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Abstract: A water regime type is a cumulative representation of seasonal runoff variability in a
textual, qualitative, or quantitative form developed for a particular period. The assessment of
the respective water regime type changes is of high importance for local communities and water
management authorities, increasing their awareness and opening strategies for adaptation. In the
presented study, we trained a machine learning model—the Random Forest classifier—to predict
water regime types in northwest Russia based on monthly climatological hydrographs derived for a
historical period (1979–1991). Evaluation results show the high efficiency of the trained model with
an accuracy of 91.6%. Then, the Random Forest model was used to predict water regime types based
on runoff projections for the end of the 21st century (2087–2099) forced by four different General
Circulation Models (GCM) and three Representative Concentration Pathway scenarios (RCP). Results
indicate that climate is expected to modify water regime types remarkably. There are two primary
directions of projected changes. First, we detect the tendency towards less stable summer and winter
flows. The second direction is towards a shift in spring flood characteristics. While spring flooding
is expected to remain the dominant phase of the water regime, the flood peak is expected to shift
towards earlier occurrence and lower magnitude. We identified that the projected changes in water
regime types are more pronounced in more aggressive RCP scenarios.

Keywords: water regime; machine learning; Random Forest; climate change; northwest Russia

1. Introduction

Water is a vital component of life. It determines the intensity of the hydrological
cycle process and acts as a link for the landscape continuum. However, water excess in
the form of torrential rainfalls or flashy river runoff frequently causes disastrous events
accompanied by high losses [1,2]. During the last two decades, water-related disasters
accounted for around 74% of all-natural disasters [3]. Moreover, these numbers tend to
increase due to projected climate change [4,5], making more communities vulnerable to
flood disasters [6]. Thus, growing communities’ preparedness to extreme flood events and
developing adaptation strategies to mitigate their consequences are in a strong focus and
need a coordinated effort between science and governance.

In 1995, the Coupled Model Intercomparison Project (CMIP) was initiated by the
World Climate Research Programme (WCRP) with an idea “to deliver high-quality climate
information, serving as the basis for climate assessments and negotiations” [7]. Since
then, climate projections by General Circulation Models (GCMs) that represent different
scenarios of future radiative forcing (representative concentration pathways, RCPs) are
the primary source that forms the solid basis for an assessment of future changes in
hydrometeorological phenomena [8,9]. Climate projections are usually bias-corrected to fit
historical observations, thus ensuring robustness and reliability [10,11]. While river runoff
is on the list of simulated variables by GCMs, it is not used directly in assessment studies
due to its mediocre credibility [12–14]. Instead, hydrological models are used to establish a
reliable connection between meteorological forcing data and river runoff [15–17].

The presented modeling chain that connects GCM outputs with hydrological models
has been established in numerous research projects to estimate the impact of projected
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climate change on river runoff [18–20]. Depending on the underlying hydrological model
used, runoff estimates could be represented at different spatial (global, regional, basin-
scale) and temporal (daily, monthly, annual) resolutions. Then these estimates serve as a
basis of impact assessment—e.g., depicting trends [21] or analyzing differences between
runoff characteristics such as flood magnitude and timing on historical and projected
periods [13,16–20,22]. Thus, individual runoff characteristics are in the strong focus of
studies devoted to climate change impact assessment.

The concerted change of particular runoff characteristics causes corresponding changes
in water regime—a cumulative representation of seasonal streamflow variability [23]. How-
ever, the detailed investigation of how climate change alters the spatial distribution of
particular water regime types is missing in the existing literature. To fill this gap, we
introduce the parsimonious approach to detecting water regime types’ changes. It is based
on modern machine learning techniques and regional river runoff historical reanalysis and
future projections.

There are two central research questions in this study that we would like to investigate:

1. Could a modern machine learning-based model classify water regime types based on
climatological runoff hydrographs?

2. If yes, how water regime types will change due to projected changes in global climate
by the end of the 21st century?

The paper is organized as follows. In Section 2, we describe the study area, data
sources, and underlying methodology. We report the results and discuss them in various
contexts in Section 3. Section 4 provides a summary and conclusions.

