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Abstract: Technological advances have enabled new sources of geoinformation, such as geosocial
media, and have supported the propagation of the concept of smart cities. This paper argues that a
city cannot be smart without citizens in the loop, and that a geosocial sensor might be one component
to achieve that. First, we need to better understand which facets of urban life could be detected by
a geosocial sensor, and how to calibrate it. This requires replicable studies that foster longitudinal
and comparative research. Consequently, this paper examines the relationship between geosocial
media content and socio-demographic census data for a global city, London, at two administrative
levels. It aims for a transparent study design to encourage replication, using Term Frequency—
Inverse Document Frequency of keywords, rule-based and word-embedding sentiment analysis,
and local cluster analysis. The findings of limited links between geosocial media content and socio-
demographic characteristics support earlier critiques on the utility of geosocial media for smart city
planning purposes. The paper concludes that passive listening to publicly available geosocial media,
in contrast to pro-active engagement with citizens, seems of limited use to understand and improve
urban quality of life.

Keywords: geosocial media; user-generated geographic content; smart city; smart citizen; social
sensing; replication; reproducibility

1. Introduction
1.1. Motivation

This research is grounded in the notion that smart cities based only on (machine)
sensors and the (machine) computation of sensor input will remain “dumb” cities, because
they do not take the socio-spatial dimension of the citizens into account (the term “citizen”
can include the connotation of having certain exclusive (political) rights, i.e., potentially
marginalizing groups such as (undocumented) migrants; this study argues that every
inhabitant of a city has equal rights to it [1], and thus uses “citizen” in its most inclusive
meaning). Nevertheless, rejecting new technological developments and their use in society
and by citizens is no solution either, because so many of our daily activities are now
happening entirely online or are guided by location-based services. This leads to closer
interaction between the physical world and the digital dimension, which a geosocial sensor
might help to capture [2].

A geosocial sensor captures information from social media and social networks that is
linkable to a physical place, e.g., through coordinate metadata or mentions of place names.
Such a geosocial sensor might reveal layers of urban fabric and spatial practices that are
inaccessible by other means. Collective urban imaginaries continue to be an important
dimension of urban life, and geosocial media reflect and shape our perception of urban
space and urban places [3].

When considered with an understanding of the interplays between digital and physical
urban geographies, a geosocial sensor might support more pro-active, citizen-driven
urban planning, departing from current top-down conceptualizations of urban planning.
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Capturing a sense of place and social capital requires spatialization for improving urban
planning that currently relies on artificial administrative boundaries [4,5]. Although
technology allows for much greater participation of citizens and inhabitants than ever
before, it can also erect new barriers and a digital divide [6] by requiring specific (digital)
skills to participate, and by emerging exclusionary community practices.

Geosocial media could support an assessment of various goals and indicators of well-
being, such as UN sustainable development goals or quality of life (QoL), because they
integrate into the daily lives of citizens. Other work has shown that dedicated interfaces for
interaction do not always work better: for example, [7] presents five different case studies
around Dublin and conclude that “crowd-sourced spatial data appears to rarely extend
beyond what can be produced from one or two clicks of a mouse, highlighting the need for
a facility to automatically geo-tag photographs from smartphones onto the evolving map.
[ . . . ], workshops have highlighted that interactive online mapping tools must address
both a digital divide and a ‘map-literacy divide’ [ . . . ]”, confirming that interfacing urban
intelligence is anything but trivial [8]. Before using geosocial media in any sensing capacity,
we need to understand at least three issues better.

First, how does geosocial media usage vary over space and time, and what are
its interactions and interrelations in production and consumption? Such information is
necessary to calibrate the geosocial sensor for longitudinal (comparing developments over
time) or cross-sectional (comparing cities) analyses.

Second, how does geosocial media relate to urban and socio-demographic charac-
teristics, which we know about or acquire by other means, e.g., traditional census data?
Without a deeper understanding, we cannot distinguish correlation from causation, nor
identify spurious correlations detected by highly sensitive, sophisticated quantitative
analysis methods.

Third, what is its relationship with the geographic features of urban space, i.e., discrete
and vague places? Administrative partitions in particular continue to be of importance
in the discussion and implementation of any policy. Without such knowledge, we risk
overlooking patterns because of the modifiable areal unit problem (MAUP) and apply
interventions at the wrong scale or location.

Understanding what geosocial media can and cannot show us supports the develop-
ment of much needed mechanisms for government and public actors to use crowdsourced
and volunteered geographic information to complement or update official data. Remaining
critical and transparent is crucial: many critiques of geosocial media point out that much
research follows a techno-optimistic motivation, where finding something seems more
important than validating its veracity, meaning and utility [9]. When we view the smart
cities of the future as coded and benchmarked cities [10,11], we need to ensure that citizens
can participate and benefit beyond the simple provision of ever-increasing volume of data
for the smart city algorithms [12].

The next section argues that, by now, we have evidence that geosocial media usage is
related to certain demographics and that we can detect certain content, but that we cannot
use it in isolation from other data sets, and that we do not know enough yet how geosocial
media content relates to social fabric of a city.

