, 55; do0i:10.3390/robotics9030055 www.mdpi.com/journal/robotics


http://www.mdpi.com/journal/robotics
http://www.mdpi.com
https://orcid.org/0000-0003-0598-0573
http://dx.doi.org/10.3390/robotics9030055
http://www.mdpi.com/journal/robotics
https://www.mdpi.com/2218-6581/9/3/55?type=check_update&version=2

Robotics 2020, 9, 55 2 of 19

and medication required to cure them is critical for their age. The severity of a fall depends on the
time spent lying on the floor after a fall. Such a system is critical for people who live alone or lose
consciousness after fall. However, current major fall related products in the market are simply call
button type of fall alerting systems or devices that users have to manually operate to call for help
after falling, if they are still conscious. What people really need is a type of system that automatically
detects falls and takes immediate action to prevent fall or at least protects people from being injured by
the fall impact, rather than getting hurt and then calling for help.

Much work has been done in the area of fall detection systems. Thus far, there are already several
other review papers on fall detection devices and systems. Pannurat et al. [7] provided a comprehensive
review on fall detection systems as well as some of the key research challenges faced by the research
community in this field. In this review, fall detection platforms are categorized into two groups as
wearable and ambient devices. The classification methods are divided into rule-based and machine
learning techniques. Relative merit, research challenges, and potential drawbacks are also discussed.
In [8], Luque et al. provided an overview of wearable sensors and conducted an experimental testbed
which indicated the difficulty in achieving high accuracy with a simple acceleration threshold. In [9-11],
reviews are also performed, all agreed on the application of machine learning technology can improve
the performance of the fall detection systems. However, due to the lack of real-life fall data, the benefits
machine learning technique brings are limited. Chaudhuri et al. [12] has indicated that out of 92 systems
they reviewed, only 7.1% reported monitoring older adults in a real-world setting. Bagala et al. [13]
stressed the importance of testing fall-detection algorithms in real-life conditions as well as the need
for a large, shared real-world fall database.

Thanks to the advancement of technology, the number of systems able to detect falls has been
dramatically increased over the past decade. These systems range from miniature wearable electronic
devices to ambient systems installed in the living environment. They are no longer passive (allowing
the user to call for help after the accident occurs) but are continually active in monitoring the activity
to identify fall instantly. Some are even able to take actions to protect users from fall injuries by,
for example, deploying an airbag to absorb the fall impact [14-17]. Wearables are smart electronic
devices (with micro-controllers) that can be incorporated into clothing or worn on the body as implants
or accessories [18]. Wearable devices for fall detection incorporate inertial sensors such as accelerometer,
inertial measurement units (IMU), gyroscope, barometric altimeter, and pressure sensors. There is also
a trend in incorporating fall detection into smartphones as they are highly portable already, all the
detection and communication components are naturally integrated therein, thus no extra device is
needed [19]. On the other hand, ambient and image processing based fall detection systems focus on
the interaction between user and the living environment, usually incorporate radar, video cameras,
ultrasonic sensors, Kinect, and Wi-Fi devices. The details of these systems are discussed below.

In this paper, we propose a review of the major types of systems available for the detection of
fall and a comparative study is made among them. We will review the systems for fall detection as
follows: (i) wearable device, (ii) ambient system, (iii) image processing system, and (iv) combined
systems. We also discuss the issues, trends, and challenges of fall detection systems, including the
possibility of combining EEG with current fall detection technology for improvement in accuracy and
performance. The purpose of this study is to enhance the future research on fall detecting systems and
to make an outline of the best available devices and algorithms to be considered.

2. Methods

The paper hunt has been carried out through several databases of conference publications and
journal articles, including IEEE Xplore, Elsevier, NIH Public Access, Springer, and Google Scholar with
the combination of keywords: “fall detection”, “fall recognition”, “fall prediction”, “fall monitor”,
and “fall injuries”, dated from 2010 to 2019.

Combining previous fall-related and EEG related papers we have read, the initial search yielded
1192 results. Some of them were selected for a further presentation in this paper. The criteria were:
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(1) The article would be included if they proposed a project on designing or testing a system with
the purpose of detecting falls. Analysis of gait, balancing, and rehabilitation were excluded. (2) The
study has to focus on the design, analysis, and performance of the system. Research on sensor location
selection, algorithm optimization, experiment design, or data processing technique review were not
considered. (3) Experiments on human adult subjects has to be performed. The experiment should
contain at least a group of events which real fall or simulated fall occurred as well as another for ADLs.
(4) Experimental results or overall performance has to be provided.

Most of the papers were eliminated, leaving a total of 108 articles to be read. Eventually, 45 studies
were selected, discussed, and listed in the tables below, among which 19 were discussing wearable
systems, 10 were presenting ambient systems, 12 were introducing vision systems, and the remaining
4 illustrated combined systems. Another 25 papers were cited for the introduction, previous review,
and discussion.

3. Technologies and Products Summary

3.1. Systems Based on Wearable Devices

Wearable telemedicine technology provides an effective solution for the above mentioned falling
issues and has become a new research hotspot. Wearable devices are smart electronic devices that have
inertial and medical sensors embedded into watches or clothes to achieve a kind of non-instructive
and non-invasive diagnosis and monitoring [20] by collecting body signals. The current systems and
research of wearable devices for detecting falls can be classified into (i) tri-axial accelerometer-based,
(ii) gyroscope-based, (iii) inertial measurement unit and barometric altimeter-based (BIMU), and (iv)
smartphone-based systems. In these systems, the sensor units are attached to various parts of the body
such as wrist, chest, thigh, and hip. Though a few researches are only focusing on applying a single type
of these sensors, such as [21-23] discussed the systems based on accelerometer while [24,25] introduced
those based on gyroscope. Most of the recent systems have a combination of two or more sensors
including accelerometer and gyroscope. In many cases, such systems also come with a protection
apparatus such as an embedded airbag ready to be deployed during the event of fall. The parameters
monitored by these sensor systems include the following: root-mean-square (RMS) of acceleration
as measured by accelerometer, angular velocity by gyroscope, vertical velocity, and height by BIMU
and electrocardiogram (ECG) signals. Such systems can be broadly classified into threshold based
and machine learning based systems. In [26-28], the tri-axial accelerometer and gyroscope sensor
measurements are monitored for calculating the RMS values of acceleration and angular velocity of
each axis and compared with a threshold value to detect fall events. In [29], the same methodology is
performed with sensors present in a smartphone. Wearable devices readily available in market include
Apple Watch Series 4 and 5 [30] and Sense4Care Angel4 [31] detect fall using the same accelerometer
and gyroscope combination. In Apple Watch, the wrist trajectory and impact acceleration are measured
for detecting fall. Since these devices measure the sensor values and only compare them with a
threshold, the accuracy and sensitivity are quite low as well as the resulting increased false positives.
Employing machine learning algorithms for predicting falls has become a trend since it results in
increased prediction accuracy. For example, the angular rotation and acceleration measurements
were considered as a binary classification problem in [32,33] were tested with k-nearest neighbor
(KNN) (99.80% accuracy) classifier and random forest (96.82% accuracy) classifier. In study [34], a
hidden Markov model is used to develop a sensor orientation calibration among algorithms to resolve
sensor misplacement issues on human body to detect falls with an experimental positive prediction of
98.1%. These above mentioned studies on inertial sensor-based wearable fall detection systems are
summarized in Table 1. It is clear that accelerometer and gyroscope are the most popular sensor among
all listed, but not limited to, sensors used in wearable fall detection systems. As they can sense and
extract multiple significant body parameters while being feasible, discreet, and budget friendly.
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Most falls are accompanied with sudden and significant body change in orientation or position,
which gives inertial sensors natural advantages since such alternation can be accurately sensed and
measured by accelerometers, gyroscopes, barometric altimeters, and so on. Besides, other advantages
such as being portable, discreet, and noninvasive all make inertial sensor-based fall detection systems
one of the most popular studies in the field of medical devices. However, a major drawback somehow
explains why such a hot research topic generates such little number of actual products in the market.
The wearable inertial sensor based fall detection systems are not robust enough. Most of the studies
claimed to have algorithms with high accuracy and performance but neglected the fact that their
excellent results are only validated in the laboratory environment, where uncontrollable factors and
noise are eliminated [13]. In fact, wearable systems are prone to failure of fall detection or false
positive trigger, because these systems are directly triggered by sudden and significant changes in
users” acceleration and angle that are related to falls. However, in real life there is a variety of activities
of daily living (ADLs)—such as standing up, sitting down, or going from standing position to lying
down—that have strong similarities to falls [11].

Table 1. Summary of wearable devices.

Measure of

Article Proposed Approach Performance Challenges
A tri-axial acceleration sensor was attached on The sensor is attached on the shoe
[21] each shoe. With a microcontroller, Bluetooth Sensitivity = 81.5% which is so close to the ground
module was also used to transmit data in ’ that less acceleration would occur
real time. than the rest of the body:.