2. Materials and Methods
2.1. Ground-Truth Classification of Water Regime Types

There is a long history of developing water regime classifications in the former Soviet
Union and then Russia [24]. In the presented work, we use the most recent classification
proposed by the authors from the Hydrology Department of the Lomonosov Moscow State
University [25,26]. That classification is based on the extensive dataset of runoff charac-
teristics derived from station data until the 1990s and covers the conterminous territory
of Russia and some former Soviet Union countries. In total, it derives 37 comprehensive
types (classes) of water regimes. It is available in the form of a non-digitized, printed map
the “Water regime of the rivers of Russia and neighboring territories” [26].

2.2. Study region

The proposed study region is in the northwest of the European part of Russia (ge-
ographical domain: 25–57◦ E; 55–70◦ N). That territory serves as the focus region of the
Regional Revised River Runoff Reanalysis (R5) project—the collaborative effort aiming to
assess recent changes in the water balance for the study region [27].

The map of the “Water regime of the rivers of Russia and neighboring territories” [26]
has been cropped to fit the study region and digitized using standard tools provided in
QGIS software [28]. Figure 1 shows the digitized map, and Table 1 describes water regime
types depicted in Figure 1. In the presented study, we use the following definitions of
the seasons of the year: winter (November–February), spring (March–May), and summer–
autumn (June–October).

To move from qualitative to quantitative assessments, we propose the grid cell-based
simplification of the digitized map–the conversion procedure under which every grid cell
from the study region (with a spatial resolution of 0.5◦ × 0.5◦) is unambiguously attributed
to a respective water type regime. The individual grid cell is assigned to the main major
class based on the spatial majority for grid cells that intersect two or more polygons of
different regime types.
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Figure 1. Digitized map of water regime types. A detailed description of the legend is provided
in Table 1.

Table 1. The definition of derived water regime types for the territory of northwest Russia (based on
Evstigneev et al. [25,26]).

Water Regime
Type Number

High-Water
Phase Summer-Autumn Winter

2 Spring flood Stable low water with occa-
sional floods Stable low water

3 Spring flood Intermittent low water Stable low water

8 Spring-summer
flood

Intermittent low water with
floods, reaching the height of
the maximum spring flood

Stable low water

14 Spring flood Stable low water with occa-
sional floods

Stable low water, in rare win-
ters interrupted by thawing
floods

15 Spring flood Intermittent low water
Stable low water, in rare win-
ters interrupted by thawing
floods

16 Spring flood Stable low water with occa-
sional floods

Stable low water, in some
years intermittent

17 Spring flood Intermittent low water Stable low water, in some
years intermittent

37 Temporary waterways of the Arctic islands

2.3. Runoff Data

In the framework of the R5 project, extensive datasets of gridded runoff products have
been developed for the studied region (for methodology, see [27,29]). These products include:

1. Runoff reanalysis for the historical period (R5, 1979–2016);
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2. Future runoff projections (R5CH, 2006–2099) based on four GCMs (GFDL-ESM2M,
HadGEM2-ES, IPSL-CM5A-LR, MIROC5) and three respective RCPs (RCP26, RCP60,
RCP85) [30].

Runoff has been calculated using the GR4J hydrological model [31] and bias-corrected
meteorological forcing data distributed in the framework of the ISIMIP project [32].

Typically, the studies on water regime types classification utilize station-based data.
However, these data are not usually homogeneous in terms of spatial and temporal cover-
age. Thus, here we use gridded runoff reanalysis (R5) and runoff projection (R5CH) data to
ensure spatiotemporal consistency. All products have a spatial resolution of 0.5◦ × 0.5◦

and daily temporal resolution. The data is freely available in open repositories [30].

2.4. Classification Approach
2.4.1. Random Forest Model

There are two general approaches for the classification of water regimes on distinct
types: (1) empirical and (2) statistical [33]. The first approach uses expert rules to empiri-
cally derive the revised set of comprehensive types (classes). The second approach utilizes
statistical procedures for automatic clustering (hierarchical or agglomerative) [33,34]. While
the first approach is classic and in the roots of regional hydrology, it became too arbitrary
and rigid to implement with an increasing amount of available data [33,35,36]. Thus, the
modern studies on water regime classification are almost entirely based on the statisti-
cal models for clusterization. Instead, in the presented study, we want to combine two
approaches—empirical and statistical. Here we let a machine learning model learn one of
the available water regime classifications for the European part of Russia (Section 2.1) based
on monthly runoff data (Section 2.3). In the case of an effective learning procedure, we will
have a robust model that we could further implement for water regime type prediction
using runoff projections as input (Section 2.3).