1.2. Related Work

There is a large and growing research body on geosocial media usage in urban envi-
ronments. The studies can be loosely grouped into addressing three main questions:

First, who contributes? Most studies rely on inference from location about contributors,
which is risky, because the where part of geosocial media is not always reliable (see below).
Few studies try to find out more about contributors from the posts themselves, such as
links between Twitter usage and age and occupation [13], or income and education of
contributors [14]. Spatially varying demographics are discernible from Tweets [15], but
much of the information or conclusions are also available from traditional census data, and
for novel insights, a more fine-grained analysis would be needed [16].
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Second, what can we learn from the combinations of who, where, when and what?
Several studies aim to find functional regions or sense of place beyond the administrative
boundaries [17–19], either without prior knowledge of placenames [20], or by using existing
placenames as starting point [21]. However, results often confirm some aspects of what
we already know from other sources about a neighborhood. Using Foursquare check-ins,
pioneering work by [22] identified spatio-semantic clusters. However, platforms such
as Foursquare or TripAdvisor [23] as primary data sources can be problematic, because
they focus on commercial points of interest and act as a gate-keeper to the potential
activities that can be detected. Other approaches [24] try to add semantics from analysis
of the geographic context. [25] investigated spatio-temporal and semantic clusters of
Tweets with some success but remained critical about the explanatory power of the found
clusters and the dependence of the outcomes on the choice of hyperparameters. Several
studies, e.g., [26–28], used Latent Dirichlet Allocation for detecting spatially-bound topics
in geosocial media, while [29] proposed a spatial variation of Term Frequency—Inverse
Document Frequency (TF-IDF).

Third, how does the content relate to the reality on the ground, or ground truth?
Workplace-related activities can be grounded more reliably in space and time than resi-
dential activities [30]. Investigations into the information geographies in London [31] and
Los Angeles [32] show correlations between information density of areas and their socio-
economic characteristics, but the model performances also show that other, unaccounted
factors play significant roles. This contrasts with [33], who found that areas in California
with more affluent and white population could explain higher Tweet counts. However,
differences in methods (e.g., normalization of Tweet count by workday population) could
explain this. At the regional scale of US county level, there are large variations in socio-
demographic biases of the Twitter user base [34]. At neighborhood scale, action spaces of
Twitter users are very different between “white” and “black” users in Louisville, Kentucky,
prompting the authors to suggest better integration of social theory in Twitter-based re-
search [35]. Again for London, [28] investigated Twitter topics and their relationship with
many user and area characteristics. However, there is little information on the validation
of the found topics. While socio-economic status and sentiments seem to correlate posi-
tively, other studies of sentiments and socio-demographic variables are inconclusive, e.g.,
showing that during disasters, more affluent counties have more Twitter activity, but that
otherwise no clear correlations between sentiment and socio-demographic variables are
visible [36]. Other research [37] even found a partly negative correlation between happiness
and health, i.e., the happier, the unhealthier. At the scale of entire cities, [38] conducted
a massive study on the relationship between “Twitter happiness” and demographic and
place characteristics, and [39] investigated nation-wide sentiments towards a historic event
(Women’s March 2017).

There is also a growing body of literature that critically examines the validity and
meaningfulness of the presented results: on the representativeness of data and transfer-
ability of results, [40] investigated relationships between socio-demographic census data
and non-English speakers in Houston, Texas and warned about sweeping statements made
on the basis of geosocial media because of non-stationarity. Further, only 75% of geoso-
cial media were local in nature [41]. This is compounded by overlapping themes, topics
and events and outlier Tweets, leading to warnings about using geosocial media without
a-priori deeper understanding [42]. This is supported by a comparison of three sentiment
analysis methods in [43], who argue that sentiment detection from Tweets is too unreliable
to use in planning contexts.

Regarding QoL indicators, the rich literature, e.g., [44,45] rarely used location-based
networks [46] or geosocial media. One of the opportunities of geosocial media is to
find information on perceived and real problems, supporting small-area estimations and
enriching traditional large-area statistics and labor-intensive surveys such as [47]. Ref. [48]
found differences in QoL perceptions in Tweets from Bristol, but also warn against using
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Twitter as a proxy for surveys, although Tweets might help to detect issues that QoL
surveys struggle to detect.

In summary, the relationship between geosocial media creation and content, and the
underlying urban processes [49] in the context of smart cities [50] need further investigation.
The current work is still inconclusive about correlations and patterns and fragmented in
geographic case studies of various periods of investigation.

1.3. Research Objectives

The previous section has presented the motivation for a large and diverse research
agenda and has argued that much of the current work on geosocial media in urban contexts,
while methodologically sound and advanced, lacks deeper evaluation and validation, and
thus remains idiographic and difficult to compare. Further, the diversity of findings is
compounded by the quickly changing nature of geosocial media use and platforms, calling
for more longitudinal and cross-sectional studies.

An important objective of this work is to embed and relate it with similar studies and
provide sufficient information for other researchers to challenge the findings with different
methodology or different data. This paper also aims to address, but cannot hope to solve
on its own, the important question when results are similar enough so that we can claim a
successful replication, thus allowing us to conclude something about the generalizability
or transferability of studies, and the volatility of geosocial media. This study, therefore,
continues prior work and builds on existing data and experience where possible, e.g., by
partially replicating aspects of [31]. This paper focuses on two questions that are guided by
the desire to utilize geosocial media for urban policymaking:

1. What are the criteria for a geosocial sensor based on geosocial media to be used as a
smart city “sensor”?

2. What is the relation between content or sentiments of geosocial media and socio-
demographic indicators (e.g., of deprivation) at two different administrative scales
over time and space?

