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Abstract: The universal soil loss equation (USLE) is a widely used empirical model for estimating soil
loss. Among the USLE model factors, the cover management factor (C-factor) is a critical factor that
substantially impacts the estimation result. Assigning C-factor values according to a land-use/land-
cover (LULC) map from field surveys is a typical traditional approach. However, this approach may
have limitations caused by the difficulty and cost in conducting field surveys and updating the LULC
map regularly, thus significantly affecting the feasibility of multi-temporal analysis of soil erosion. To
address this issue, this study uses data mining to build a random forest (RF) model between eight
geospatial factors and the C-factor for the Shihmen Reservoir watershed in northern Taiwan for
multi-temporal estimation of soil loss. The eight geospatial factors were collected or derived from
remotely sensed images taken in 2004, a digital elevation model, and related digital maps. Due to the
memory size limitation of the R software, only 4% of the total data points (population dataset) in
each C-factor class were selected as the sample dataset (input dataset) for analysis using the stratified
random sampling method. Seventy percent of the input dataset was used to train the RF model, and
the other 30% was used to test the model. The results show that the RF model could capture the trend
of vegetation recovery and soil loss reduction after the destructive event of Typhoon Aere in 2004 for
multi-temporal analysis. Although the RF model was biased by the majority class’s large sample
size (C = 0.01 class), the estimated soil erosion rate was close to the measurement obtained by the
erosion pins installed in the watershed (90.6 t/ha-year). After the model’s completion, we furthered
our aim to address the input dataset’s imbalanced data problem to improve the model’s classification
performance. An ad-hoc down-sampling of the majority class technique was used to reduce the
majority class’s sampling rate to 2%, 1%, and 0.5% while keeping the other minority classes at a
4% sample rate. The results show an improvement of the Kappa coefficient from 0.574 to 0.732, the
AUC from 0.780 to 0.891, and the true positive rate of all minority classes combined from 0.43 to 0.70.
However, the overall accuracy decreases from 0.952 to 0.846, and the true positive rate of the majority
class declines from 0.99 to 0.94. The best average C-factor was achieved when the sampling rate of
the majority class was 1%. On the other hand, the best soil erosion estimate was obtained when the
sampling rate was 2%.

Keywords: universal soil loss equation; USLE; NDVI; SAVI; multi-temporal remote sensing; spatial
data mining; C-factor; random forest

1. Introduction

Severe soil erosion will increase soil sedimentation and severely reduce the water
storage and supply capabilities of reservoirs. A previous analysis revealed that 30% of
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US croplands had excessive soil erosion rates [1]. Soil erosion has been one of the core
topics in agriculture, natural resources conservation, and other related fields since the
end of the 1920s [2]. A significant trend in soil erosion study was developing various
measurements and prediction models for different locations and applications, such as the
AGNPS (agricultural non-point source pollution model [3]), CREAMS (chemicals, runoff
and erosion from agricultural management systems [4]), EPIC (erosion-productivity impact
calculator [5]), SWRRBWQ (simulator for water resources in rural basins-water quality [6]),
WEPP (water erosion prediction project [7]), and USLE (universal soil loss equation [8,9]).
Despite being the earliest developed model, USLE is still a widely used empirical model
and has been used at the national and international levels to estimate soil loss throughout
the world [10].

There are six crucial factors in the USLE model, including the rainfall erosivity factor
(Rm-factor), soil erodibility factor (Km-factor), slope length factor (L-factor), slope steepness
factor (S-factor), cover management factor (C-factor), and support practice factor (P-factor).
The outcome of the USLE model represents the average annual soil loss (Am). However,
the USLE calculation excludes landslides, gully erosions, riverbed or bank erosions, and
sediment depositions [11–13]. Among the USLE factors, the C-factor (ranging from 0 to 1) is
related to the land-use/land-cover (LULC). Thus, it may cause a thousand-fold difference
in soil erosion estimation (0.001 vs. 1).

A summary of past studies of soil erosion in a Taiwanese watershed showed that the
calculated soil erosion rate varies from 1 to 3310 t/ha-year [14]. Another study also demon-
strated that the non-uniform distribution of the USLE factors might cause a substantial
discrepancy in soil erosion estimation [15]. Therefore, it is necessary to develop a strategy
to derive more consistent and reliable factors when applying the USLE model for soil loss
evaluation.