Joint sensing of several three-axle acceleration
sensors was applied aiming to provide sufficient
[22] data to make judgment on fall accident and Accuracy = 92.92%
differentiate the behavioral event and the
falling accident.

When the subjects walk slow, no
obvious periodical acceleration
may be used for judgment,
leading to failure of identification.

This technique uses accelerometers placed on the

pelvis and head to detect body accelerations This system only estimates the fall

[23] . . . N/A risk of the subject rather than
when subjects are walking on a specially makine a decision on fallin
designed unpredictably irregular walkway. 8 &

The ability to discriminate between falls and

ADL was achieved using a bi-axial gyroscope The ADLs chosen are only sitting
sensor mounted on the trunk, measuring pitch A 2 nno downs and standing ups which do
and roll angular velocities, and a threshold-based ceuracy = 100% not generate large orientation

[24] / Sensitivity = 100%

algorithm. The gyroscope signals were acquired disturbance in gyroscope as other
from simulated falls performed by healthy young fall-like ADLs, such as bending
subjects and ADLs performed by elderly persons over tying a shoe.

in their own homes.

Specificity = 100%

A piezoelectric gyroscope was attached with a
belt in front of the sternum. A standard motion
analysis system was also used as reference.
[25]  Subjects performed different activities involving Sensitivity = 99%
postural transitions and dynamic activities with
use of different type of chairs with and without
use of armrest.

Only the tilt angle between the
vertical axis and the subject’s
anterior wall of thorax was
analyzed. The angular velocity is
also important as it reflects how
fast the angle is changed.

Three-axis accelerometer and gyroscope are
attached to the chest of the patient. X, Y, and Z

[26] axes values are observed which are then
compared with the accelerometer and gyro and a
decision is made.

Cannot detect fall or misclassify
when the person uses stairs or
short corridors.

Sensitivity = 96%
Specificity = 100%

Uses a triaxial accelerometer and a triaxial

gyroscope. A fall is considered when the Works on sensors which is prone

_ ono, . .
127 acceleration is less than +3 m/s? and the angular Accuracy = 93% ;;)liﬂt;lire (:; detection or
velocity exceeds 0.52 rad/s. 88er:
Triaxial accelerometer is used to measure the X, Y,
. Success Rate: Not great accuracy and success
and Z values and sent to a microcontroller where o -
[28] the measured values are compared with a Forward fall = 75% rate as it uses only one sensor to
P Backward fall = 95% detect fall.

threshold value for fall detection.
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Table 1. Cont.

50f19

Measure of

Article Proposed Approach Performance Challenges
Fall detection is performed by comparing the
difference of the maximum and minimum values There are some falling situations
[29] in the sample and the last with a specific Accuracy = 93.33% which cannot be de te%te d
threshold. Also, the angle value is considered to '
measure the posture.
Fall detection works on the device’s I 84 watch worn on people’s
- . wrist where lot of unnecessary
[30] accelerometer and gyroscope. Wrist trajectory N/A movements occur. which is prone
: and impact acceleration were observed to detect o P
. to false negatives or false
fall incidents. rs
positives.
Fall detection is estimated by the combination of Works on onlv one sensor which
[31] the device’s triaxial accelerometer and a special N/A fails to rovici,e accuracy for
i algorithm. Device is connected with di fferenrt) tvpes of f;lin yeven ts
smartphones for emergency services. yP & ’
Angular rotation is considered using a gyroscope
along with acceleration to minimize false Accuracy: Few falling activities, such as
[32] positives. The proposed work considers the fall kNN classifier = 99.80% forward fall, while walking
detection as a binary classification problem and RF classifier = 96.82% caused by a trip are hard to detect.
tested with KNN and random forest classifier.
NNN, naive Bayes, SVM, ANN, and decision tree e .
. . . . . . Several accuracy values were  Utilize too many algorithms
algorithms with and without including the risk . . e S .
[33] oL . . shown for all the algorithms ~ without indicating solution when
factorization were implemented and their results . . .
. implemented. given different results.
were compared for fall detection.
The proposed work includes a new s .
representation for acceleration signals in HMMs Experiment: The data in this study is a
. - . o e o snapshot of one event, not many
to avoid feature engineering and the Positive Prediction = 98.1% events from one subject over time
[34] development of a sensor orientation calibration Sensitivity = 99.2% It micht be romisin] to include '
algorithm to resolve sensor misplacement issues Real World: sub'egc t da tap over timge and with
in real-world scenarios. HMM classifiers are Positive Prediction = 78.6% cha]n ine health status to imbrove
trained to detect falls based on acceleration signal Sensitivity = 100 sing P
. the system.
data collected from motion sensors.
A tri-axial accelerometer and a CDMA No error was recognized in Works with accelerometers only.
[35] standalone modem were used to detect and ogn Size of device is too bulky to
laboratory environment .
manage fall events. be ergonomic.
This system is based on the integration of an
inertial measurement unit with a barometric T Lo
altimeter (BIMU). Using these sensors, the Sensitivity = 80% Height is measured Wthh isabad
[36] . . . P factor for humans with
vertical velocity and height are measured, and the Specificity = 100% . .
. varying heights.
root sum of squares is calculated and compared
with the threshold to decide the fall event.
Velocity and acceleration of the person is tracked
by the MetaTracker fixed at the chest position. Sensitivity= 99.48% Chest-based wearable devices
[37]  The dynamic threshold can scale up and down Specificity= 95.31% require better ereonomic desien
depending on previous scene change that is Accuracy = 97.40% 4 8 &
suitable for separating fall from ADLs.
Single triaxial accelerometer attached to the FMFP:
patient’s thigh. Two modes of operation: fast Sensitivity = 97.8% .
mode for fall prediction (FMFP): uses non-linear Specificity = 99.1% Works on or}ly one sensor which
[38] p P fails to provide accuracy for
- SVM classifier; slow mode for fall detection SMFD: di fferenlz tvpes of fallin yevents
(SMFD): utilizes three-cascaded one second long Sensitivity = 98.6% yP & ’
sliding frames classification architecture. Specificity = 99.3%
A Dbelt-like wearable sensor based on pre-fall o The low-power-cost portable
. . - Accuracy = 96.63% desien limits th ith
[39] detection system, which uses linear and angular Sensitivity = 100% esign limits the system wit

velocity information from motion sensor to
classify human fall.

Specificity = 95.45%

using threshold value based
algorithm only.

3.2. Systems Based on Ambient Sensor Systems

Apart from wearable devices, there are ambient based and vision based systems which can monitor
human posture to detect falls. Fall detection systems based on wearable sensors are non-sensitive to
the changing ambient environment since they do not consider the dynamic environmental factors
that might affect the detection. However, ambient systems, as shown in Figure 1, provide a solution
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by collecting data from the user as well as examining the environment. These systems make use of
external sensors which are installed around the user’s daily active area, such as a home or senior
care facility, and monitor the posture of the humans in a fall event with some factors such as the time
spent in falling. Current research on ambient systems for fall detection are based on (i) ultrasonic
signals/radar, (ii) Kinect sensor, (iii) microphone, (iv) pressure sensor, and (v) infrared/Wi-Fi signals.
The parameters observed by these sensors are mostly (i) motion of the human (ii) posture, (iii) pressure
on the ground, (iv) acoustic, and (v) time spend in falling as well as the time spent on lying on the
ground after fall. Since these parameters are different for each person and each fall event, these systems
use pattern matching or machine learning algorithms to detect falls rather than using a threshold value.

Ultrasound sensor/radar is a motion detector that focuses on recognizing and tracking moving
subjects based on ultrasound wave. It is one of the most popular unobtrusive sensors used in ambient
fall detection system. The sensor itself is small and cheap and only requires minor installation. It is
well functional under low-light environments and free of privacy concerns [40]. In [41], an array of six
ultrasonic sensors is used to monitor the posture of the person in a fall event. The sensors radiate an
eight-pulse signal waveform at 40 Hz. The distances between the subject and sensors were calculated,
and the gesture of the target is analyzed based on the different distance information detected by the
array of sensors. A trained SVM model is used for pattern matching and generated 98% accuracy on
fall detection. In [40,42], specific radar technologies were used to monitor the change in frequencies
when a fall event is happening. Deep neural networks are implemented to predict fall in [40] and
generated an accuracy of 95.64%, whereas KNN algorithm is used in [42] with an accuracy of 95.5%.
The disadvantage of radar is that the obstacle and clutter in indoor environments may obscure the
person to be detected by the sensor. Besides, radar is so sensitive to motions yet it cannot distinguish
which subject it is from, that only one subject is required to be presented in the monitoring area.