This study addresses RQ1 through a literature study and qualitative evaluation of the
quantitative analysis results of RQ2.

RQ2 requires aspatial and spatial analysis methods. Because our understanding of
geosocial media and noisy and unstructured data is still limited, the most sophisticated
methods may not be automatically the most suitable ones. Rather, established and well-
understood methods, combined with a careful evaluation, may deliver the most robust and
thus “best” results. The analysis will use the global city of London, UK, as a case study,
because of the ample open census and (English language) geosocial media data available,
and the rich literature with which to compare the outcomes of this study. While this study
obviously also relates to issues of privacy and ethical (good) governance, these are beyond
the scope of this paper.

1.4. Paper Structure

After this section described the motivation and intention of the paper, the next section
on materials and methods presents the data sets and methods used in the analysis. The
third section on results presents the main findings, while a fourth section discusses both
analysis approach and results in context and concludes the paper. All scripts and other
materials supporting replication or reproduction are available as supplementary materials
in a public repository [51].

2. Materials and Methods
2.1. Data Sets

The first step is to query suitable geosocial media data sources. The number of publicly
available geosocial media sources has been in decline, with Twitter and Flickr remaining
two main sources. This study’s query used a bounding box covering the greater London
area (lower left corner at [−0.489,51.280], and upper right corner at [0.236,51.686]), accessing
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the Twitter Streaming API, the Flickr Search API, and socio-demographic data from the
London Datastore [52].

2.1.1. Twitter Data

The Twitter data collection uses an Amazon Web Services EC2 instance running a
Python script (TwitterStreamingAPI_London.py) to access the Twitter Streaming API. The
search query is the bounding box without keyword filtering. All returned Tweets are saved
as original JSON objects in text files. The script is restarted every hour to prevent data loss
by occasional breakups of the connection. Over the entire period of almost three years
(11 July 2017 until 30 June 2020), less than 2% of the time the connection did not record any
data. Given a total retrieved data volume of 5,806,420 Tweets, this loss seems negligible.

There is still some ongoing disagreement in the literature over sampling and the false
negative rate when using the free Twitter API access. According to the available documen-
tation and some experimentation, Twitter does no random or stratified sampling on results
for the regular Streaming API endpoint (not to be confused with the statuses/sample and
Decahose API endpoints, which provide a random sample of 1% and 10%, respectively).
Further, the Streaming API returns an error code if the consuming service does not manage
to keep up, which was never reached in this case. For this query, we can therefore assume
that the data set is sufficiently complete.

All Tweets were inserted into a PostgreSQL 11/PostGIS 2.5 database, converting the
latitude/longitude fields into point geometries, and removing any duplicates. [51] contains
a text file (Tweet_IDs.csv) with all Tweet IDs, conforming with Twitter Terms of Service (ToS)
and privacy regulations. Any replication attempt can use these Tweet IDs to reconstruct
the data set.

To improve classifier performance, this study experimented with several ways to
flag bots and advertisement accounts and exclude them from further analysis. A two-
step approach was chosen: The first step takes advantage of the fact that many bots use
stationary locations and Tweet with a high frequency. It counts the number of Tweets for
each user coming from the same coordinates on the same day, and then marks all user
accounts as bots who have more than 10 such Tweets. This first step results in 0.46% of all
users having Tweets marked as bots, accounting for 22% of all Tweets, which is remarkably
similar to [31]. The second step looks at the source field in Tweet metadata, and through
manual validation identifies several additional bot or advertisement accounts, raising the
total of bot Tweets to 26.5%, with a total of 4,265,248 non-bot Tweets remaining. The exact
SQL commands are found in bot_identification.sql. The subsequent analyses use only Tweets
marked as non-bots.

2.1.2. Flickr Data

The Flickr data set comprises the period from 2004 until the first half of 2020 (including)
for an area including all of London.

Data until 2014 were provided by the GIScience Center of the University of Zurich (see
acknowledgements). From 2015 onwards, this study used a Python script (FlickrSearchAPI_
London.py) that retrieved the same metadata during the first half of January and July for
the preceding half year (i.e., 01 January until 30 June, and 01 July until 31 December,
respectively) to account for “late uploaders”. The script uses the same bounding box to
retrieve all metadata including raw tags, before removing all duplicates and replacing
special characters such as line feeds or tabs with spaces, saving everything in tab-separated
text files.

In total, this study uses metadata from 6,730,535 Flickr images. For replication, it is
advisable to retrieve the metadata again and compare the result set with the provided
Flickr photo IDs (Flickr_IDs.csv), because users might have deleted or changed photos and
metadata in the meantime. All metadata were inserted into a PostgreSQL 11/PostGIS
2.5 database, converting the coordinate fields to a geometry.
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2.1.3. Socio-Demographic Data

All administrative data (boundaries and socio-demographic statistics) were retrieved
from [52] (For all maps, the following is therefore applicable: “Contains National Statistics
data © Crown copyright and database right [2015]” and “Contains Ordnance Survey data
© Crown copyright and database right [2015]”). Currently, this analysis uses 2011 statistical
boundaries at the Medium Super Output Area (MSOA) and ward level. For the purposes
of the analysis, these files were loaded into the same PostgreSQL 11/PostGIS 2.5 data base
using the shp2psql importer tool and transformed from EPSG 27,700 to 4326 (WGS84), like
the geosocial data sets.