This study focused on the assessment of the C-factor. Traditionally, the C-factor
was determined based on plot experiments or in-situ investigations [9]. However, such
works were too time-consuming and uneconomical to apply everywhere [16]. Renard
et al. [17] derived a function to simulate the long-term field experiments by using the prior-
land-use sub-factor, canopy-cover sub-factor, surface-cover sub-factor, surface-roughness
sub-factor, and soil-moisture sub-factor to evaluate the C-factor. Although the derived
function improved the efficiency of the long-term field experiments, significant field works
were still unavoidable. Nowadays, connecting the C-factor with the LULC map using
a look-up table is an effective strategy [18]. However, this strategy is limited by the
update period of the map, and therefore evaluating the multi-temporal soil erosion is
difficult. Similarly, instead of the LULC map, a time-series result can be obtained using
satellite remote sensing images and supervised classification techniques [19,20]. The
limitations here are that ground truth points are needed to assess the accuracy of the
image classification, and the results are inferior to the LULC map produced from fieldwork.
Performing regression analyses to connect features derived from remotely sensed images
(e.g., normalized difference vegetation index, NDVI) with the C-factor is another common
approach [21,22]. Again, the developed relationships may have a large margin of error,
fail to provide any physical meanings, and may be sensitive to vegetation phenology and
soil conditions [23]. According to the comparison above, Table 1 summarizes the typical
approaches for estimating the C-factor.

To improve upon previous research on this topic, the goal of this study was to construct
a model between the C-factor and related geospatial data (including but not limited to
those derived from remotely sensed images) using a data mining approach. If a credible
model can be constructed from official data collected in earlier years, then the model can
be applied to predict the C-factors for later years by merely updating the remote sensing
images, thus achieving multi-temporal analysis without having to update the LULC map
every year. Furthermore, using this novel framework to assess and predict the C-factors
based on geospatial factors, we will be able to better estimate the rate of soil erosion at a
large scale, such as the watershed scale. As shown in Table 1, we used the official LULC
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map and a look-up table to determine the C-factors in this study. An RF model was then
built to predict the C-factor values from the geospatial factors for use in the USLE model.

Table 1. Comparison of typical approaches for estimating the C-factor.

Approach Method Advantage Challenge

1 LULC map by field
survey

1. Conduct field surveys to generate a
LULC map

2. Convert the LULC classes to
C-factors by a look-up table

Most accurate LULC
data

Time-consuming with a
lengthy update period

2 LULC map by
remote sensing

1. Use remote sensing images to
generate a LULC map

2. Convert the LULC classes to
C-factors by a look-up table

Multi-temporal
evaluation

Ground truthing
needed to ensure

accuracy

3 Empirical NDVI
equation

1. Establish an empirical equation
between NDVI values and C-factors

2. Use the equation to convert NDVI
values to C-factors

Simple and
multi-temporal

evaluation

Sensitive to vegetation
phenology and soil

conditions

4 This study

1. Use the official LULC map and a
look-up table to convert the LULC
classes to C-factor classes

2. Use geospatial factors (including
NDVI and SAVI) to train an RF
model to predict C-factors

More accurate model
and multi-temporal

evaluation
More complicated

The rest of the paper is organized as follows. Section 2 introduces the study area, the
geospatial data, and the data mining algorithm. Section 3 presents the C-factor modeling
and soil erosion estimation results and a discussion focusing on the class imbalance (imbal-
anced data) problem. Finally, Section 4 concludes this paper and provides possible future
research directions.

2. Methods

To address the research goal, it is necessary to develop a strategy to derive more
consistent and reliable factors when applying the USLE model to evaluate soil loss. With
the rapid development of geospatial technologies and data availability, there is a great
potential to improve the USLE modeling based on geospatial data, such as remotely sensed
images and geographic information system (GIS) data layers, to obtain a more accurate soil
loss estimation at the regional scale, especially for long-term and multi-temporal studies.
The data types, data processing, and data mining analysis are described in the following
sub-sections.

2.1. Study Area

A mountainous area of 760 km2 of the Shihmen Reservoir watershed in northern
Taiwan was selected as the study area (Figure 1). The elevation of the study area ranges
approximately from 250 to 3500 m above sea level, measured from a 10-m digital elevation
model (DEM). The terrain increases steeply from north to south, and steep slopes are
ubiquitous in the watershed. The average annual precipitation is approximately 2500 mm.
There are 13 geological formations and six soil types in the study area [24]. The major
land-cover is forest (both natural and artificial) and there is little agricultural activity.
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Figure 1. The location of the study area and a corresponding SPOT false-color satellite image.

The Shihmen Reservoir watershed is one of the major reservoirs in Taiwan, providing
drinking water to more than three million people in three northern cities. However, heavy
rainfall induced by typhoons, such as Typhoon Aere in August 2004, may generate a large
amount of debris and driftwood, resulting in a water supply shortage and causing various
water resource management problems. Hence, a long-term land cover monitoring project
from 2004 to 2009 was implemented using remote sensing technologies to support water
resource and water supply management [25]. Based on the collected geospatial data, this
study further explored the effectiveness of the USLE model by modeling the C-factor in the
Shihmen Reservoir watershed to estimate the multi-temporal soil erosion rates.