The Kinect sensor is what comes in between a motion sensor and a vision camera, it unobtrusively
tracks movements by using structured light or time of flight instead of ultrasound wave [43]. Similar
to ultrasound sensors, it is easy to install and will not raise much of privacy issue. Kinect sensors
were adopted in fall detection in [44,45]. A total of 25 specific points/joints of a human were tracked in
real-time by a Microsoft Kinect v2 sensor in [44]. The minimum and maximum height of three specific
points are measured dynamically and compared with a threshold to detect a fall. Stone et al. [45]
proposed a method for detecting falls using Microsoft Kinect. Two stages are included, first of which
is to characterizes a person’s 3D bounding box to determine subjects’ vertical state and track person
overtime while the other stage is applying ensemble of decision trees to compute the confidence of
a fall. The Kinect sensor shares similar issue as radar in fall detection such as being easily affected
by obstacle and clutter, indoor coverage limitation, and single target requirement. Besides, since the
Kinect sensor tracks subjects by projecting their heights and widths using structured light, it can be
influenced by overpowering sunlight or even regard a human-sized object as a subject [45].

As for the microphone, the basic idea is to capture and analysis the acoustic information to identify
a fall. It is cheap, small, and easy to acquire and install. Li et al. [46] had developed an acoustic
fall detection system (acoustic-FADE) which consists of a circular microphone array that captures
and analysis sounds to automatically detect a fall. When a sound is detected, acoustic-FADE locates
the source, enhances the signal and decides if a fall has occurred. Though 100% sensitivity and 97%
specificity are claimed in [46], generally speaking the microphone-type fall detection system is not
as robust as Kinect type or radar type. Yet it shares their disadvantages such as the limit on indoor
coverage and single target. It is highly sensitive to environmental noise and interference. It also has a
hard time detecting slow falls that generate minimal sound. Besides, the material of the floor and the
limited detection range also affect the system. It may also raise privacy concerns.

Pressure sensor is another popular feature in ambient systems. This type of sensor is usually
installed beneath the floor to detect floor vibration and pressure to identify a fall. In [47], a device-free
fall detection system based on a Raspberry Pi and three geophones is proposed. Falling mode is
decomposed and characterized with time-dependent floor vibration features. By leveraging Hidden
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Markov Model (HMM), such system achieves a 95.74% precision. The disadvantage of pressure sensors
is the high false positive it generates since it will regard a large object dropping on the floor as a fall.
Additionally, even though the sensor itself is cheap, it needs to be installed under the floor of the whole
living area, which requires major home renovation and complicated power supply for each sensor
which ends up increasing the cost.

Just like in the wearable devices, sensor fusion has also been attempted in the ambient system.
By detecting falls using an infrared signature, infrared sensors are mostly used together with other
types of ambient sensors to increase accuracy. In [48], Wi-Fi signals were used to detect falls by using
the channel state information (CSI). The human motion was recognized as it will significantly affect
the wireless signal transmission channel. The infrared sensor is user to help locating the subject in
case of ‘bad antennas’ situation happened in Wi-Fi device. A naive Bayes classifier is used to predict
fall reaching 91% of accuracy. In [49], infrared sensor has been combined with pressure sensor, which
reached of specificity 96.7% and sensitivity of 100%. Infrared image is used to observe the whole
environment while pressure sensors are to analyze floor action. Such a combo can reduce false alarm
rate as the scenario when large item dropping on the ground and slow fall would be identified the
infrared sensor. In [50], Kinect simulator and range Doppler radar are both used. Kinect can help in
generating a better repository fall/non-fall classification, as sometimes the orthogonality between the
motion direction and the radar’s line of sight would lead to miss detection. Together, the Kinect sensor
and Doppler radar are able to perform 3D position measurements, generating fall detection accuracy
up to 96%. In Table 2, a summary of ambient fall detection systems is provided.

Unlike sensors of wearable systems, those used in ambient systems are dramatically different from
each other. Overall, these ambient systems have the advantage of operating in a low-light region and
not being restricted by privacy issues compared to vision-based systems. These systems provide a more
comprehensive analysis of user’s posture by taking environmental factor into consideration compared
to inertial sensor-based wearable systems. Nevertheless, the limitations of ambient system are vital.
To begin with, they are suitable only for indoor environment and cannot be installed or operated
outdoor. Furthermore, the significant number of blind spots in the house or apartment, considering
that the sensors are always located at fixed positions, makes it difficult to implement such systems.
Moreover, most ambient systems can only serve one person in the monitored area, meaning no pets,
no partner, and no friends. Most importantly, though the sensors used are cheap, the installation of
such a system requires major home renovation as most of the sensors will be embedded underneath
the floor or in the wall, which can be an expensive setup.

Infrared Ultrasound Radar
Sensor

Figure 1. Example of ambient Sensing Fall Detection System.
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Table 2. Summary of ambient systems.

8 of 19

. Measure of
Article Proposed Approach Performance Challenges
An ultra-wideband radar is used to monitor Accuracy = 95.64% Fine tuning with a greater number
[40] human daily activities and identify the Precision = 96.12% of convolutional layers will result
occurrence of falls. Sensitivity = 96.73% in overfitting.
An algorithm for fall detection based on event .
. . . — 989, False alarm towards people with
[41] pattern matching with ultrasonic array Accuracy = 98% . .
. pets and walking sticks.
sensors signal.
Dynamic range-Doppler trajectory (DRDT)
method based on a frequency-modulated The subject should be in line of
continuous-wave (FMCW) radar system is Average classification sight which is a major drawback
[42] proposed. Multi-domain features including accuragc — 9559 as the presence of walls and
temporal changes of range, Doppler, radar Y =700 furniture at users’
cross-section, and dispersion are extracted from living environment.
echo signals for a subspace kNN classifier.
A platform programmed in C# for movement . .
[44] monitoring and fall detection of persons base Tue Positive Rate = °  Luman review on the RGB image
o d fall d ion of based  True Positive R 809, High false alarm rate that requires
on data acquired from a Microsoft Kinect v2 False Alarm Rate = 18% of event 8
Sensor. ’
Real-time fall detection system based on the
Kinect sensor. The system defines a 3D Requires tons of
5 ounding box of human posture with the ccuracy = 98.6% .
(4] bounding box of h P ith th A y = 98.6% COI?'[ uting resources
measurement of width, height, and depth of p 8 )
the subject.
Acoustic fall detection system with acoustic i o False alarms due to large piece
. . Specificity = 97% .
[46] signals recorded by arrays of microphones, Sensitivity = 100% item dropped on the ground
sampled at 20 KHz. y= ? considered as fall.
A device-free fall detection system based on
geophone. Falling mode is decomposed and The floor vibration profile induced
[47] characterized with time-dependent floor Precision = 95.74% by many other objects falling from
vibration features. Hidden Markov model is False Alarm Rate =5.30%  a certain height is similar to
also utilized to recognize the fall event human fall.
precisely and achieve training free recognition.
A Fobust and unobtrtllsn./e falll detect19n system True Positive Rate = 92%
using off-the-shelf Wi-Fi devices, which gather P Accuracy decreases due to raw
[48] . . . False Alarm Rate = 6%
fluctuant wireless signals as indicators of o,  CSldata from bad antennas.
human actions. Average Accuracy= 91%
An ambient system combined with floor Infra‘r ed sensor cannot tell the
. . s o monitored subject from other
pressure sensor and infrared. It adjusts the Specificity = 96.7%
[49] people or pets. Floor pressure

detection sensitivity on a case-by-case basis to
reduce unnecessary alarms.

Sensitivity = 100%

sensor has trouble detecting slow
falls.

[50]

An indoor motion monitoring system with
Kinect simulator and range Doppler radar. It
successfully distinguishing falls from sitting
motions, which leads to reduced false alarms.

Accuracy = 85-96%

Presence of scatters caused by
interior walls. Similar Doppler
signatures of pets jumping off
tables and chairs to those of a
human fall. The orthogonality
between the motion direction and
the line of sight.

3.3. Systems Based on Image Processing

While staying inside a home, except for ambient system, people can also be monitored for fall
detection by vision-based systems to alert for an emergency or immediate assistance. Current studies
on vision-based systems use suitable video cameras for real-time monitoring. Usually, these systems
use a depth camera [51] or RGB camera such as Raspberry Pi camera [52] and indoor video surveillance
camera [53] for image acquisition to detect falls. Depth cameras have the ability to calculate 3D
information using a single camera. It also has better performance under low-light condition [51]. RGB
camera, on the other hand, is just normal video camera used in daily life, including low profile internet
camera to high end surveillance camera. It does not have the ability to acquire 3D information nor
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work under low-light conditions. However, these can be overcome by using multiple RGB cameras and
adding infrared sensors, similar to what is going on with our cell phone camera. Generally speaking,
both types of cameras detect subjects well in vision-based fall detection systems.

The procedures vision-based systems used are more or less the same as these following steps:
(i) image preprocessing, (ii) background subtraction or foreground segmentation, (iii) feature extraction,
and (iv) event recognition [54]. The dominate difference among different approaches is the third step
on what kind of feature is determined and extracted. There are four major methods to extract features:
(i) shape change monitoring, (ii) postures figuring, (iii) key point tracking, and (iv) inactivity detecting.