This study uses three sources of socio-demographic data: First, MSOA census data for
2011; second, indices of multiple deprivation (IMD) for 2019; third, the London Output
Area Classification (LOAC) for 2011.

All the above socio-demographic data were available in Excel spreadsheets, with the
variables of interest (see following section) as columns of the administrative units (rows).
Several manual selection and filtering steps were necessary to create text files that could be
ingested easily by the analysis libraries. Unfortunately, neither the manual steps nor the
output can be provided in [51] for reasons of copyright, but they can be reverse-engineered
from the provided code.

2.2. Methods and Processing

To address RQ1, a qualitative analysis and interpretation is based on the literature
of Section 1.2 and the results of the case study. A keyword-based TF-IDF analysis of
geospatial semantics and correlation analysis and spatial analysis on the relation between
socio-demographic indicators and geosocial media sentiments address RQ2. The workflow
has four main steps:

1. Use a dictionary of descriptive terms and calculate (spatial) TF-IDF scores (Section 2.2.1).
2. Test several sentiment classifiers and validate results with manual inspection of a

random sample of Tweets (Section 2.2.2).
3. Apply chosen sentiment analysis methods to full Twitter data set and correlate and

model with socio-demographics (Section 2.2.3).
4. Continue with spatial and temporal analysis for both (spatial) TF-IDF and sentiments

(Section 2.2.4).

To determine in which MSOA or ward a Tweet or image is located. For this, the point
geometries of Tweets and images are intersected with the MSOA and wards polygons, and
their codes added to the Tweet and image metadata. This leaves 6,257,702 Flickr images
and 3,585,742 non-bot Tweets for further analysis.

2.2.1. Semantics with Spatial TF-IDF

In order to aggregate semantics of individual posts for an area such as MSOAs,
this study builds on previous work [20,53], and uses a controlled dictionary and lexical
matching approach. The controlled dictionary contains terms relating to activities, elements,
and qualities of places. For use in this study, the original three sets were combined by
stemming the terms (using the NLTK Porter stemmed) and removing duplicates, resulting
in 470 terms (compare terms_stemmed.txt).

Next, Python scripts ({Flickr, Twitter}BuildTermVectors.py) parsed, tokenized, and
stemmed the Tweet text field and the concatenated Flickr image title, description and
Flickr tags fields for matches with the dictionary terms. Any found terms were added to a
term vector for each individual Tweet or Flickr image metadata.

To find out which terms describe an (administrative) area particularly well, this
analysis implements the well-known TF-IDF measure to identify terms, and investigates
whether their descriptiveness is local or global by adopting the spatial TF-IDF analysis
as described by [29], distinguishing between a global TF-IDF (all areas are used in the
calculation) and local TF-IDF (only the neighboring areas are used). A geosocial sensor
useful for local planning should be able to pick up local signals from geosocial media.
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Thus, if a term has a high TF-IDF score in an administrative area, it can be interpreted to be
descriptive (called semantic uniqueness in [29]) of that area because it does not appear in
many other areas. If the global TF-IDF score is high, it is descriptive of London. If the local
TF-IDF score is high, it is descriptive for that neighborhood.

The Jupyter notebook TF-IDF_computation.ipynb uses the SciKit-learn library to com-
pute global and local TF-IDF scores. In total, 4,656,821 Flickr images have at least one found
term, compared to 2,583,022 Tweets. Then TF-IDF_analysis.ipynb compares the top-ranking
(i.e., most descriptive) 5 terms per MSOA, by following these steps for both global and
local TF-IDF:

1. Find Top-5 terms per MSOA (i.e., rank terms according to TF-IDF scores per MSOA
and choose the five highest).

2. Count frequencies of all terms being in an MSOA Top-5 and then sum the reverse of
those ranks (i.e., ranked first counts as a score of 5, ranked second as 4, etc.), to rank
the terms according to their frequency of appearance in the MSOA Top-5.

3. For the 5 terms ranked highest in step 2, look up their global and local scores in
each MSOA.

4. Compare the global and local TF-IDF scores of those overall top-ranked terms.

Step 4 uses the stats module from the SciPy package to compare the two matched
samples: First, to measure how well global and local TF-IDF scores agree, i.e., a correlation
analysis using Spearman’s rho, Wilcoxon signed rank, and Kendall–Tau. Second, to test
whether global and local TF-IDF scores are significantly different (not belonging to the
same population), i.e., a paired z-Test (assuming normality because of large sample size).

2.2.2. Sentiments from Geosocial Media

One facet of geospatial semantics are sentiments expressed in geosocial media. A
manual investigation of Flickr metadata showed that only a minority of textual content
expressed sentiments, and therefore this study focuses on Twitter data. Ref. [54] identified
several sentiment analyzers (OpinionLexicon, SentiStrength, SO-CAL, AFINN, VADER) as
similar in performance for geosocial media, while [55] identified differences in performance
over various data sets. The performance of labMT [56] is similar to VADER [37].

Taking into account license restrictions, active development, and results from [57], this
study tests three approaches: TextBlob as simple baseline, sentiment140 with TF-IDF and
logistic regression (TF-IDF+LR from hereon) as example for word-embedding approaches,
and the Python implementation of VADER [58] as an example for rule-based lexical ap-
proaches that performed well in [54]. The translation of output scores into sentiment classes
initially follows the suggestions in the documentation and literature.