In the presented study, we use Random Forest [37] to derive the classification of
water regimes on comprehensible types. The Random Forest model has been selected
from the myriad of available classification algorithms because of its availability, promi-
nence, and high efficiency in solving different research questions in water sciences, explicit
interpretability of results, and proneness to overfitting [38,39]. Random Forest is an en-
semble technique in its nature. It combines many independent nested models—Decision
Trees (Figure 2)—where the results are averaged to provide a final estimate. Regarding
classification tasks, each Decision Tree uses decision rules to split target variables into
homogeneous classes based on predictor variables. In this way, an individual decision
tree follows the general idea of empirical classification, i.e., deriving the set of expert rules
that split available data into homogeneous classes. The difference is that an expert derives
the set of hard-coded rules by experience, but Decision Tree–by the result of numerical
optimization (learning). A detailed description of underlying computational algorithms of
Random Forest is provided in [38,40].

Figure 2. A single decision tree. The numbers on the arrows indicate the relative monthly river runoff.
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2.4.2. Training Data Preprocessing

Following the general practice of water regime classification studies [24,33–36], we
use climatological monthly runoff data. However, compared to classic approaches where
descriptive statistics are derived from monthly data (e.g., means, deviations, ratios) to serve
as input data for classification procedures, we rely only on monthly climatological means.
The underlying assumption of that choice is that monthly data implicitly includes all the
descriptive information, and the Random Forest model is advanced enough to extract
these meaningful features. Thus, we prepare the training dataset as follows. First, for each
grid cell, we extract the target variable—corresponding water regime type—based on the
obtained grid cell-based map (Section 2.2). Second, for each grid cell, we extract daily
runoff time series from R5 reanalysis for 1979–1991, which is representative and consistent
with data used for water regimes map (Section 2.1) compilation. Then, that time series is
aggregated from daily to monthly temporal resolution and recalculated as a percentage
of the average annual flow. As a result, we have compiled a dataset that unambiguously
determines input (12 values of relative monthly runoff) and output data (water regime
type) for our Random Forest model.

2.4.3. Cross-Validation Procedure

The final classification model has been found by grid search procedure aiming to
optimize the most sensitive Random Forest hyperparameter—the number of trees (10–100).
For each hyperparameter value, the classification accuracy has been assessed using 5-fold
stratified cross-validation. The model with the highest mean accuracy on the validation set
has been selected for water regime types prediction. We used only open source and freely
available software packages for computational workflow–NumPy [41], Pandas [42,43],
GeoPandas [44], Xarray [45], and Scikit-learn [46].

2.5. Summary of the Proposed Workflow

The schematic illustration of the proposed research workflow is shown in Figure 3.
The summary of the main steps depicted in Figure 3 is as follows:

1. We digitize the map “Water regime of the rivers of Russia and neighboring territories”
and simplify it in a grid cell-based manner (Section 2.1);

2. For each grid cell, we extract the corresponding type of water regime;
3. For each grid cell, we extract relative monthly runoff based on R5 historical runoff

reanalysis for the period 1979–1991 (Section 2.3);
4. Using the compiled dataset derived in steps 2 and 3, we train the Random Forest

classification model using extensive grid search and cross-validation procedures
(Section 2.4);

5. For each grid cell, we extract the future projections of the relative monthly runoff
based on the R5CH dataset that combines runoff estimates derived by using four
GCMs and three RCPs for the period 2087–2099 (Section 2.3). The corresponding
projected period (2087–2099) has been selected as the most distant from the historical
reference period (1979–1991) with the same duration (13 years). We assume that due
to that selection of periods, the obtained changes in the water regime types will be
most pronounced; thus, better described and disseminated;

6. Using the trained Random Forest model (Section 2.4) and a scenario of future projec-
tion of monthly runoff, we calculate the expected type of water regime at the end of
the 21st century.
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Figure 3. Illustration of the proposed computational workflow. Numbers in circles represent consec-
utive computational steps.

3. Results and Discussion
3.1. Determination of the Historical Baseline

For each grid cell (n = 1424), climatological hydrographs and water regime type have
been extracted for the reference period (1979–1991; historical, HST) from the R5 runoff
reanalysis and the digitized map “Water regime of the rivers of Russia and neighboring
territories,” respectively. Figure 4 illustrates the corresponding mean climatological hydro-
graphs derived for each water regime type. It also shows the variability of individual cell’s
climatological hydrographs for the respective water regime types. The number of grid
cells of each water regime type and their relative coverage are shown in Table 2. Figure 5
highlights the distinct differences between different groups of water regime types we will
analyze further.