Shape change method normally approximates the subject by using an estimated shape such as an
ellipse and rectangular [55]. It requires less computing resource and is simple to model. Hence adopted
by most of the real-time vision system. For example, the human subject monitored by Raspberry Pi [52]
and home surveillance camera [53] is approximated by an ellipse around them and a minimal rectangle
is encompassed around the ellipse. The aspect ratio of this rectangle is observed in each frame and
compared with a threshold to detect a fall. In [55], C-motion that describes the velocity of the subjects is
combined with shape changes to detect fall. It first applies motion quantification to detect large motion
like falls using C-motion. Then the system will analyze the orientation and proportion of subjects’
shape to figure out the subjects’ status. Meanwhile, the last analysis is to check the lack of motion after
fall and count the length of time when the subject is lying on the ground. Study [56] used another
technique to estimate the height-width ratio and the distance between the mid-center and top-center
position of the approximated rectangle shape to detect a fall using a threshold. In [57], similar shape
approximation is performed while SVM is utilized to detect eclipse shape, position of the head, and
vertical and horizontal projection histogram in order to make a decision on identifying the subject’s
activity. Study [58] approximates the subject as a voxel shape by using multiple video cameras. Then
the status of the subject is classified as upright, on the ground, and in between based on the height of
voxel shape by using fuzzy logic technique. The disadvantage of shape change method is that in order
to achieve fast and small calculation, it sacrifices the accuracy by approximating the subject as simple
geometry shapes.

In contrary, posture figuring method is much more in detail as it either track the subjects’ joints
or draw the body contour to specify their posture. Hence higher accuracy. As shown in Figure 2,
after background subtraction in [59], a Kalman filter with OpenCYV is used to keep track of the person
by identifying a set of points in the areas of interest. The system is even sensitive enough to notice
small movements when the subject is standing still. A KNN algorithm is used to predict a fall with
an accuracy of 96.9%. In [54], three depth cameras were used to work independently. The subject’s
body contour was used as the foreground feature which is analyzed and labeled as fall or non-fall
events by each camera source. A voting technique is applied to make a final decision by the majority
votes. This method reaches accuracy up to 96.5% which is close to that in [59] but drains even more
computing source due to the voting rule. To balance the trade-off between accuracy and efficiency, the
method proposed in [60] adopts gesture figuring by measuring the subjects body contour. Then instead
of using machine learning technique, the authors simply calculate a threshold line that separates each
frame. If the subject is positioned below the threshold then the fall is detected. Posture figuring method
can surly guarantee high accuracy yet it is computationally very expensive. It requires an enormous
amount of training data and is possibly not fast enough to be implemented in real time. Thus, shape
change method is more popular at the moment with a little sacrifice in accuracy.

Key point tracking is another compromise made from posture figuring in order to save computing
expenditure. This method normally projects the subject posture but only check a few key feature points
instead of all of the pixels. In [51], a robust fall detection system based on human body part tracking
using a depth camera is proposed. The 3D body joints are extracted first and then the head and hip as
the most visible body parts are extracted and tracked. Such strategy is proved to be worthy as the
frame rate of the camera is 30 fps and the joint extraction only takes a few milliseconds. Eventually the
head joint distance trajectory is regarded as input feature vector to be analyzed by SVM, generating
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accuracy of 97.6%. Poonsri et al. [61] proposed an improved fall detection algorithm using consecutive
frame voting. It first subtracts background using a mixture of Gaussian models (MoG) to detect human
subject. The contour of the subject is identified as the feature. Then the centroid of the feature is being
tracked only. Classification of the events is made on each frame. Eventually the consecutive-frame
voting is proposed to increase an accuracy of prediction, up to 91.38% that is higher than their original
86.1%. Similarly, depth camera is adopted in [62] to detect fall by analyzing features as center of gravity.
Neural-network is proposed to train classifiers, among which MLP generates the highest accuracy of
98.15%. On top of saving computing cost, key point tracking method can also help to avoid occlusion
issue as we can choose the key point from the body part where is less likely to be blocked by furniture
or so, say, the head. However, also because only key points are being tracked, information may be lost,
leading to false alarms such as labeling quick sitting down as a fall or failure in detecting a slow fall.
As for inactivity detecting, it is the fastest method since it requires almost no computing resource.
However, this method is seldom used alone as its high false alarm rates. Also it requires the subjects
to be lying on the ground for a while, having their life at stake, to detect a fall. Thus, this method is
always combined with those three above mentioned methods to serve as a “double insurance” [55,56].
A snapshot of recent research on fall detection using image processing systems is presented in Table 3.

/ Cameras \z

B

4

Figure 2. Example of image processing based fall detection system.

To sum up, image processing based fall detection systems are somehow similar to ambient systems.
They share advantages in environmental factor analysis that wearable devices do not have. Also,
they both have the issue with indoor restriction, blind spots, and enormous expenses. In the meantime,
image processing systems have their own unique advantages. Thanks to pattern recognition, image
processing systems can identify, track, and monitor the target user even when there are multiple people
or pets in the monitored area. However, such detailed video recording systems are always subject to
privacy concerns as well as the need for calibration among multiple cameras and complex real-time
image processing algorithms that consume a tremendous amount of computing space and power.
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Table 3. Summary of image processing based system.

Article Proposed Approach Measure of Performance Challenges
Depth camera measures the relationship between
:(ihe Pody and the envn‘on.ment.‘ A randomized Sens%t%V}ty = 95.(2 Jo Does not detect fall event if one of
[51] ecision tree (RDT) algorithm is proposed for the ~ Specificity = 100% the joints of the body is hidden by
: key joint extraction. Then SVM classifier is Accuracy = 97.6% an obstacle
employed to determine whether a fall Error = 2.4% ’
motion occurs.
Foreground segmentation, Motion History image,
calculation of C-motion and pace, calculation of Proposed approach just replaces
standard deviation of C-motion, calculation of expensive CCTV camera based fall
52] orientation of ellipse (locate person’s foreground) N/A detection. If some motion is
are performed for fall detection using Pi Camera. observed 5 seconds after a fall,
Finally, if the value of orientation standard then it will consider that the fall
deviation of ellipse has high changing rate, it did not occur.
detects as a fall event
Posture-based events captured with a camera
resolution of 640 x 480 pixels and at 30fps. The Only works if the person lies on
[53] fall detection includes video acquisition, Accuracy = 92.5% the ground for a while which can
background subtraction, object detection and cause serious injury.
rule-based classification.
Fall detection systems with voting strategy from  Accuracy = 96.48% Voting strategy only depends on
[54] three depth cameras that provide the depth Precision = 90.20% simple voting but not weighted
image to the fall detections. Fall Detection Rate: 96.7%  voting.
An RGB camera system detects fall by analyzing C-motion works on the velocity of
[55] C-motion coefficient, which measures human Sensitivity = 88% movement. It would return high
o motion with the help of motion history images Specificity = 99.7% value calculations even the subject
which shows the pace of human body. is just running.
Background subtraction, contour based human
template matching, Height-width ratio . o Does not detect fall when the
. . . Detection acc. = 95.2% .
[56] computation and computation of distance . o human is very close or parallel to
. . False detection= 3.33%
between top and mid center of rectangle covering the camera.
human are performed
An image processing ‘t.)ased syster.n that mainly Head’s movement is less intensive
tracks the head of subject. It applies SVM to e o . , .
[57] . " . Sensitivity = 90.27% comparing to body’s especially
detect eclipse shape, position of the head, vertical . .
. S . during slow fall period.
and horizontal projection histogram.
3D representation of humans using multiple
cameras. Two levels of fuzzy logic: 1. Sensitivity = 100% Demands expensive costs of
[58] Calibrations between cameras to determine Specificity = 93.75% computing. Accuracy also relies
posture of subject. 2. Decision making on on huge database.
identifying subject’s activity.
The proposed approach includes image
acquisition, foreground segmentation, Kalman Sens%t%v.lty =96 /o0 Occlusion, light, and ambient
filter optical flow occlusion detection, and a kNN  Specificity = 97.6% o .
[59] Lp . L o conditions affect the fall detection
classifier. Occlusion helps the system to detect Precision = 96% sionificant]
falls if the person is hidden by an object Accuracy = 96.9% & ¥
after falling.
A support system based on depth videos for old F;oi(;z(e)i ?frtlhognls not applicable
age people living alone in their homes. A region UR Dataset: fl Er Tt al }(’) gen ds most of the
of interest (ROI) is detected by subtracting set —1hno 00t 1+ 4150 Sp Stolt
[60] Fall Accuracy = 100% computing energy on specifying
background from extracted frames. A threshold o .
. Non-fall Accuracy =82.5%  the posture of the. subject. A
is proposed to separate the ROI of fall and .
threshold is then proposed as a
non-fall. . . .
result instead of machine learning.
An improvement of fall detection using Requires very large amount of
consecutive-frame voting to improve previous o computing. Also, the results are
g . Accuracy = 91.38%
work accuracy. The method consists five stages: e only from several cameras located
[61] . Sensitivity = 97.92% . i
(1) human detection, (2) low-level feature Specificity = 60.00% on certain fixed positions. Tests
extraction, (3) human centroid tracking (4) event pecificity = 60.00% with different viewpoints are
classification, and (5) consecutive frame voting. needed.
[62] Six different features extracted from an image Accuracy = 98.15% Never tested with real human

frame are used as inputs to a neural network

Kappa Value = 0.96

falls. All results are simulated.
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3.4. Combined Systems Incorporating Two or More Technologies