To test the performance of the sentiment analyzers, a random sample of 10,000 Tweets
was fed to each classifier. From the result set, a stratified sample of 500 of each sentiment
class (negative, positive, neutral) was manually evaluated (compare sentiment_computation.py).
Because the performance evaluation of the classifier is not the objective of this work, a
single rater is deemed sufficient. Based on the outcomes, the actual sentiments for the
Twitter data are computed.

The individual sentiment scores are aggregated using the arithmetic mean at the
MSOA and ward level. This analysis can be found in the sentiment_analysis.ipynb.

2.2.3. Sentiments and Socio-Demographic Indicators

The results from spatial TF-IDF and sentiment analysis were then examined for
correlations using Spearman’s rho with the census variables in the following Table 1 (all
similar to [31]; for details, see notebooks mentioned in Section 2.2.2):
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Table 1. Census variables used.

Variable Explanation

age_0-15_perc
age_16-29_perc
age_30-44_perc
age_45-64_perc

age_65_perc

Percentage of that respective age group in residential population

qual_4min Percentage of highest level of qualification (Level 4 qualifications and above)
hh_1p_perc Percentage of single-person households
hh_cpl_perc Percentage of two-person households

hh_cpl_kids_perc Percentage of two-person households with children
BAME_perc Percentage of Black, Asian, and Minority Ethnic residents

The assumption is that demographic variables could reflect and impact on living con-
ditions and thus indirectly on detectable sentiments. Additionally, the analysis examined
correlations with the IMD for 2019. Because the IMD are reported at the Lower Super
Output Area (LSOA) level, they were aggregated (arithmetic mean) at the MSOA level.

The last socio-demographic variables are the super-groups found in the LOAC. The
LOAC groups residents according to multiple socio-demographic variables at three levels:
Super-groups, groups, and sub-groups. This analysis starts with the 8 super-groups:
Intermediate Lifestyles, High Density and High Rise Flats, Settled Asians, Urban Elites,
City Vibe, London Life-Cycle, Multi-ethnic Suburbs and Ageing City Fringe. These super-
groups allow a more holistic perspective on socio-demographics than individual variables.
They are available at Output Area (OA) and ward level. Aggregating Tweets at OA is not
desirable, because too many OAs have a Tweet count too low for robust statistical analysis.
Although there are fewer wards than MSOA, they are comparable in scale, and using both
MSOA and wards also enables us to check for outcomes for the MAUP. To operationalize
the LOAC super-groups, this study determines the predominant (i.e., the most populous)
super-group per ward, and the Shannon entropy diversity index to describe how varied
the ward is in terms of super-groups.

To examine whether the wards with different predominant super-groups are also
different in terms of sentiments, the average sentiments are compared for one continuous
dependent variable (sentiment score), one discrete independent variable (predominant
super-group) and 8 independent samples (the super-groups). If homogeneity of variance
and normality do not hold, the analysis uses the Kruskal Wallis test, otherwise a one-
way ANOVA.

This was followed by ordinary least squares (OLS) linear regression modeling for
predicting sentiment scores at the MSOA level based on selected variables. The OLS
modeling is the first step in line with the paper’s secondary objective of providing a
baseline analysis, before more advanced methods are applied. The hypothesis here is that
lower IMD corresponds to lower unhappiness, and that some socio-economic variables or
LOAC super-groups might predict sentiment scores. If appropriate, the analysis will model
sentiments using Geographically Weighted Regressions if there is spatial autocorrelation in
the OLS regression results (compare [59]).

2.2.4. Spatial Distributions and Changes over Time

Concerning TF-IDF analysis, while nominal variables such as terms can be represented
as dummy variables in spatial clustering, the results are not as reliable, and the number of
terms is high. Thus, all investigations used the aggregated (overall) Top-5 terms that can
be found in both Flickr and Twitter, and considered both local and global ones, starting
with a visual exploration of differences in scores, followed by a spatial analysis of clusters
using local Moran’s I, using the PySAL library.

The analysis then used the same approach to examine spatial clusters of positive and
negative sentiments through local Moran’s I, on both ward and MSOA level to check for
the influence of MAUP. Finally, this study investigates the changes over time in sentiments
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between time periods in terms of percentage of change, followed by a spatial clustering
analysis of those changes (again Local Moran’s I). All analysis of spatial and temporal
patterns can be found in spatial_temporal_analysis.ipynb.

3. Results
3.1. Criteria for a Geosocial Sensor

The requirements for a geosocial sensor resemble those of existing remote sensors
and other forms of data captures: first, we need to know how when and where the sensor
can pick up any data at all, i.e., which parts of the population use social media when and
where. Second, we need to know which wavelengths we can detect and which not, i.e.,
what information we can find, extract, or infer from detected social media content. Third,
we need to know the precision and accuracy of the signals that it picked up, i.e., how
reliably we can classify social media into particular topics etc. More than a decade ago,
none of these requirements were fulfilled, because the uncertainties were simply unknown
and unquantified. Building on the literature, it is possible to assess how well the current
situation fulfills the necessary requirements for a geosocial sensor, forming the basis for a
discussion in Section 4. The assessment’s structure follows established quality measures.