2.2. Materials and Data Preprocessing

To connect the geospatial data to the C-factor, a total of eight attributes (as listed in
Table 2) were considered in the modeling. They are elevation, slope, NDVI, soil adjusted
vegetation index (SAVI), shortest distance to roads, shortest distance to rivers, geology, and
soil type. In contrast to studies using many attributes, we used only eight attributes because
research has shown that attribute reduction could improve the model performance [26].
We also used fewer attributes because of the need to maximize the number of data points
that can be processed by the R software (see Section 2.3). The purpose of preprocessing
is three-fold, including data collection, labeling, and feature derivation. Some of the
derived features could be obtained by spatial analysis from the original data. For example,
the elevation and slope information could be derived from the DEM. As for the multi-
temporal satellite images listed in Table 3, this study generated the NDVI and SAVI indices
year by year for modeling purposes. Equations (1) and (2) show the NDVI and SAVI
equations, where NIR and RED represent the radiance or reflectance of near-infrared and
red bands, respectively, and L indicates the soil correction factor that is commonly set
to 0.5 [27]. However, the mountainous topography might distort the spectral responses
so that the same land cover types located on phototropic and apheliotropic areas might
have significant variations. To reduce the topographic effect, this study applied a typical
Minnaert correction [28] to rectify the spectral responses based on a non-Lambertian
assumption before deriving the vegetative features. Similar to the use of DEM and SPOT
images, the rest of the data, such as the distance information to roads and rivers, were
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generated by spatial analysis. Additionally, the vector data were rasterized to 10 × 10 m to
be compatible with one another.

NDVI =
NIR − RED
NIR + RED

(1)

SAVI =
NIR − RED

NIR + RED + L
(1 + L) (2)

where NIR and RED are the radiance or reflectance of near-infrared and red bands, and L is
the soil correction factor (0.5).

Table 2. Types of geospatial data that were used in this study.

Original Data Derived Data Note

DEM
Elevation (numeric)

Cell size: 10 mSlope (numeric)

SPOT satellite images NDVI (numeric)
See Table 3 for detailsSAVI (numeric)

Road map Distance to road (numeric) Measurement unit: meter
Stream map Distance to river (numeric)

Geology map Geological formation
(categorical)

1. Alluvium
2. Hsitsun Formation
3. Kueichulin Formation
4. Mushan Formation
5. Nanchuang Formation
6. Nankang Formation
7. Paling Formation
8. Peiliao Formation
9. Shihti Formation
10. Szeleng Sandstone
11. Taliao Formation
12. Talu Shale
13. Terrace Deposits

Soil map Soil type (categorical)

1. Silt/silty loam
2. Loam
3. Loamy fine sand/coarse sandy loam/sandy loam
4. Very fine sand/loamy very fine sand
5. Clay
6. Fine sand/loamy sand/loamy coarse sand
7. No data

Table 3. SPOT satellite images that were used in this study.

Sensor Date
Spatial

Resolution
(m)

Spectral
Bandwidth

(um)

Radiometric
Resolution

(bits)

SPOT 5
2004/10/12

10 Green: 0.50–0.59
Red: 0.61–0.68
NIR: 0.79–0.89

8
2006/07/19
2008/09/21

SPOT 4
2005/07/25

202007/07/19

After feature derivation and assembly, a look-up table was used to assign C-factor
values to the official 2004 LULC map (the only map available during the study period).
The C-factor’s point values were based on the research of Jhan [29] and Lin [30], which
in turn were based on the design manual of the Soil and Water Conservation Bureau of
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Taiwan. Without conducting numerous experiments in the field to determine the C-factors
at various locations, the look-up table provides the next best option to assign credible
C-factor values to different LULC classes in the study area. As can be seen from Figure 2,
there were 23 land use classes assigned to 12 different C-factor classes. The higher the C-
factor, the less the land cover and the higher the soil erosion. The correspondence between
the LULC classes and the C-factor classes are summarized in Table 4. The geospatial data
and the corresponding C-factor values of each grid cell in the study area were extracted
and assembled as an analytic dataset (herein referred to as the population dataset) used by
the data mining algorithm (after sampling) to create a C-factor model. The model is used
for multi-temporal analysis of C-factor change and soil erosion.
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Table 4. LULC classes merged by C-factor classes (revised from Jhan [29] and Lin [30]).

C-Factor Class Land Use/Land Cover Class

0 Waterbody, reef
0.005 Railway related facility, weir, dam, cultural facility
0.01 Natural forest, artificial forest, residential area