Table 2. Characteristics of the spatial distribution of the presented water regime types.

Water Regime Type Number Number of Grid Cells Relative Coverage, %

2 130 9.1
3 901 63.3
8 4 0.3
14 35 2.5
15 338 23.7
17 16 1.1

Climatological hydrographs and their variability (Figures 4 and 5) clearly illustrate
distinctive differences between presented water regime types. There are two major types
of water regimes—3rd (SA: intermittent; W: stable. Hereafter, the abbreviations SA and
W stand for summer–autumn and winter, respectively. See Table 1 for full descriptions.)
and the 15th (SA: intermittent; W: stable, rare thawing floods). Both are characterized by
the dominance of spring flood and intermittent summer low flow. The main difference
between these two types is in the water regime of the winter period (Figure 5A). While
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for the 3rd type, low winter flow is stable, for the 15th type, the stable winter low flow
could be interrupted by thawing floods [25]. Figure 5 also reveals the noticeable difference
in spring flood properties. First, for the 3rd type, the runoff peak usually occurs in May,
while April is for the 15th type. Second, the magnitude of the spring flood is also higher
for the 3rd type rather than for the 15th. Third, the rising and falling limb for the 3rd type
is symmetric, but it is skewed towards the longer falling limb for the 15th type. These
differences could be attributed to the geographical location of the analyzed water regime
types, where the 3rd type is located to the north of the 15th type.

Figure 4. Monthly climatological hydrographs for different types of water regimes. Background color
represents different seasons: blue for winter (Nov–Feb), green for spring (Mar–May), and yellow for
summer–autumn (Jun–Oct). The abbreviations SA and W in the title refer to summer–autumn and
winter periods, respectively.

Figure 5. Pairwise comparison of monthly climatological hydrographs for different types of
water regime. (A): the 3rd (SA: intermittent; W: stable) and 15th (SA: intermittent; W: stable, rare
thawing floods); (B): the 2nd (SA: stable with occasional floods; W: stable) and 14th (SA: stable with
occasional floods; W: stable, rare thawing floods); (C): the 8th (SA: intermittent with high floods; W:
stable) and 17th (SA: intermittent; W: stable, in some years intermittent); (D): the 3rd (SA: intermittent;
W: stable), 15th (SA: intermittent; W: stable, rare thawing floods), and 17th (SA: intermittent; W:
stable, in some years intermittent).
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The 2nd (SA: stable with occasional floods; W: stable) and 14th (SA: stable with
occasional floods; W: stable, rare thawing floods) types of water regimes (Figure 5B) are
closer to the 3rd (SA: intermittent; W: stable) and 15th (SA: intermittent; W: stable, rare
thawing floods) types, respectively. Both are characterized by the dominance of spring
flood and stable summer low flow with occasional floods, with the difference in winter low
flow regimes similar to those for the 3rd and 15th types. Thus, the difference between these
two groups of water regime types (2nd and 14th vs. 3rd and 15th) is in low summer flow:
while for the 3rd and 15th types it is intermittent, for the 2nd and 14th types it is stable
low water with occasional floods [25]. A higher magnitude of spring flood characterizes
both 2nd and 14th types compared to 3rd and 15th types and the lower variance of nested
climatological hydrographs that could result from the smaller presence of their areas
(Table 2). The 2nd type is nested within the 3rd type, and the 14th type is adjacent to the
15th type.

The presence of minor water regime types—8th (SA: intermittent with high floods;
W: stable) and 17th (SA: intermittent; W: stable, in some years intermittent)—is rare, with
a total share of 1.4% (Figure 5C). The 17th type is closer to both 3rd (SA: intermittent;
W: stable) and 15th (SA: intermittent; W: stable, rare thawing floods) types, with similar
characteristics of summer low flow and dominance of spring flood, but with winter period
characterized by stable low water, in some years intermittent [25]. Figure 5C shows that
the 17th type of water regime could also be characterized by a lower magnitude of spring
flood and higher low flow periods (both summer-autumn and winter periods). Regarding
geographical location, the 17th type shares the SW-NE diagonal with the 3rd and 15th
types and occupies the westernmost position (Figures 1 and 5D). The 8th type of water
regime is scarce with spring-summer flood and summer-autumn low flow periods with
intermittent low water with floods, reaching the height of the maximum spring flood [25].