A recurring theme is the heterogeneity and bias in geosocial media data: contrary
to traditional data collection, geosocial media are an opportunistic data collection ap-
proach [60] that does not guarantee a certain level of coverage and quality (compare [61]
for a recent overview of quality assessment). This main issue of coverage (or represen-
tativeness, or completeness) concerns all dimensions (spatial, temporal, demographic).
We can retrieve Tweets only from locations where people who use Twitter are, and who
have opted into the location feature. This double limitation renders Twitter insufficient
for use as the only data source, even if numbers are high enough for statistical inference
and hypothesis testing. A lack of spatial and temporal coverage can be addressed by
comparing the geosocial data with other data sources and applying post-stratification
measures. Demographics is more difficult because we still do not know enough about
geosocial media users. Biases can be estimated based on the style of Tweets or location.
Since we can expect for the future that a larger share of the population will be active on at
least one social network platform, if only because younger generations grow up with them
and likely to continue using them, we can try to address demographic biases by combining
as many platforms (sources) as possible. Still, issues of demographic coverage always need
to be considered, and are likely to reduce fitness-for-use in many cases.

Another problem for using geosocial media in evidence-based policy making is their
volatility, or lack of guaranteed availability: geosocial media are hosted on privately-
owned platforms with often restrictive and changing ToS. This is further complicated from
a reproducible research point of view since users can delete content. While this issue could
be mitigated by scraping and storing as much content as possible, such data management
strategy often violates not only ToS but also privacy laws and ethical research standards.
At the moment, there seems to be an unsolvable issue with availability and volatility. As
long as this issue remains, geosocial media cannot become the only, or maybe not even
primary, source of data.

Any quality issues of consistency (or comparability between data subsets) are partially
related to the internal volatility (e.g., content fields change like Twitter’s text field), but
also the external volatility with new platforms emerging and others declining. One could
argue that this has stabilized in the past years. However, a motivation for this research
is the scarcity of longitudinal studies. Concerning comparability and consistency, more
research is needed to understand this better, but this is often hindered by the mentioned
lack of reproducibility [62].

Accuracy (positional accuracy for time and space, and thematic accuracy for content)
and the related concept of credibility (often linked to lineage or provenance) have been a
focus of much research. Accuracy is least of a problem for the temporal dimension because
the time stamp of geosocial media posts is usually reliable. Furthermore, the related quality
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issue of timeliness (or latency) forms less of a problem since most geosocial media are
published in (near) real-time. Thematic accuracy (e.g., whether a Tweet is on-topic and
truthful) certainly is an issue, but also depends strongly on the research interest. However,
sentiment analysis is still prone to miss human irony or more complex negations (e.g., a
sentence about many negative things preceded by a “despite” or similar) and ambiguous
or conflicting emotions. Positional accuracy is a difficult issue at finer granularities because
instead of using coordinates, many geosocial media now use place-names at sometimes
coarser granularities (compare Section 4). Geographic resolution and temporal accuracy
need to match research interest. Issues of accuracy can be addressed with proper methods
such as probabilities for location and topic or theme, and manual validation whether we
can detect what we are interested in.

Overall, uneven coverage, issues of availability, and consistency seem the most serious
problems, while accuracy and credibility turned out to be less of a problem than originally
thought years ago. However, a related problem is that of noise, or spam and advertisements,
which make it difficult to find the needle in the haystack. The following sub-sections
address several of these issues.

3.2. Geosocial Semantics and Socio-Demographic Indicators

The TF-IDF investigation of Flickr terms revealed that from the overall top-ranking
five terms, four are present in both global and local results (park, road, station, square), with
hill only being in the global overall Top-5, and garden only being in the local overall Top-5.
This shows a remarkable similarity between terms that are descriptive at the very local
level (an MSOA and its neighbors), and the entire study area level.

This is also reflected when looking at correlations between local and global TF-IDF
scores: all Spearman’s rho at the level of MSOAs are significant at p < 0.01 and strongly
positively correlated. The non-parametric Wilcoxon test reveals that we can reject for more
than half of the MSOA that they come from the same distribution at the p < 0.01 level, and
fewer with the parametric T-Test (full results in Flickr_TF-IDF_stats_glocal.csv).

Comparing overall summed ranks of terms with a Kendall–Tau test shows a strong
positive correlation (tau = 0.89) that is statistically significant (p < 0.001), even after remov-
ing terms that have neither local nor global Top-5 ranks (tau = 0.87, p < 0.001).

For Twitter, there are higher correlations between local and global TF-IDF scores (see
Twitter_TF-IDF_stats_glocal.csv) than for Flickr, and the overall top-ranking five terms are
the same for the local and global TF-IDF analysis (love, day, new, park, road), although the
terms themselves are clearly different from Flickr. Kendall–Tau results for overall Top-5
term scores are similar to Flickr (tau = 0.90 for all terms, and tau = 0.86 for those with Top-5
rankings; p < 0.001 for both).

In summary, there are no meaningful differences between global and local TF-IDF
scores for Twitter data, and only minor differences in Flickr caused by a few terms, neither
of them suggesting further analysis. However, Flickr Top-5 terms are all about geographic
features, compared to only two for Twitter. Together with Flickr’s overall higher share of
data with coordinates, this supports the assumption that there is more explicitly geographic
information on Flickr than on Twitter.