0.025 Dike, ditch, aqueduct, shoal, beach, wetland
0.03 Provincial road, road

0.035 Unused land, land being converted
0.05 Pastureland, logging land, grassland, shrubland

0.133 Livestock house
0.156 Abandoned farmland
0.16 Orchard

0.208 Dry-farming land
1 Fire break, bare land

2.3. Data Mining Analysis

To extract useful, unknown, and potential information from the vast dataset, data
mining is an efficient approach [31,32]. Random Forests (RF), one of the popular data
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mining algorithms proposed by Breiman [33], has excellent performance in analyzing many
complicated remote sensing issues [34–37]. The procedure for applying the data mining
algorithm to construct a C-factor model for soil erosion estimation is illustrated in Figure 3.
We used the geospatial data derived from GIS and SPOT images and the official 2004 LULC
map (from field surveys) to construct the C-factor model using the randomForest() package
of the R software. Among the data mining procedures, the RF algorithm is a supervised
approach that adopts multiple decision trees (DT), bootstrap aggregation (bagging), and
internal cross-validation techniques. It integrates all tree-based results into the best model
for analysis [33]. Recent years have seen increased attention being given to the RF algorithm
in the geo-informatics domain. Belgiu and Dragut [34] reviewed its application and future
direction in remote sensing. Nevertheless, constructing the C-factor model based on the
RF algorithm and geospatial data has rarely been conducted until now. The primary
benefit of the RF algorithm is that it can avoid the over-fitting issue to improve prediction
accuracy [38]. The RF algorithm employs measures such as the Gini index, information
gain (IG), or entropy to evaluate the degree of impurity of discrete or numeric input data.
The smaller the Gini index of an attribute, the higher the priority should be selected to
construct a conditional node and ignore the other attributes. The RF algorithm performs
numerous iterations and randomly divides the training dataset (in terms of the number
of data and the number of attributes) into many subsets to build many trees and generate
better results than the DT method. The detailed steps can be seen in Guo et al. [39].
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Figure 3. Research steps of this study.

Owing to the memory size limitation of R, only about 4% of the population dataset can
be imported and used in the modeling (303,682 points out of 7,592,062 points). Therefore,
we used the stratified random sampling method to select the same percentage of data
points from each of the 12 C-factor classes (herein referred to as the sample dataset or the
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input dataset), as shown in Table 5. Note that the input dataset is highly unbalanced, with
92.5% of the data from the C = 0.01 class (forests). The percentage of the rest of the C-factor
classes ranges from close to 0% to 2.9%.

Table 5. The percentage composition of C-factor classes in the input datasets under different majority class sampling rates
(C = 0.01 class).

No. C-factor
Class

Total no. of
Points

(Population)

4% of the
Majority Class

2% of the
Majority Class

1% of the
Majority Class

0.5% of the
Majority Class

% of the Total Sample (Input Dataset)

1 0 216,970 8679 (2.9%) 8679 (5.3%) 8679 (9.3%) 8679 (15.0%)

2 0.005 1110 44 (0.0%) 44 (0.0%) 44 (0.0%) 44 (0.1%)
3 0.01 7,021,560 280,862 (92.5%) 140,431 (86.0%) 70,216 (75.5%) 35,108 (60.6%)
4 0.025 47,629 1905 (0.6%) 1905 (1.2%) 1905 (2.0%) 1905 (3.3%)

5 0.03 37,714 1509 (0.5%) 1509 (0.9%) 1509 (1.6%) 1509 (2.6%)

6 0.035 4235 169 (0.1%) 169 (0.1%) 169 (0.2%) 169 (0.3%)

7 0.05 46,598 1864 (0.6%) 1864 (1.1%) 1864 (2.0%) 1864 (3.2%)

8 0.133 73 3 (0.0%) 3 (0.0%) 3 (0.0%) 3 (0.0%)

9 0.156 342 14 (0.0%) 14 (0.0%) 14 (0.0%) 14 (0.0%)

10 0.16 141,672 5667 (1.9%) 5667 (3.5%) 5667 (6.1%) 5667 (9.8%)

11 0.208 60,060 2402 (0.8%) 2402 (1.5%) 2402 (2.6%) 2402 (4.1%)

12 1 14,099 564 (0.2%) 564 (0.3%) 564 (0.6%) 564 (1.0%)

Total 7,592,062 100.0% 100.0% 100.0% 100.0%

After sampling, 70% of the input dataset was used as the training data and inputted
into the RF algorithm to create the C-factor model. The remaining 30% was the test data
and used to assess the performance of the model. Once the model was validated, it was
applied to the population dataset to generate the C-factor maps from 2004 to 2008. Finally,
the C-factor and the other USLE factors were combined in the USLE model to calculate the
soil erosion rates from 2004 to 2008 (see Section 2.4 for details).

Categorical and numerical data are two major geospatial data types. The randomFor-
est() package of R uses the Gini index to split nodes in order to reduce impurity at each
node [40]. We used 1000 trees in this study, and three variables were tried at each split. The
Gini index of dataset D is defined in Equation (3), where m is the number of categories, ni
is the number of data points in the ith category, and N is the total number of data points. If
a binary split was performed on attribute A, the Gini index given the split was defined in
Equation (4), where D1 and D2 are the datasets after the split [41].