As discussed above, each system has its distinct advantages as well as unique disadvantages.
In order to complement each other, combination of these various techniques is being studied. Combined
systems for fall detection are essentially a network of sensor nodes working in correlation to detect a
fall. In [63], the acceleration data is observed from the sensor node attached on the body and forwarded
to the base station, which is a computer, to detect falls, while RF signal strength is used to locate the user.
Their results indicate that with such a combination, normal activities do not produce false positives.
In [64], a method for detecting falls using indoor localization system combining ultra-wideband (UWB)
and accelerometer is presented. The accelerometer is placed in near-head position as tracker since the
head experiences the largest vertical displacement during a fall. The UWBs are installed in living area
as anchors to determine the user’s location with an accuracy in the order of 10 cm. Ranging data are
exchanged from the tracker node and to compute the distance of the tracker to the anchor node. Unlike
acceleration based system, such combined system focuses on detecting the user’s posture rather than
sudden movements. Thus, this system is capable of detecting slow falls, which are not likely to be
detected in traditional wearable devices. There are other studies performed with similar combinations
and all claim better accuracy, such as listed in Table 4. In [65], a robotic platform is presented as it not
only combines all three types of systems but also utilizes telepresence technology to enable caregiver
to have real-time evaluation on the data collected, which provides an additional layer for detecting
false positives.

Admittedly the combined systems have neutralized some weak points from each single system
and brought higher accuracy in detecting fall. The vulnerability is still obvious. Such combined
systems are unable to tell the difference between an accidental fall and a self-initiated activity. Besides,
combined systems are likely to be more expensive and less ergonomic.

Table 4. Summary of combined system.

Measure of

Article Proposed Approach Performance Challenges
Using a small device worn on the waist and
a network of fixed motes of home
environment, the occurrence of a fall is Accuracy decreases due to raw
[63] detected with the location of the victim. N/A CSI data from bad antennas,
Low cost and power 3D accelerometers are barriers, and long distance.
used to detect the fall while RF signal is
used to locate the person.
Wearable .dev1ce with mult.lple nodes in it is Calibration for standing, sitting,
[64] installed in near-head position of the N/A and lying on ground postures is
patient. Then, the posture of the nodes is nee dZ d
tracked by an ultrawide band radar. ’
A fall detection system based on a
combination sensor networks and home Packet transmission delay is
[65]  robots which comprises of body worn N/A relatively large. Consumption of
sensors and ambient sensors distributed in power also impacts battery life.
the environment.
A fall detection system with improved The experiment only relies on a
[66] framework by fusing the Doppler radar Accuracy = 98.7% portion of data from a large
sensor result with a motion sensor network. dataset. Further testing is needed.

4. Discussion

We have reviewed and summarized different types of fall detection systems that currently exist.
Based on this review we will discuss about the issues, trends, and challenges.
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4.1. Issues

In the previous sections, fall detection systems/devices are categorized as wearable, ambient
and image processing-based system. Such diversified systems focus on different aspects of fall from
acceleration to impact and posture of the user. Each type of systems obviously brings its unique
benefits yet is accompanied by certain limitations that need to be discussed. Comparison among
different fall detection system types is difficult to be fair as they each drew individual conclusion
using different approaches applied on unique datasets acquired from their special hardware with
distinctive experiments performed. Generally speaking, wearable systems have higher portability but
less reliability, while ambient and vision system are more robust but with restricted working area.
The characteristics of different systems is listed in Table 5.

Table 5. Characteristics of fall detection systems.

. Privacy . Battery
Sys. Type Price Set-Up Robustness Target No. Concern Obtrusive Issue
Wearable Cheap Easy Low Single None Yes Yes
. Low Parts + Major .
Ambient High Labor  Installation Moderate Single Low No No
Vision Expensive Easy High Multiple High No No

Acceptability of fall detection systems can be a problem. People have to weigh the cost of the fall
detection system against the benefits it will bring. Ambient and vison-based fall detection systems
usually consist a group of sensors, detectors, and cameras. Such a package not only requires a large
fortune but also demands major renovation of daily living environment. Additionally, the inherent
defects of importability and limited monitoring area prevent such type of systems from bringing more
benefits to not only elderly people outdoor, in fact, but also those outdoor athletes such as runners,
bikers, and skiers as well. In comparison, wearable device is a less financial burden and requires no
expert installation. It is also less complicated and more portable which seems like a more acceptable
choice. However, such a system is dependent on the user not only always remembering to wear them,
especially during nighttime but also choosing to wear them due to the lack of ergonomic design and
sustainable battery life.

False alarms are a major issue to consider with fall detection systems. Wearable devices’ reliability
and robustness are sacrificed for the advantage of portability and cost efficiency. A wearable device is
only triggered by inertial sensors such as an accelerometer, gyroscope, or BIMU. As a result, it has
limited ability to distinguish real falls from ADLs that generate similar acceleration and orientation.
Such limitations can be even enlarged outside of the laboratory environment due to the lack of ability
to handle environmental factors. Nonwearable systems take environmental factors into consideration
in order to decrease the falls alarm rate. However, the performance is mainly ensured by the focus on a
single target. Any other living creatures such as a pet, a partner, and a family member other than the
subject her/himself will bring massive disturbance and noise to these systems.

Lack of public database surly acts as a rough obstacle on the road of developing fall detection
systems. Such public database should both includes real-life fall data and standard evaluation
framework among different systems. Most studies we reviewed in this paper collect data of falls
simulated distinctly from subjects of various ages, sizes, and genders by putting different types of
detectors on different position, which is extremely difficult to reproduce. Thus, a fair evaluation and
comparison among different systems and algorithms seems tough. Moreover, even we assume all these
methods are legit within a certain criterion, it is still unclear whether they would maintain excellent
performance outside a laboratory environment due to the insufficiency of real-life fall data.
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4.2. Trends

In order to find solutions for all these issues, studies are being conducted. In this section, current
and future trends are described.

Sensor fusion is one of the most popular trends in developing fall detection systems, which is a
combination among multiple sensors, systems, and algorithms. As mentioned in the previous sections,
combining different types of sensors, systems, and algorithms can surely improve the performance of
fall detection as these sensors and systems complement each other. Thinganos et al. [67] presents a
comparison between three proposed data fusion schemes and one study in which only one type of
sensor and algorithm is used, providing useful insights into the problem of fall detection.

To decrease the price and increase the usage rate, studies integrating fall detection into smartphones
had been brought up since 2009 [68]. As for the hardware, smartphones are naturally made for data
acquisition and wireless transmission. Besides, nowadays smartphones are always integrated with
inertial sensors. Thus, users do not need to bear with extra expenses for extra devices. For the software,
open source environment enables large number of developers to update APPs and improve algorithms
promptly, pervasively, and precisely, which promises the users with the latest protection.

To reduce the rate of false positive events, machine learning techniques are started being applied
in fall detection devices. Although traditional threshold based methods are able to detect when a
fall occurs, the rate of false positives is always a problem. Each user is unique in height and weight
and behaves differently in a variety of living environments. A single threshold is neither enough
nor accurate. Machine learning approach is more sophisticated and thus more adaptive and leads to
better performance. Currently, there are multiple machine learning methods being proposed, such as
decision trees [69], nonlinear regression [70], dynamic Bayesian network [71], and a lot more. Yet not a
single method is widely recognized as most effective and new approaches are still being introduced.
Fortunately, real-world fall repository is being developed [72] and soon there will be enough real-life
fall data for training and testing all the algorithms.

There is a new trend towards wearable EEG device to ease the difficulty in distinguishing real falls
from fall alike ADLs. The EEG (aka, electroencephalogram) is a widely used noninvasive method for
measuring brain dynamics and performance [73]. When brain cells called neurons are busy processing
information, they emit electrical signals [74] which can be recorded by attaching small metal electrodes
on our brain according to 10-20 location systems [75]. Event-related potential (ERP) is one of the
major brain responses measured by EEG, which is electrical potential in the brain in response to
specific events [76]. ERP waveform is consisted by a bunch of ERP components, each of which is
indexed by its polarity (positive or negative going voltage), timing, scalp distribution, and sensitivity
to task manipulations [76]. For instance, a negative-going peak that is the first substantial peak in the
waveform and often occurs about 100 milliseconds after a stimulus being presented is often called the
N100 or N1 [77]. An ERP can be evoked by external stimulus events but not as strong by spontaneous
events. Adkin’s study [78] on cortical responses suggested that EEG can be a useful tool in fall detection.
A series of predictable or unpredictable whole-body perturbations which required balance corrections
to maintain upright stability were conducted on eight subjects wearing EEG. Results indicating stronger
ERP N1 components from the subjects can be detected over unexpected loss of balance than the ones of
expected. To find out if EEG signal directly measured from our brain acts differently towards external
stimulus, a fall, from self-initiated event, an ADL, future work needs to be done. Experiment having
subjects perform ADLs and simulated falls while wearing both wearable fall detection system and
EEG would be a good start. The high false alarm rate issue can be potentially eased, if the ERP N1s are
shown with clear distinction between falls and ADLs. Currently, there is no available wearable fall
detection device based on wearable EEG. This gives us the motivation to pursue the development of
an ergonomic wearable fall detection system based on EEG and inertial sensors.