The last analysis step is to investigate linkages between the found terms and socio-
demographic indicators. This step considers only the two overall top-ranking terms shared
by Flickr and Twitter (park and road) as candidates. While roads may be related to traf-
fic noise, air pollution and road accidents and have an impact on expressed sentiments,
the ubiquity of roads throughout the study area suggests investigating park instead. The
uneven distribution of actual parks in the study area means that the term park has the
potential to reflect underlying socio-economic conditions [63]. However, the analysis found
no correlations between any of the socio-demographic variables, and an OLS regression
analysis produces no useful models or informative output. Likewise, comparing (correlat-
ing) local and global park scores with IMD 2019 does not show any meaningful correlations
(all values < |0.1|), nor statistically significant ones (all p > 0.05).
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3.3. Sentiments and Socio-Demographic Indicators

Moving to sentiment analysis, the performance of the Textblob sentiment analysis is
overall not impressive and its accuracy is low. Table 2 shows that the TF-IDF+LR using the
sentiment140 training set also has a lower accuracy (55%) than expected. The main cause
seems to be neutral Tweets that are classified as negative or positive, even after adjusting
the probability thresholds.

Table 2. Validation of initial TF-IDF+LR sentiment classification.

Algorithmic Classification
Manual Classification

Grand Total
Negative Neutral Positive

Negative 292 177 31 500
Neutral 20 381 99 500
Positive 0 192 308 500

Grand Total 312 192 308 1500

VADER initially did not recognize certain emojis. Unfortunately, even after fixing this
(vaderSentiment_mod.py), its accuracy is only 68%, like TF-IDF+LR mostly due to neutral
Tweets being classified as either positive or negative (compare Table 3 below).

Table 3. Validation of initial VADER sentiment classification.

Algorithmic Classification
Manual Classification

Grand Total
Negative Neutral Positive

Negative 293 191 16 500
Neutral 7 491 2 500
Positive 7 256 237 500

Grand Total 307 938 255 1500

An important outcome of the manual evaluation is that despite the brevity of Tweets,
it is often impossible to define one clear sentiment per post, because many express both
positive and negative sentiments, e.g., “it was a great time in London, so sad to leave” or
“what a great party, totally wasted now”. Fortunately, a Tweet classified as either positive
or negative is very rarely the opposite.

The final sentiment analyzer used in this study includes only English-language Tweets
and combines both classifiers, using threshold values gained empirically from exploring
the results of the manually validated samples:

Any Tweet with a VADER score lower than −0.1 and a TF-IDF+LR positive sentiment
score lower than 0.25 is classified as Negative (value = 0), while any Tweet with a VADER
score higher than 0.1 and a TF-IDF+LR positive sentiment score higher than 0.90 is classified
as Positive (value = 2). Any remaining Tweets were classified as neutral or unclear Tweet
(value = 1).

The combined rules (see Table 4) provide a notably improved accuracy of 83% through-
out the samples, although a fifth of those classified as positive are neutral, and to a lesser
extent vice versa. Accuracy and precision are highest for negative predicted sentiment and
lowest for positive predicted sentiment. Because the classes are not evenly split in reality
(as opposed to the stratified validation sample), actual accuracy might be lower. However,
it will still be higher than without combination, and is considered sufficient.
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Table 4. Validation of combined sentiment classification.

Algorithmic Classification
Manual Classification

Grand Total
Negative Neutral Positive

Negative 446 52 2 500
Neutral 14 411 75 500
Positive 1 107 392 500

Grand Total 461 570 469 1500

The results for non-bot, English-language Tweets that originate from within an MSOA
are: 40,107 negative, 2,595,365 neutral and 618,490 positive. The low number of negative
Tweets is surprising, even when taking possible misclassifications as neutral into account.

The analysis used the aggregated (mean) sentiments per MSOA (thus, higher scores
mean more positive sentiments). Concerning correlations with the socio-demographic
variables, there are few notable correlations (listing only those with a coefficient >= |0.1|):
negative with children and teenagers (−0.13), young adults (−0.1), and BAME percentage
(−0.22); positive with older adults (0.1), higher qualification (0.12), households of couples
(0.14), and house prices (0.13). These are not surprising and are all statistically significant
(p < 0.01).

There is small negative correlation with IMD 2019 scores, i.e., higher sentiment scores
mean lower IMD index (Spearman’s rho −0.13, Pearson r −0.12, both at p < 0.001). However,
again the correlation seems too small to warrant further investigation or modeling.

The modeling of average sentiment value with OLS regressions uses the same variables
as [31], but has very low R2-scores (R2 = 0.05). Even after removing MSOAs with low
Tweet counts and focusing on core socio-demographic covariates, the R2-values do not
increase. Another option uses the original floating point sentiment scores instead of the
rule-based three classes and calculates a negative Tweet ratio, i.e., the ratio of negative
Tweets vs. All Tweets, to check whether the low absolute count of Tweets has an influence.
However, overall, the outcomes do not improve significantly, with all R-squared for OLS
regression remaining below 0.1. Results are thus not very encouraging, and do not suggest
continuation with Partial Least Square Regression or Geographically Weighted Regression.

Looking at the LOAC, Table 5 below shows that wards where super-group C (Settled
Asians) is predominant have the lowest average sentiment score, the highest negative
Tweet ratio, as well as the lowest Shannon entropy score (thus being comparatively homo-
geneous). Super-group H (Ageing City Fringe) wards have the highest sentiment average
but comparatively low Shannon entropy. Super-group D (Urban Elites) wards have the
lowest negative Tweet ratio, but this could be a result of super-group D being prominent in
central locations, which might coincide with a high number of (positive) tourist Tweets.
Wards with predominant super-groups E (City Vibe) and F (London Life-Cycle) have higher
Shannon entropy and are thus comparatively diverse, and also have relatively high average
sentiment scores (for full per-ward statistics, see sentiments_groups_wards.csv).