Gini(D) = 1 −
m

∑
i=1

(ni
N

)2
(3)

GiniA(D) =
n1

N
Gini(D1) +

n2

N
Gini(D2) (4)

To verify the data mining-based C-factor model, this study calculated the confusion
matrix (or error matrix), overall accuracy (OA), Kappa coefficient, and area under the
curve (AUC) of the receiver operating characteristic (ROC) curve for the quantitative
evaluation. Overall accuracy refers to the percentage of correctly classified samples as
shown in Equation (5), where M represents the element in the confusion matrix; Mtotal is
the sum of M; Mdiag is the sum of M on the diagonal line; Nc is the number of labels; and
i and j are the row and column indices. The Kappa coefficient is shown in Equation (6),
which reflects the reliability of the modeling results. When the Kappa coefficient is close
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to 1, it shows excellent agreement between prediction and observation. By contrast, the
results are worse than random assignment when a negative Kappa value appears.

OA =
∑Nc

i=1 Mii

∑Nc
i=1 ∑Nc

j=1 Mij
=

Mdiag

Mtotal
(5)

Kappa =
Mtotal Mdiag − ∑Nc

i=1(M+i Mi+)

M2
total − ∑Nc

i=1(M+i Mi+)
(6)

2.4. USLE Computation

The USLE equation is shown in Equation (7), and the meanings of all USLE factors
are listed in Table 6. Although the goal of the study is to evaluate the C-factor, other USLE
factors are also needed to estimate the annual soil loss. For these factors, this study followed
the investigations of Chen et al. [14] and Liu et al. [42] to produce the rainfall erosivity,
soil erodibility, slope length, and slope steepness layers, respectively. We also assumed
that the support practice factor is 1. The generated Rm- and Km- factor distribution maps
are shown in Figure 4a,b, and the L- and S-factors are combined as a topographic factor
(LS-factor) shown in Figure 4c.

Am = Rm × Km × L × S × C × P (7)

Table 6. The USLE factors and their definitions and units.

Symbol Definition Unit

Am Average annual soil loss t/ha-year
Rm Rainfall erosivity factor MJ-mm/ha-hour-year
Km Soil erodibility factor t-hour/MJ-mm
L Slope length factor –
S Slope steepness factor –
C Cover management factor –
P Support practice factor –ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 10 of 19 
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3. Results and Discussion

The results of this study are presented as tables, graphs, and statistical metrics in the
following sub-sections.

3.1. Cover-Management Factor Modeling

According to the data preprocessing and study procedures described in previous
sections, the C-factor RF model was constructed using the training data and tested with
the test data. The C-factors were from the official 2004 LULC map (the only map available
during the study period), and the results are shown in Table 7. Unlike a previous study [30],
which only used at most 100 points from each C-factor class and substantially overestimated
soil erosion, we tried to maximize the number of data points that could be processed to
train the RF model given the memory size limitation of R. Consequently, 4% of the total
data points (population dataset) were used (303,682 points selected out of 7,592,062 points).
The training dataset result shows that OA = 1, Kappa = 1, and AUC = 1 (the confusion
matrix is not shown here to avoid redundancy). This indicates that the RF model can
correctly distinguish all 212,578 data points in the training dataset. By contrast, Table 7
shows that the result of the test dataset has less remarkable metrics. While OA is still very
high (0.9516), Kappa is only 0.5741, and AUC is 0.7804. Using this RF model, we predicted
the C-factor distribution maps from 2004 to 2008 using SPOT images. The resulting maps
are shown in Figure 5b–f.

Table 7. The confusion matrix of the test data (4% sampling rate of the majority class).

Actual
Predicted

0 0.005 0.01 0.025 0.03 0.035 0.05 0.133 0.156 0.16 0.208 1
0 1792 0 732 75 1 0 1 0 0 3 0 0

0.005 0 3 8 0 0 0 2 0 0 0 0 0
0.01 249 0 83,729 7 130 1 19 0 0 101 19 4

0.025 109 0 89 372 0 0 1 0 0 0 0 0
0.03 2 0 99 0 349 0 0 0 0 2 1 0

0.035 2 0 32 3 3 8 0 0 0 2 1 0
0.05 13 0 441 4 8 0 85 0 0 7 1 0

0.133 0 0 1 0 0 0 0 0 0 0 0 0
0.156 0 0 4 0 0 0 0 0 0 0 0 0
0.16 6 0 1400 0 24 0 0 0 0 251 19 0

0.208 5 0 559 0 17 1 0 0 0 58 81 0
1 1 0 133 7 2 0 0 0 0 1 0 25

Overall statistics OA = 0.952 Kappa = 0.574 AUC = 0.780

Figure 5a shows the true C-factor distribution from the official 2004 LULC map. The
similarity between the prediction (Figure 5b–f) and the reference C-factor is evident. The
red pixels (high C-factor values) of all maps cluster along the central river valley near the
center and lower portions of the watershed. However, some of the C-factor cannot be
distinguished reliably, and some omission and commission errors have occurred. As shown
in column 4 (shaded) of Table 7, the most noticeable trend is a prediction bias towards the C
= 0.01 class, representing natural and artificial forests. This result reflects the overwhelming
majority of the C = 0.01 class in the sample (92.5%) when building the RF model (Table 5).
Hence, the RF model tends to classify pixels into the C = 0.01 class. Because of this bias
towards a low C-factor value (0.01), the average of 2004 C-factors predicted by the RF
model is only 0.0115 (Table 8), which is lower than the true average of 0.0164 (official 2004
LULC map). Likewise, the predicted average C-factors are also lower in the subsequent
years from 2005 to 2008.
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Table 8. Comparison of C-factors between the official LULC map and the model predictions under different sampling rates
of the majority class (C = 0.01 class).