4.3. Challenges

Challenges are presented as people discovering new methods in improving fall detection devices.
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To start with, fusion-based systems integrate multiple systems, devices, and algorithms.
Such combinations raise the computing complexity, require calibration between different systems,
and increase system cost even more, which could possibly overwhelm elderly users, causing them to
reject such complexity.

As for smartphone-based systems, smartphones are not initially designed for fall detection.
The accelerometer installed is only feasible for measuring mild activity with narrow rangeup to2 g
and with low sampling rate. The restrictions on carrying a smartphone in a standardized position to
ensure high detection accuracy is against the nature of smartphones. Besides, real time monitoring
requires continuous data collection, which will undermine the performance as well as drain the battery
of the smartphone. Smartphones should be used in a manner that place no restriction on how, where,
and when people want to use them.

Privacy concerns becomes even more debatable along with the building-up of real-life fall
repository. On one hand, privacy concerns should not stand in the way of benefits brought by
technology; on the other hand, privacy should also not be sacrificed for technology development.
Admittedly, levels of privacy intrusion differ among each type of system. A privacy protection
mechanism, such as data encryption, is inevitable in any cases.

Eventually, there is still much work to do for applying EEG in fall detection as EEG system is
normally bulky, mainly used in hospital for seizure detection, which is not portable at all. Although the
idea of wearable EEG was already introduced in [79,80] and, as an example, ear EEG is proposed [80,81]
and proved to be feasible in epilepsy seizure detection in [82], there is yet no solid data validating its
applicability in fall detection.

5. Conclusions

We have discussed and analyzed different fall detection systems that currently exist. With their
benefits, issues, challenges, and trends identified. Fall detection systems are important and complex,
yet still developing. They have great potential in broadly aiding and protecting against falls, fear of falls,
or even health consequences after falling. However, as of now there is no satisfying solution as, even
regardless of costs, the lack of ability in telling real fall from fall alike ADLs. Future work is still needed
in building a large, shared real-world (not lab-simulation) fall database for the advanced machine
learning algorithms. There is a new trend towards wearable EEG device. EEG directly measures
signal from our brain which acts differently towards external stimulus, a fall, from self-initiated event,
an ADL. To our knowledge, there is no such device that integrates wearable EEG into fall detection.
Our next goal is to design and test an ergonomic wearable fall detection device that applies EEG.

Author Contributions: Z.W. and V.R. assembled and prepared the literature and did the writing. A.G. and U.G.
helped with conceptualization, supervision, and contributed to the analysis. All authors have read and agreed to
the published version of the manuscript.

Funding: No funding was provided to any of the authors to perform this study.
Acknowledgments: The authors wish to thank the reviewers for the informative and constructive feedback.

Conflicts of Interest: None of the authors have any conflict of interest.

References

1.  Falls. Available online: https://www.who.int/news-room/fact-sheets/detail/falls (accessed on 14 December 2019).
Center for Disease Control and Prevention. Falls Reported by State. 2019. Available online: https:
/[www.cdc.gov/homeandrecreationalsafety/falls/fallcost/falls-by-state.html (accessed on 10 December 2019).

3. Center for Disease Control and Prevention. Deaths from Falls. 2019. Available online: https://www.cdc.gov/
homeandrecreationalsafety/falls/fallcost/deaths-from-falls.html (accessed on 10 December 2019).

4. Center for Disease Control and Prevention. Falls Data. 2019. Available online: https://www.cdc.gov/
homeandrecreationalsafety/falls/fallcost.html (accessed on 14 December 2019).


https://www.who.int/news-room/fact-sheets/detail/falls
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost/falls-by-state.html
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost/falls-by-state.html
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost/deaths-from-falls.html
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost/deaths-from-falls.html
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost.html
https://www.cdc.gov/homeandrecreationalsafety/falls/fallcost.html

Robotics 2020, 9, 55 16 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Center for Disease Control and Prevention. Important Facts about Falls. 2019. Available online: https:
/[www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html (accessed on 14 December 2019).
Hausdorff, ].M.; Edelberg, H.K.; Mitchell, S.L.; Goldberger, A.L.; Wei, ].Y. Increased gait unsteadiness in
community-dwelling elderly fallers. Arch. Phys. Med. Rehabil. 1997, 78, 278-283. [CrossRef]

Pannurat, N.; Thiemjarus, S.; Nantajeewarawat, E. Automatic fall monitoring: A review. Sensors 2014, 14,
12900-12936. [CrossRef] [PubMed]

Luque, R,; Casilari, E.; Morén, M.].; Redondo, G. Comparison and characterization of android-based fall
detection systems. Sensors 2014, 14, 18543-18574. [CrossRef] [PubMed]

Ren, L.; Peng, Y. Research of fall detection and fall prevention technologies: A systematic review. IEEE Access
2019, 7, 77702-77722. [CrossRef]

Khan, S.S.; Hoey, J. Review of fall detection techniques: A data availability perspective. Med Eng. Phys. 2017,
39, 12-22. [CrossRef] [PubMed]

Igual, R.; Medrano, C.; Plaza, I. Challenges, issues and trends in fall detection systems. Biomed. Eng. online
2013, 12, 66. [CrossRef]

Chaudhuri, S.; Thompson, H.; Demiris, G. Fall detection devices and their use with older adults: A systematic
review. J. Geriatr. Phys. Ther. 2014, 37, 178-196. [CrossRef]

Bagala, F; Becker, C.; Cappello, A.; Chiari, L.; Aminian, K.; Hausdorff, ].M.; Klenk, J. Evaluation of
accelerometer-based fall detection algorithms on real-world falls. PLoS ONE 2012, 7, e37062. [CrossRef]
Jo,B.; Lee, Y,; Kim, J.; Jung, S.; Yang, D.; Lee, J.; Hong, J. Design of Wearable Airbag with Injury Reducing
System. In Proceedings of the 2007 3rd Information and Communication Technologies for Ageing Well and
e-Health (ICT4AgeingWell), Porto, Portugal, 28-29 April 2017; pp. 188-191.

Tideiksaar, R. Falling in Old Age: Prevention and Management; Springer: Berlin/Heidelberg, Germany, 1996.
Shi, G.; Chan, C.S,; Li, WJ.; Leung, K.S.; Zou, Y,; Jin, Y. Mobile human airbag system for fall protection using
MEMS sensors and embedded SVM classifier. [IEEE Sens. ]. 2009, 9, 495-503. [CrossRef]

Fukaya, K. Fall detection sensor for fall protection airbag. In Proceedings of the 41st SICE Annual Conference.
SICE 2002, Osaka, Japan, 5-7 August 2002; Volume 1, pp. 419-420.

Wearable Technology. Available online: https://en.wikipedia.org/wiki/wearable_technology, (accessed on 14
December 2019).

Dai, J.; Bai, X.; Yang, Z.; Shen, Z.; Xuan, D. Mobile phone-based pervasive fall detection. Pers. Ubiquitous
Comput. 2010, 14, 633-643. [CrossRef]

Jian, H.; Chen, H. A portable fall detection and alerting system based on k-NN algorithm and remote
medicine. China Commun. 2015, 12, 23-31. [CrossRef]

Sim, S.Y;; Jeon, H.S.; Chung, G.S.; Kim, S.K.; Kwon, S.J.; Lee, WK,; Park, K.S. Fall detection algorithm for the
elderly using acceleration sensors on the shoes. In Proceedings of the 2011 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Boston, NV, USA, 30 August-3 September 2011;
pp. 4935-4938.