Despite its age of three decades, the water regime types classification provided by
Evstigneev et al. [25] remains the most advanced and complete generalization of characteris-
tics of the water regime of Russian rivers. The main feature of the considered classification
(and it is also typical for the Soviet Union scientific school of hydrological sciences) is
supervised, expert-centric regionalization of the analyzed territory on the finite number
of distinct classes that can be visually and textually distinguished and represented on a
map [24]. Moreover, the most up-to-date classification of water regime types of Russian
rivers is available in the Russian National Atlas [47] and represents the generalized version
of the presented map “Water regime of the rivers of Russia and neighboring territories,”
developed by Evstigneev et al. [25,26]. The spatially connected and continuous representa-
tion of water regime types allows us to couple it with spatially and temporally consistent
data of gridded runoff reanalysis. Thus, that coupling opens a way towards a consistent
analysis of water regime types evolution both in space and in time.

3.2. Classification Model Accuracy

The classification model used for predictions of water regime types in the presented
study has been derived using a pipeline of a grid search procedure and stratified 5-fold
cross-validation (Section 2.4). The results show that the Random Forest model with
25 individual decision trees in an ensemble (parameter n_estimators = 25) showed the
best prediction accuracy on test data of 91.6%. The obtained result is consistent with the
result obtained in the study of Ivanov et al. [48], where the authors reached 90% accuracy
utilizing a decision tree-based machine learning model (XGBoost) in water regime type
identification for the 1945–1977 period. The Random Forest model has been re-calibrated
on the entire dataset to derive the final model for water regime type predictions. The final
Random Forest model is freely available [49] and could be used for water regime type
prediction in the studied region (25–57◦ E; 55–70◦ N).
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3.3. Projected Changes of Water Regime Types

Having the trained Random Forest model at hand, we calculated the expected type
of water regime at the end of the 21st century (2087–2099) using different scenarios of
future monthly runoff projections forced by four GCMs (GFDL-ESM2M, HadGEM2-ES,
IPSL-CM5A-LR, MIROC5) and three RCPs (RCP26, RCP60, RCP85). For each RCP, the
final predicted type of future water regime has been calculated using the hard majority
rule voting based on the predicted types by four participating GCMs [50]. Furthermore,
based on the analysis of individual predictions, we calculated the confidence level between
different model scenarios. We consider high confidence if at least three models agree on
the predicted type of water regime. In other cases, we consider the model confidence as
low. In this way, calculating the model’s confidence is a simplified attempt to address
prediction uncertainty.

Figure 6 illustrates the spatial coverage and difference between historical (HST, 1979–
1991) and projected (PRJ, 2087–2099) water regime types derived for different scenarios
of greenhouse gas emissions (RCP26, RCP60, RCP85) at the end of the 21st century. The
corresponding relative coverage of different water regime types in the study region is
summarized in Table 3.

Figure 6. Historical (HST; 1979–1991) and projected (PRJ; 2087–2099) water regime types under
different RCPs (RCP26, RCP60, RCP85).
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Table 3. The percentage of the total study area under each water regime type derived for the historical
and projected periods.

Water Regime Type Number HST PRJ, RCP 2.6 PRJ, RCP 6.0 PRJ, RCP 8.5

2 9.1 0 0 0
3 63.3 15.4 1.5 0.1
8 0.3 0 0 0
14 2.5 2.5 0.1 0.1
15 23.7 69 67.4 46.3
17 1.1 13.1 31 53.5

Compared to the historical period, where there were six types of water regimes, only
four exist under the RCP26 scenario: 3rd (SA: intermittent; W: stable), 14th (SA: stable
with occasional floods; W: stable, rare thawing floods), 15th (SA: intermittent; W: stable,
rare thawing floods), and 17th (SA: intermittent; W: stable, in some years intermittent),
while two entirely disappeared: the 2nd (SA: stable with occasional floods; W: stable)
and 8th (SA: intermittent with high floods; W: stable). The disappeared types of water
regimes—2nd and 8th—are related to those with stable phases of summer and winter flow
and mountain rivers, respectively. Thus, under the RCP26 scenario, there is an expected
change of water regime types towards decreasing low flow phases’ stability and a signal of
the high vulnerability of mountain rivers under climate change [51,52].