Official LULC Map (Mean) RF Model Prediction (Mean)

2004 2004 2005 2006 2007 2008

4%

0.0164

0.0115 0.0114 0.0110 0.0110 0.0115

2% 0.0130 0.0132 0.0125 0.0124 0.0133

1% 0.0156 0.0164 0.0149 0.0146 0.0169

0.5% 0.0115 0.0114 0.0110 0.0109 0.0115

To reduce the classification error, we experimented with an ad-hoc down-sampling of
the majority class technique that used only 2% data from the majority class (C = 0.01 class)
while maintaining a 4% sample rate of the other minority C-factor classes. The percentages
of data points from each of the 12 C-factor classes in the input dataset were previously
shown in Table 5. Again, the result of the training dataset shows a perfect classification of
OA = 1, Kappa = 1, and AUC = 1 (again, the confusion matrix is not shown here to avoid
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redundancy). The result of the test dataset (Table 9) shows that OA = 0.9230, Kappa =
0.6484, and AUC = 0.7807. Compared with Table 7, we can see that the OA decreases from
0.9516 to 0.9230, the Kappa increases from 0.5741 to 0.6484, and the AUC remains about
the same. Using only 2% data from the C = 0.01 class, the predicted average C-factors
from 2004 to 2008 range from 0.0124 to 0.0133 (Table 8), higher than the 4% case and closer
to the true average C-factor value. In other words, the reduction of the sampling rate
from 4% to 2% increases the Kappa coefficient at the expense of OA. Simultaneously, the
reduction of the sampling rate also brings the predictions closer to the reference value
(ground truth). Although we had adopted the stratified random sampling method to obtain
a representative sample of all C-factor classes, it did not completely avoid the imbalanced
data problem. The next section will present how the sampling rate of the majority class
affects soil erosion estimates.

Table 9. The confusion matrix of the test data (2% sampling rate of the majority class).

Actual
Predicted

0 0.005 0.01 0.025 0.03 0.035 0.05 0.133 0.156 0.16 0.208 1
0 2034 0 494 62 0 0 3 0 0 4 6 1

0.005 0 6 5 0 0 0 2 0 0 0 0 0
0.01 234 0 41,551 4 83 1 21 0 0 188 41 6

0.025 113 0 85 371 1 0 1 0 0 0 0 0
0.03 1 0 37 0 401 4 0 0 0 9 1 0

0.035 1 0 20 1 1 15 0 0 0 8 5 0
0.05 10 1 402 5 2 0 124 0 0 11 4 0

0.133 0 0 1 0 0 0 0 0 0 0 0 0
0.156 0 0 4 0 0 0 0 0 0 0 0 0
0.16 7 0 1095 0 24 0 0 0 0 540 34 0

0.208 9 0 440 0 19 0 0 0 0 123 130 0
1 2 0 130 2 0 0 0 0 0 2 1 32

Overall statistics OA = 0.923 Kappa = 0.648 AUC = 0.781

3.2. Soil Erosion Estimation

Up until 2017, the USLE model was the only method for estimating the amount of soil
loss in the technical regulations for soil and water conservation in Taiwan [43]. Combining
the Rm-, Km-, and LS-factor layers (Figure 4) with the C-factor layer (Figure 5), the USLE
model was used in this study to estimate the amount of soil erosion. The result based on
the official 2004 LULC map is listed in the second column of Table 10 (116.3 t/ha-year).
The multi-temporal evaluations from 2004 to 2008 based on the RF models (4% and 2%)
are shown in columns 3–7 of the same table year by year. Comparing the results for 2004
(columns 2 and 3), the RF models generate lower than expected (true) soil erosion rates (88.2
and 95.1 vs. 116.3 t/ha-year). Similarly, the soil erosion rates are lower in the subsequent
years from 2005 to 2008. Using the 2% RF model, we prepared the predicted soil erosion
maps in Figure 6b–f for the years 2004 through to 2008, while the soil erosion map based on
the official 2004 LULC map is shown in Figure 6a. As such, a high resemblance between the
predictions (Figure 6b–f) and the reference value (Figure 6a) is evident. The red pixels (high
soil erosion rates) of all maps cluster near the center and lower portions of the watershed,
indicating good modeling results. The results of the 4% RF model are similar, but we did
not include them here to avoid redundancy.

Table 10. The estimation of annual soil loss based on C-factors of different years (4% and 2% sampling rates).