Lai, C.F; Chang, S.Y.; Chao, H.C.; Huang, Y.M. Detection of cognitive injured body region using multiple
triaxial accelerometers for elderly falling. IEEE Sens. ]. 2010, 11, 763-770. [CrossRef]

Menz, H.B.; Lord, S.R.; Fitzpatrick, R.C. Acceleration patterns of the head and pelvis when walking are
associated with risk of falling in community-dwelling older people. . Gerontol. Ser. A Biol. Sci. Med Sci.
2003, 58, M446-M452. [CrossRef] [PubMed]

Bourke, A.K.,; Lyons, G.M. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor.
Med Eng. Phys. 2008, 30, 84-90. [CrossRef] [PubMed]

Najafi, B.; Loew, F; Blanc, Y.; Robert, P. Falling risk evaluation in elderly using miniature gyroscope.
In Proceedings of the 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies
in Medicine and Biology, Proceedings (Cat. No. 00EX451), Lyon, France, 12-14 October 2000; pp. 557-561.
Torres, G.G.; Henriques, R.V.B.; Pereira, C.E.; Miiller, I. An EnOcean wearable device with fall detection
algorithm integrated with a smart home system. IFAC-PapersOnLine 2018, 51, 9-14. [CrossRef]

Tamura, T.; Yoshimura, T.; Sekine, M.; Uchida, M.; Tanaka, O. A wearable airbag to prevent fall injuries.
IEEE Trans. Inf. Technol. Biomed. 2009, 13, 910-914. [CrossRef]

Kurniawan, A.; Hermawan, A.R.; Purnama, LK.E. A wearable device for fall detection elderly people using
tri dimensional accelerometer. In Proceedings of the 2016 International Seminar on Intelligent Technology
and Its Applications (ISITIA), Mataram, Indonesia, 28-30 July 2016; pp. 671-674.


https://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html
https://www.cdc.gov/homeandrecreationalsafety/falls/adultfalls.html
http://dx.doi.org/10.1016/S0003-9993(97)90034-4
http://dx.doi.org/10.3390/s140712900
http://www.ncbi.nlm.nih.gov/pubmed/25046016
http://dx.doi.org/10.3390/s141018543
http://www.ncbi.nlm.nih.gov/pubmed/25299953
http://dx.doi.org/10.1109/ACCESS.2019.2922708
http://dx.doi.org/10.1016/j.medengphy.2016.10.014
http://www.ncbi.nlm.nih.gov/pubmed/27889391
http://dx.doi.org/10.1186/1475-925X-12-66
http://dx.doi.org/10.1519/JPT.0b013e3182abe779
http://dx.doi.org/10.1371/journal.pone.0037062
http://dx.doi.org/10.1109/JSEN.2008.2012212
https://en.wikipedia.org/wiki/wearable_technology,
http://dx.doi.org/10.1007/s00779-010-0292-x
http://dx.doi.org/10.1109/CC.2015.7114066
http://dx.doi.org/10.1109/JSEN.2010.2062501
http://dx.doi.org/10.1093/gerona/58.5.M446
http://www.ncbi.nlm.nih.gov/pubmed/12730255
http://dx.doi.org/10.1016/j.medengphy.2006.12.001
http://www.ncbi.nlm.nih.gov/pubmed/17222579
http://dx.doi.org/10.1016/j.ifacol.2018.06.228
http://dx.doi.org/10.1109/TITB.2009.2033673

Robotics 2020, 9, 55 17 of 19

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.
44.

45.

46.

47.

48.

Rakhman, A.Z.; Nugroho, L.E. Fall detection system using accelerometer and gyroscope based on smartphone.
In Proceedings of the 2014 The 1st International Conference on Information Technology, Computer,
and Electrical Engineering, Semarang, Indonesia, 7-8 November 2014; pp. 99-104.

Apple Watch. Helping Your Patients Identify Early Warning Signs. Available online: https://www.apple.
com/healthcare/apple-watch/ (accessed on 14 December 2019).

Sense4care Angel4. Fall Detection. Personal and Unique Device. Available online: https://www.sense4care.
com/fall-detection/ (accessed on 14 December 2019).

Hussain, F.; Hussain, F; Ehatisham-ul-Haq, M.; Azam, M.A. Activity-aware fall detection and recognition
based on wearable sensors. IEEE Sens. J. 2019, 19, 4528-4536. [CrossRef]

Ramachandran, A.; Adarsh, R.; Pahwa, P.; Anupama, K.R. Machine learning-based fall detection in geriatric
healthcare systems. In Proceedings of the 2018 IEEE International Conference on Advanced Networks and
Telecommunications Systems (ANTS), Indore, India, 16-19 December 2018; pp. 1-6.

Yu, S.; Chen, H.; Brown, R.A. Hidden Markov model-based fall detection with motion sensor orientation
calibration: A case for real-life home monitoring. IEEE |. Biomed. Health Inform. 2017, 22, 1847-1853.
[CrossRef]

Nguyen, T.T.; Cho, M.C,; Lee, T.S. Automatic fall detection using wearable biomedical signal measurement
terminal. In Proceedings of the 2009 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, Minneapolis, MN, USA, 2-6 September 2009; pp. 5203-5206.

Sabatini, A.M.; Ligorio, G.; Mannini, A.; Genovese, V.; Pinna, L. Prior-to-and post-impact fall detection using
inertial and barometric altimeter measurements. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 24, 774-783.
[CrossRef] [PubMed]

Otanasap, N. Pre-impact fall detection based on wearable device using dynamic threshold model.
In Proceedings of the 2016 17th International Conference on Parallel and Distributed Computing, Applications
and Technologies (PDCAT), Guangzhou, China, 16-18 December 2016; pp. 362-365.

Saadeh, W.; Butt, S.A.; Altaf, M.A.B. A patient-specific single sensor IoT-based wearable fall prediction and
detection system. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 27, 995-1003. [CrossRef]

Rathi, N.; Kakani, M.; Rizkalla, M.; El-Sharkawy, M. Portable and Low Power Efficient Pre-Fall Detection
Methodology. In Proceedings of the 2018 IEEE 61st International Midwest Symposium on Circuits and
Systems (MWSCAS), Windsor, ON, Canada, 5-8 August 2018; pp. 230-233.

Sadreazami, H.; Bolic, M.; Rajan, S. TL-FALL: Contactless Indoor Fall Detection Using Transfer Learning from
a Pretrained Mode. In Proceedings of the 2019 IEEE International Symposium on Medical Measurements
and Applications (MeMeA), Istanbul, Turkey, 26-28 June 2019; pp. 1-5.

Chang, Y.T.; Shih, T.K. Human fall detection based on event pattern matching with ultrasonic array
sensors. In Proceedings of the 2017 10th International Conference on Ubi-media Computing and Workshops
(Ubi-Media), Pattaya, Thailand, 1-4 August 2017; pp. 1-4.

Ding, C.; Zou, Y,; Sun, L.; Hong, H.; Zhu, X.; Li, C. Fall detection with multi-domain features by a portable
FMCW radar. In Proceedings of the 2019 IEEE MTT-S International Wireless Symposium (IWS), Guangzhou,
China, 19-22 May 2019; pp. 1-3.

Kinect. Available online: https://en.wikipedia.org/wiki/Kinect (accessed on 9 July 2020).

Barabas, J.; Bednar, T.; Vychlopen, M. Kinect-Based Platform for Movement Monitoring and Fall-Detection of
Elderly People. In Proceedings of the 2019 12th International Conference on Measurement, Smolenice Castle,
Slovakia, 27-29 May 2019; pp. 199-202.

Stone, E.E.; Skubic, M. Fall detection in homes of older adults using the Microsoft Kinect. IEEE ]. Biomed.
Health Inform. 2014, 19, 290-301. [CrossRef] [PubMed]

Li, Y,; Ho, K.C.; Popescu, M. A microphone array system for automatic fall detection. IEEE Trans. Biomed.
Eng. 2012, 59, 1291-1301.

Huang, Y.; Chen, W.; Chen, H.; Wang, L.; Wu, K. G-Fall: Device-free and Training-free Fall Detection
with Geophones. In Proceedings of the 2019 16th Annual IEEE International Conference on Sensing,
Communication, and Networking (SECON), Boston, MA, USA, 10-13 June 2019; pp. 1-9.

Cao, W.; Liu, X,; Li, F. Robust device-free fall detection using fine-grained Wi-Fi signatures. In Proceedings
of the 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference
(IAEAC), Chonggqing, China, 25-26 March 2017; pp. 1404-1408.


https://www.apple.com/healthcare/apple-watch/
https://www.apple.com/healthcare/apple-watch/
https://www.sense4care.com/fall-detection/
https://www.sense4care.com/fall-detection/
http://dx.doi.org/10.1109/JSEN.2019.2898891
http://dx.doi.org/10.1109/JBHI.2017.2782079
http://dx.doi.org/10.1109/TNSRE.2015.2460373
http://www.ncbi.nlm.nih.gov/pubmed/26259247
http://dx.doi.org/10.1109/TNSRE.2019.2911602
https://en.wikipedia.org/wiki/Kinect
http://dx.doi.org/10.1109/JBHI.2014.2312180
http://www.ncbi.nlm.nih.gov/pubmed/24733032

Robotics 2020, 9, 55 18 of 19

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Tzeng, HW.; Chen, M.Y,; Chen, J.Y. Design of fall detection system with floor pressure and infrared image.
In Proceedings of the 2010 International Conference on System Science and Engineering, Taipei, Taiwan, 1-3
July 2010; pp. 131-135.

Erol, B.; Amin, M. Effects of range spread and aspect angle on radar fall detection. In Proceedings of the 2016
IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Rio de Janeiro, Brazil, 10-13 July
2016; pp. 1-5.

Bian, Z.P,; Hou, J.; Chau, L.P; Magnenat-Thalmann, N. Fall detection based on body part tracking using a
depth camera. IEEE ]. Biomed. Health Inform. 2014 19, 430-439. [CrossRef]

Waheed, S.A.; Khader, P.S.A. A novel approach for smart and cost effective IoT based elderly fall detection
system using Pi camera. In Proceedings of the 2017 IEEE International Conference on Computational
Intelligence and Computing Research (ICCIC), Tamil Nadu, India, 14-16 December 2017; pp. 1-4.