The most pronounced increase in relative coverage is attributed to the 17th (SA:
intermittent; W: stable, in some years intermittent; from 1.1 to 13.1%, 12 times more) and
15th (SA: intermittent; W: stable, rare thawing floods; from 23.7 to 69%, 2.9 times more)
types. The coverage of the 3rd type (SA: intermittent; W: stable) dropped significantly
from 63.3 to 15.4%. The 14th type (SA: stable with occasional floods; W: stable, rare
thawing floods) of water regime saves relative coverage but shifts toward the east direction.
Moreover, there is a clear water regime type pattern from southwest to northeast (Figure 6).
While the pair of two major water regime types—3rd and 15th—remain the same between
historical and projected (under RCP26 scenario) periods, with 87% and 84.4% of total
coverage, the dominant type of water regime changed from 3rd on historical to 15th on
projected period, respectively. In this way, obtained results confirm the primary direction of
water regime change towards less stable summer and winter flows that can be interrupted
by thaws, rain-induced floods, or droughts. From the visual comparison of the 3rd and
15th types of water regimes (Figure 5A), it is clear that while the spring flood will stay the
dominant phase of the water regime, the flood peak will shift towards earlier occurrence
and lower magnitude. In this way, the projected changes will touch all the major phases of
the water regime: spring flood, and summer and winter low flow periods.

The revealed changes in projected water regime type spatial distribution under the
RCP26 scenario at the end of the 21st century are consistent with the trends of water
regime transformation in the 1945–2015 period, which are presented in Kireeva et al. [53],
i.e., a decrease in the spring flood magnitude and volume, and an increase in low flows.
Furthermore, Kireeva et al. [53] indicate that the current water regime of several rivers
could hardly be attributed to the East European type of water regime according to Zaikov
B.D.’s classification [54] due to significant changes in spring flood characteristics. Thus,
identifying water regime types transition due to projected climate change remains a strong
focus for providing up-to-date classifications of current and projected water regimes.

The analysis of the projected water regime changes under a more aggressive RCP60
scenario shows the intensification of the dominant transition processes. The number of
presented water regimes is reduced to three (six for HST, four for RCP26). The 14th type
(SA: stable with occasional floods; W: stable, rare thawing floods) almost disappeared,
indicating a further decrease in the presence of water regime types characterized by stable
summer low flow. The 15th (SA: intermittent; W: stable, rare thawing floods) and 17th (SA:
intermittent; W: stable, in some years intermittent) types of water regimes make 90% of the
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total coverage. The 15th type remains dominant and saves its ratio compared to RCP26
but shifts to the northeast direction. The 17th type increased 2.5 times in comparison to
RCP26 and continued its expansion to the northeast direction. The presence of the 3rd
type is sporadic and is more associated with peripheral zones of the study area. Thus, the
primary trend towards increasing the instability of low flow periods and earlier and lower
spring floods is more pronounced for RCP60 than for RCP26.

The revealed changes are even more pronounced for the most aggressive scenario of
climate change—RCP85. The number of presented water regime types decreased to only
two (six for HST, four for RCP26, three for RCP60)—15th (SA: intermittent; W: stable, rare
thawing floods) and 17th (SA: intermittent; W: stable, in some years intermittent). The
disappeared 3rd type (SA: intermittent; W: stable) of the water regime also approves the
change toward lower stability of low flow periods (Figure 5D). The 17th type becomes
dominant under the RCP85 scenario with a stable increase from the historical period (1.1%
for HST, 13.1% for RCP26, 31% for RCP60, 53.5% for RCP85). That also indicates the
increasing instability of winter low flows characterized by increasing frequency of low
flow interruption by mid-winter thaws. The spatial expansion of water regime types in the
northeast direction remains persistent between all considered RCP scenarios.

3.4. Prediction Uncertainty

The presented study used a simple measure of uncertainty of water regime types
prediction–the confidence between model predictions forced by different GCMs (Section 2).
That confidence measure could take only two values: high (where at least three models
agree on the predicted type of water regime) and low (in other cases). The spatial distribu-
tion of the predicted water regime types that is concerted with the confidence measure of
these predictions is shown in Figure 7. The obtained results are also summarized in Table 4.

Table 4. Relative affected area and classifiers’ confidence.