Official LULC Map
(2004)

RF Model Prediction Erosion Pins
(2008–2011)2004 2005 2006 2007 2008

Am
(t/ha-year) 116.3

88.2 85.6 84.7 84.0 84.5 (4% of C = 0.01)
90.6

95.1 94.4 92.4 91.6 93.2 (2% of C = 0.01)
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Figure 6. The soil erosion maps of the (a) 2004 LULC map, (b) 2004 prediction, (c) 2005 prediction, (d) 2006 prediction,
(e) 2007 prediction, and (f) 2008 prediction (2% sampling rate of the majority class).

Chen et al. [14] compiled a table of the calculated amounts of soil erosion of the
Shihmen Reservoir watershed from previous studies. The table shows that soil erosion
ranges from 1 to 3310 t/ha-year. Our results are close to the lower end of the soil erosion
range. By contrast, the only study using a similar methodology to this study [30], which
related nine decision factors, including the gray level co-occurrence matrix (GLCM) to
the C-factor, only used at most 100 points from each C-factor class. The study achieved a
Kappa coefficient of 0.758, but estimated the soil erosion to be 359.4–629.9 t/ha-year.

Based on the erosion pins installed in the Shihmen Reservoir watershed [44] and the
measurements collected from 8 September 2008 to 10 October 2011, the soil erosion depth
ranged from 2.17 to 13.03 mm/year [37]. The average erosion depth is 6.5 mm/year, which
is equivalent to 90.6 t/ha-year if the unit weight of soil is assumed to be 1.4 t/m3 [42].
Thus, our results are more comparable with the erosion pin measurements. Specifically, it
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shows that the 4% sampling rate underestimates soil erosion, whereas the 2% sampling
rate overestimates soil erosion.

It is worth noting that the long-term land cover and landslide monitoring project [25]
from 2004 to 2009 indicated that only typhoon Aere in 2004 induced significant land
degradation and mass movement in the period. Large amounts of debris and driftwood
flowed into the Shihmen Reservoir. The high turbidity in the water caused the water
distribution system to be shut down for an unprecedented 18 days. A similar situation has
not happened since. The removal of land cover in the watershed is the reason why the
calculated soil erosion based on the official 2004 LULC map is as high as 116.3 t/ha-year.
After Typhoon Aere, as the land stabilized and vegetation re-grew to provide new ground
cover, soil erosion reduced substantially. This explains why the measured soil erosion is
only 90.6 t/ha-year between 2008 and 2011 (Table 10).

According to Table 10, both of the 4% and 2% C-factor models predict a peak of soil
erosion in 2004, followed by a gradual decrease until a small rebound in 2008. This is
consistent with the vegetation recovery in the study area from 2005 to 2007 and the hike
in rainfall brought by Typhoons Kalmaegi, Sinlaku, and Jangmi in 2008 [45]. However,
the differences in soil erosion rates are not as marked as expected from year to year.
Nevertheless, these results confirm that it is possible to develop a multi-temporal data
mining model for the C-factor and the corresponding soil erosion.

3.3. Discussion

Although this study’s results demonstrated the feasibility of constructing a data
mining model for the USLE C-factor, the modeling results were affected by the majority
class’s sampling rate (C = 0.01 class). At the beginning of the study, we used the stratified
random sampling method (instead of the simple random sampling method) to ensure that
each class (strata) of the population dataset (total data points) were represented. It helped
to avoid incorrect analysis, but it did not solve the class imbalance problem entirely. So, we
experimented with the down-sampling of the majority class (C = 0.01 class) to 2% and kept
the other minority classes at a 4% sample rate. A better result was achieved as indicated
by the higher Kappa coefficient (but at the expense of lower OA). To investigate if the
classification performance can be further improved, we applied an ad-hoc down-sampling
of the majority class technique (similar to random under-sampling) to the population
dataset with 1% and 0.5% sampling rates. The resulting percentage compositions of each
of the 12 C-factor classes in the input dataset were previously shown in Table 5. After
building corresponding RF models, the overall results are summarized in Table 11, which
shows the OA, the Kappa coefficient, the AUC, the true positive rate of all minority classes
combined, the true positive rate of the majority class, the average C-factor of the LULC
map, the predicted average C-factor of 2004, the predicted soil erosion rate of 2004, the
predicted soil erosion rate of 2008, and the measured soil erosion rate by the erosion pins.

Table 11. Comparison of typical metrics under different sampling rates of the majority class (C = 0.01 class).