Nguyen, V.D.; Le, M.T.; Do, A.D.; Duong, H.H.; Thai, T.D.; Tran, D.H. An efficient camera-based surveillance
for fall detection of elderly people. In Proceedings of the 2014 9th IEEE Conference on Industrial Electronics
and Applications, Hangzhou, China, 9-11 June 2014; pp. 994-997.

Jariyavajee, C.; Faphatanchai, A.; Saeheng, W.; Tuntithawatchaikul, C.; Sirinaovakul, B.; Polvichai, J.
An Improvement in Fall Detection System by Voting Strategy. In Proceedings of the 2019 34th International
Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), Jeju Shinhwa
World, Korea, 23-26 June 2019; pp. 1-4.

Rougier, C.; Meunier, ].; St-Arnaud, A.; Rousseau, J. Fall detection from human shape and motion history
using video surveillance. In Proceedings of the 21st International Conference on Advanced Information
Networking and Applications Workshops (AINAW’07), Niagara Falls, ON, Canada, 21-23 May 2007; Volume
2, pp. 875-880.

Agrawal, S.C.; Tripathi, RK,; Jalal, A.S. Human-fall detection from an indoor video surveillance.
In Proceedings of the 2017 8th International Conference on Computing, Communication and Networking
Technologies (ICCCNT), IIT Delhi, India, 3-5 July 2017; pp. 1-5.

Foroughi, H.; Rezvanian, A.; Paziraee, A. Robust fall detection using human shape and multi-class support
vector machine. In Proceedings of the 2008 Sixth Indian Conference on Computer Vision, Graphics Image
Processing, Bhubaneswar, India, 16-19 December 2008; pp. 413—420.

Anderson, D.; Luke, R.H.; Keller, ]. M.; Skubic, M.; Rantz, M.; Aud, M. Linguistic summarization of video for
fall detection using voxel person and fuzzy logic. Comput. Vis. Image Underst. 2009, 113, 80-89. [CrossRef]
[PubMed]

De Miguel, K.; Brunete, A.; Hernando, M.; Gambao, E. Home camera-based fall detection system for the
elderly. Sensors 2017, 17, 2864. [CrossRef]

Sase, P.S.; Bhandari, S.H. Human fall detection using depth videos. In Proceedings of the 2018 5th
International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 22-23 February
2018; pp. 546-549.

Poonsri, A.; Chiracharit, W. Improvement of fall detection using consecutive-frame voting. In Proceedings
of the 2018 International Workshop on Advanced Image Technology (IWAIT), Chiang Mai, Thailand, 7-10
January 2018; pp. 1-4.

Su, M.C,; Liao, ] W.; Wang, P.C.; Wang, C.H. A smart ward with a fall detection system. In Proceedings of the
2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial
and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Milan, Italy, 6-9 June 2017; pp. 1-4.
Chen, J.; Kwong, K.; Chang, D.; Luk, J.; Bajcsy, R. Wearable sensors for reliable fall detection. In Proceedings
of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17-18
January 2006; pp. 3551-3554.

Vecchio, A.; Cola, G. Fall detection using ultra-wideband positioning. In Proceedings of the 2016 IEEE
SENSORS, Orlando, FL, USA, 30 October-2 November 2016; pp. 1-3.

Della Toffola, L.; Patel, S.; Chen, B.R.; Ozsecen, Y.M.; Puiatti, A.; Bonato, P. Development of a platform to
combine sensor networks and home robots to improve fall detection in the home environment. In Proceedings
of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Boston, MA, USA, 30 August-3 September 2011; pp. 5331-5334.


http://dx.doi.org/10.1109/JBHI.2014.2319372
http://dx.doi.org/10.1016/j.cviu.2008.07.006
http://www.ncbi.nlm.nih.gov/pubmed/20046216
http://dx.doi.org/10.3390/s17122864

Robotics 2020, 9, 55 19 of 19

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

Liu, L.; Popescu, M.; Skubic, M.; Rantz, M. An automatic fall detection framework using data fusion of
Doppler radar and motion sensor network. In Proceedings of the 2014 36th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26-30 August 2014; pp. 5940-5943.
Tsinganos, P.; Skodras, A. On the comparison of wearable sensor data fusion to a single sensor machine
learning technique in fall detection. Sensors 2018, 18, 592. [CrossRef]

Sposaro, F.; Tyson, G. iFall: An Android application for fall monitoring and response. In Proceedings
of the 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
Minneapolis/St. Paul, MN, USA, 2-6 September 2009; pp. 6119-6122.

Fahmi, P.A.; Viet, V,; Deok-Jai, C. Semi-supervised fall detection algorithm using fall indicators in
smartphone. In Proceedings of the 6th International Conference on Ubiquitous Information Management
and Communication, Kuala Lumpur, Malaysia, 20-22 February 2012; pp. 1-9.

Yin, J.; Yang, Q.; Pan, ].J. Sensor-based abnormal human-activity detection. IEEE Trans. Knowl. Data Eng.
2008, 20, 1082-1090. [CrossRef]

Xiang, T.; Gong, S. Video behavior profiling and abnormality detection without manual labelling.
In Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1,
Beijing, China, 17-21 October 2005; Volume 2, pp. 1238-1245.

Farseeing (FAIl Repository for the Design of Smart and Self-Adaptive Environments Prolonging Independent
Living) Project. Available online: http://farseeingresearch.eu/ (accessed on 27 May 2020).
Electroencephalography. Available online: https://en.wikipedia.org/wiki/electroencephalography (accessed
on 24 January 2020).

The ERP Technique. Available online: https://www.dartmouth.edu/~{}readingbrains/researchfiles/
erptechnique.html (accessed on 24 January 2020).

1020 System. Available online: https://en.wikipedia.org/wiki/10-20_system_(eeg) (accessed on 27
January 2020).

Woodman, G.F. A brief introduction to the use of event-related potentials in studies of perception and
attention. Atten. Percept. Psychophys. 2010, 72, 2031-2046. [CrossRef]

Event-Related Potential. Available online: https://en.wikipedia.org/wiki/event-related_potential (accessed
on 5 July 2020).

Adkin, A.L.; Quant, S.; Maki, B.E.; Mcllroy, W.E. Cortical responses associated with predictable and
unpredictable compensatory balance reactions. Exp. Brain Res. 2006, 172, 85. [CrossRef] [PubMed]

Casson, A.J.; Smith, S.; Duncan, ].S.; Rodriguez-Villegas, E. Wearable EEG: What is it, why is it needed and
what does it entail? In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, Vancouver, BC, Canada, 20-24 August 2008; pp. 5867-5870.

Looney, D.; Kidmose, P; Park, C.; Ungstrup, M.; Rank, M.L.; Rosenkranz, K.; Mandic, D.P. The in-the-ear
recording concept: User-centered and wearable brain monitoring. IEEE Pulse 2012, 3, 32-42. [CrossRef]
[PubMed]

Mikkelsen, K.B.; Kappel, S.L.; Mandic, D.P.; Kidmose, P. EEG recorded from the ear: Characterizing the
ear-EEG method. Front. Neurosci. 2015, 9, 438. [CrossRef] [PubMed]

Zibrandtsen, I.C.; Kidmose, P; Christensen, C.B.; Kjaer, T.W. Ear-EEG detects ictal and interictal abnormalities
in focal and generalized epilepsy—A comparison with scalp EEG monitoring. Clin. Neurophysiol. 2017, 128,
2454-2461. [CrossRef] [PubMed]

@ © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.3390/s18020592
http://dx.doi.org/10.1109/TKDE.2007.1042
http://farseeingresearch.eu/
https://en.wikipedia.org/wiki/electroencephalography
https://www.dartmouth.edu/~{}readingbrains/researchfiles/erptechnique.html
https://www.dartmouth.edu/~{}readingbrains/researchfiles/erptechnique.html
https://en.wikipedia.org/wiki/10-20_system_(eeg)
http://dx.doi.org/10.3758/BF03196680
https://en.wikipedia.org/wiki/event-related_potential
http://dx.doi.org/10.1007/s00221-005-0310-9
http://www.ncbi.nlm.nih.gov/pubmed/16418848
http://dx.doi.org/10.1109/MPUL.2012.2216717
http://www.ncbi.nlm.nih.gov/pubmed/23247157
http://dx.doi.org/10.3389/fnins.2015.00438
http://www.ncbi.nlm.nih.gov/pubmed/26635514
http://dx.doi.org/10.1016/j.clinph.2017.09.115
http://www.ncbi.nlm.nih.gov/pubmed/29096220
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methods 
	Technologies and Products Summary 
	Systems Based on Wearable Devices 
	Systems Based on Ambient Sensor Systems 
	Systems Based on Image Processing 
	Combined Systems Incorporating Two or More Technologies 

	Discussion 
	Issues 
	Trends 
	Challenges 

	Conclusions 
	References