Scenario Relative Affected Area, % Low Confidence, % High Confidence, %

RCP 2.6 73.6 10 90
RCP 6.0 96.2 15 85
RCP 8.5 98 28 72

The obtained results present two most prominent messages: (1) the affected area of wa-
ter regime changes increases with more aggressive RCP scenarios; (2) however, the model
confidence decreases with more aggressive RCPs, yet the majority of predictions remains of
high confidence. Thus, by the end of the 21st century, at least 73.6% of the study area will
transit to different water regime types. The main directions of that transition–interruption
of low flow periods by thaws, rain-induced floods or droughts, and earlier and lower
spring floods—this agrees with the modern changes in runoff characteristics [24,53,55].
Thus, even following a less aggressive RCP scenario (RCP26), we could be confident in
a substantial change of water regime in the northwest of Russia. Despite our confidence
decreases with more aggressive RCP scenarios, the results still indicate a prominent signal
of projected changes.

The obtained results (Figure 7) indicate that there are several reasons for low model
confidence: (1) it is hard to distinguish between close types of water regime, e.g., 15th
(SA: intermittent; W: stable, rare thawing floods) and 17th (SA: intermittent; W: stable, in
some years intermittent; Figure 5D), (2) there are new, different types of water regime that
are not represented during the training on a historical period, e.g., ones without strong
spring flood, and (3) the disagreement between meteorological projections calculated by
different GCMs increases with more aggressive RCPs [17,56] that leads to the disagreement
in runoff estimates. The first issue could be observed as a boundary effect—when low
confidence is attributed to areas close to boundaries between water regime types. It is the
most prominent for predictions under the RCP60 scenario (Figure 7, boundary between
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15th and 17th types in the middle). The remaining issues could randomly appear elsewhere,
indicating the regions where more in-depth analysis is needed, e.g., the northeast and
southeast parts of the study region and the Kola peninsula (Figure 7, RCP85 subplot).

Figure 7. Historical (HST; 1979–1991) and projected (PRJ; 2087–2099) water regime types under
different RCPs (RCP26, RCP60, RCP85). Black and white marks highlight high and low model
confidence, respectively.

4. Conclusions

In the presented study, we quantified the significant directions of water regime change
in northwest Russia at the end of the 21st century compared to the historical period. It
has been done by utilizing a wide range of research data and computational techniques.
These are digitized maps of water regime types, regional runoff reanalysis and runoff
projections data, and machine learning (Figure 3). By design, our study is focused on
the detection of projected changes in water regime types rather than their attribution to
driving mechanisms in the hydrological cycle. That is also reflected in the second research
question, which begins with the interrogative word “How,” not “Why.” In this way, our
study highlights and quantifies the “hot spots” of projected water regime change. That
information could then be used as a starting point for the in-depth analysis of driving
mechanisms behind the projected changes.
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In the Introduction, we formulated two central research questions that we would like
to investigate:

1. Could a modern machine learning-based model classify water regime types based on
climatological runoff hydrographs?

2. If yes, how water regime types will change due to projected changes in global climate
by the end of the 21st century?

Regarding the first research question, the obtained results of machine learning model
training and evaluation (Section 3.2) confirmed the high efficiency of the Random Forest
model in predicting the type of water regime based on climatological runoff hydrographs.
The mean accuracy on independent test data reached 91.6%. We shared the trained Random
Forest model in an open repository [49] to ensure research reproducibility.

Regarding the second research question, the obtained results (Figure 6, Table 3) reveal
the two significant directions of water regime change projected by the end of the 21st
century. The first direction is towards less stable summer and winter flows that can be
frequently interrupted by thaws, rain-induced floods, or droughts. The second direction
is towards the change of spring flood characteristics. While spring flood is expected to
remain the dominant phase of the water regime, the flood peak will shift towards earlier
occurrence and lower magnitude. Thus, we urge that the projected changes will touch all
the major phases of the water regime in the study region: spring flood, and summer and
winter low flow periods. Furthermore, we identified that the projected changes in water
regime types are more pronounced in more aggressive RCP scenarios. The anticipated shift
in water regime types will touch 73.6% of the study area under the RCP26 scenario and
99% under the most aggressive RCP85 scenario (Figure 7, Table 4).

The projected changes indicate the increasing instability of all major phases of the
water regime in the study region. That also means more extreme events: thaws, rain-
induced flash floods, droughts, or their combination. Altogether, that poses a significant
challenge to local communities and water management authorities that have to find a
robust strategy to adapt to the expected changes. As a scientific community, we also should
pay more attention to the communication of our findings beyond research papers and
reports–to reach regional communities and stakeholders.
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