Sampling
Rate of

the
Majority

Class

OA Kappa AUC

True
Positive

Rate of All
Minority
Classes

Combined

True
Positive

Rate of the
Majority

Class

Average
C-Factor
of LULC

Map

Average
C-Factor

(2004)

Soil
Erosion of

2004
(t/ha-Year)

Soil
Erosion
of 2008
(t/ha-
Year)

Erosion
Pins

(2008–
2011)

4% 0.952 0.574 0.780 0.43 0.99

0.0164

0.0115 88.2 84.5

90.6
2% 0.923 0.648 0.781 0.53 0.99 0.0130 95.1 93.2
1% 0.880 0.687 0.845 0.61 0.97 0.0156 104.3 108.0

0.5% 0.846 0.732 0.891 0.70 0.94 0.0115 88.2 84.5

It was found that the down-sampling strategy works well. With the decrease in the
majority class sampling rate, the Kappa coefficient increases from 0.574 to 0.732, and the
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AUC increases from 0.780 to 0.891. Moreover, the true positive rate of all minority classes
combined also increases from 0.43 to 0.70. However, the overall accuracy decreases with
the down-sampling from 0.952 to 0.846, and the true positive rate of the majority class
declines from 0.99 to 0.94.

At first, it appears that 0.5% is the best sampling rate in this study, but the average
C-factor indicates otherwise. The C-factor value starts from 0.0115 at 4% and then becomes
0.0130 at 2% and 0.0156 at 1%, gradually approaching the reference value of 0.0164. How-
ever, the average C-factor suddenly dips back down to 0.0115 at 0.5%, deviating from the
reference value again. Therefore, judging from the average C-factor, 1% is the majority
class’s best sampling rate.

The unexpected result of the average C-factor is further investigated in Figure 7, in
which the predicted percentage compositions of four different sampling rates were plotted
for all minority classes. The red line indicates the “true” percentage composition from
the 2004 official LULC map. As shown in the figure, the difference in the C = 0.16 class
between the LULC map and the different sampling rates determines how accurate the final
average C-factor is. As the sampling rate decreases from 4% to 2% and 1%, the respective
percentage of the C = 0.16 class approaches and then surpasses that of the LULC map.
When the sampling rate is further reduced to 0.5%, the percentage of the C = 0.16 class
reverses course and drops back to the same level as that of the 4% sampling rate. This
explains why the 0.5% sampling rate did not yield a better average C-factor, even though
its other metrics (such as OA, Kappa, and AUC) were superior.
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Finally, if we compare the predicted soil erosion rates with the rate measured by the
erosion pins, we arrive at yet another different conclusion. The 2% sampling rate predicts a
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soil erosion rate of 93.2 t/ha-year, which is the closest to the measured rate of 90.6 t/ha-year.
In this scenario, 2% is the best sampling rate. The best sampling rates under different
criteria are shaded in Table 11 for easy comparison.

The results presented above suggest that, apart from the class imbalance problem,
other factors are responsible for this study’s modeling performance. Using the overall
evaluation metrics (such as OA, Kappa, and AUC) in this study is not entirely appropriate
and could be misleading. Since our goal was a two-step approach to model the C-factor and
eventually the soil erosion, the predicted soil erosion rate is the most important indicator.
A more balanced dataset does not always yield a better modeling result in terms of soil
loss, and we consider 2% to be the best sampling rate in this study.

4. Conclusions

Unlike previous studies, this research developed C-factor models based on data min-
ing techniques to improve the soil erosion assessment in the Shihmen Reservoir watershed
in northern Taiwan. Eight geospatial data were selected and used in the modeling. The
multi-temporal vegetative indices (NDVI and SAVI) derived from multispectral satellite
images were rectified by a topographic correction to reduce variations over time and better
characterize the surface radiances of the same targets. The C-factor models built using
the RF-based data mining algorithm were used with USLE to estimate the spatiotemporal
soil losses from 2004 to 2008. The results were compared against past studies and the
measurements of erosion pins. They showed promising classification performance.

It is found that the soil erosion rate in 2004 was the highest because of the unprece-
dented destruction of Typhoon Aere in 2004. As the vegetation in the watershed re-grew
after the typhoon to provide new ground cover, the soil erosion rate decreased steadily
until 2008, when a surge of rainfall occurred due to Typhoons Kalmaegi, Sinlaku, and
Jangmi. This trend was successfully captured by the RF models, which demonstrates the
feasibility of the multi-temporal analysis. Furthermore, using an ad-hoc down-sampling of
the majority class technique (at 2% sampling rate), the soil erosion rate was predicted to be
93.2 t/ha-year, very close to the 90.6 t/ha-year measured by the erosion pins installed in
the watershed.

In addition, this study provides a case of an imbalanced data problem that differs from
other imbalanced data problems in that a more balanced dataset does not always yield
a better modeling result. The best sampling rate of the majority class based on different
metrics are summarized as follows:

1. Overall accuracy and true positive rate of the majority class: 4%
2. Kappa coefficient, AUC, and true positive rate of all minority classes combined: 0.5%
3. Average C-factor: 1%
4. Soil erosion rate: 2%

In summary, the results show that the proposed novel framework for assessing and
predicting C-factors and soil erosion based on geospatial factors is both viable and prac-
tical. The method also has promising classification performance even when faced with
an imbalanced data problem. An imbalanced data problem cannot be easily eradicated
by removing records from the majority class. Therefore, future research is necessary to
improve model performance and soil erosion estimates.
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