Table 5. Predominant London Output Area Classification (LOAC) groups and sentiments.

Predominant
Group

Tweet
Count

Negative Tweet
Count

Negative
Tweet Ratio

Average
Sentiment

Average VADER
Score

Avg TF-IDF+LR
Positive Score

Shannon
Entropy

A 1012.54 19.42 0.02 1.18 0.33 0.74 0.95
B 7927.45 99.54 0.01 1.17 0.30 0.75 1.02
C 1849.19 42.72 0.02 1.15 0.29 0.73 0.74
D 36,185.93 348.89 0.01 1.18 0.33 0.76 0.94
E 4491.02 56.06 0.01 1.18 0.32 0.76 1.12
F 3277.74 53.75 0.02 1.19 0.34 0.75 1.16
G 2125.75 31.34 0.02 1.17 0.31 0.74 0.95
H 1009.00 13.14 0.02 1.19 0.35 0.75 0.87
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When testing whether wards with different predominant super-groups have also
different average sentiments, Kruskal–Wallis and one-way ANOVA test results are all at
p < 0.001, providing initial evidence that average sentiments between wards with different
predominant super-groups have significantly different values. Post-hoc Dunn and Conover
tests using Holm correction show the following differences between super-groups at the
0.01 significance level:

Negative Tweet Ratio: D from all others
Average Sentiment: C from E, F and H
Average VADER score: A from B, C, F and H
Average TF-IDF+LR positive score: C from D, E and H
Shannon entropy: C from A, B, E, F and G, and pairings D-F, E-H and F-G
In summary, super-groups C and H are more frequently different in pair-wise compar-

isons than others, except for Shannon entropy. Super-group D is notably different only in
TF-IDF+LR sentiments and overall negative Tweet ratio.

Thus, wards with different predominant super-groups show differences in sentiments,
with C having consistently low scores and high negative Tweet ratio. However, the overall
differences are so small that any modelling is not promising.

3.4. Geosocial Semantics in Space

This section compares the spatial distribution of park and road TF-IDF scores at local
and global levels between Flickr and Twitter.

A visual exploration of differences between all global and local Flickr Top-5 terms
does not show any clear spatial patterns. For Twitter, the spatial distribution between local
and global scores also seems very similar, as can be expected from the high correlation
between the two.

A visual analysis in Figure 1 of the differences between Flickr and Twitter global and
local scores for park shows a specific spatial pattern, but global park scores seem similar
between Flickr and Twitter, while local scores show larger differences between Flickr
and Twitter.

Concerning road, there are major differences between Flickr and Twitter at the global
(London-wide) level for central and peripheral MSOAs: In central MSOAs, road as descrip-
tive term is more relevant (higher TF-IDF score) for Twitter than for Flickr, while in the
periphery this is reversed (higher TF-IDF scores for Flickr).
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A quantitative spatial cluster analysis of the common terms park and road has incon-
clusive results. A global Moran’s I analysis does not find statistically significant clustering
or dispersion. A local Moran’s I (see Figure 2 below) finds significant hot and cold spots of
differences in TF-IDF scores, but most clusters consist of few MSOAs, and the hot and cold
spots are scattered throughout the study area. An investigation whether park is correlated
with urban green might be futile because there are many place names with “Park” in
their name, which may have found their way in the geosocial media text and metadata,
and thus are “correct” but due to changing urban landscape do not refer to any actual
green anymore.
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3.5. Spatial Distribution of Sentiments

As for the spatial distribution of sentiments at the ward level, only global Moran’s
I for VADER is clearly clustered (I = 0.066, p < 0.01), as is the Shannon entropy score for
group diversity (I = 0.129, p < 0.01), while TF-IDF+LR (I = 0.001, p = 0.43) and derived
overall sentiment score (I = 0.014, p = 0.28) are not.

Figure 3 shows that for local Moran’s I, while sentiment scores seem to be somewhat
higher in the periphery than in the center, clear patterns are difficult to distinguish. The
diversity (or homogeneity) of LOAC super-groups at ward level is more clearly patterned,
but apart from a clear homogeneous positive cluster in the north west of the study, there
are no clear patterns to distinguish.

A visual comparison between the results for wards and MSOA in Figure 4 shows that,
although wards and MSOA are not that different in size and areas, the MAUP still leads to
very different outcomes.
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3.6. Developments over Time

One problem for an analysis of changes over time is to find sensible periods to compare.
While it may be tempting to use the entire data set and calendar years, this analysis uses
time periods similar to those in [31], i.e., 1 October until 31 May, because the omission of
months June to September allows to avoid very large events which often happen during
the summer months, as well as minimize the effects of tourist peak season. Thus, there are
three periods (P1-3) to investigate differences in sentiments (absolute scores, negative Tweet
ratios) between periods on an MSOA basis, comparing P1- > P2, P2- > P3 and P1- > P3.

Overall, as Table 6 below shows for wards with more than 10 Tweets, there is a
slight increase in sentiment scores from P1 to P2, while there is not much change from
P2 to P3. We also see a pronounced decline in number of Tweets from P2 to P3, possibly
due to a change in Twitter API that stopped supporting precise GNSS coordinates (see
also Section 4). While it may be counter-intuitive that some MSOA report an increase in
sentiment scores yet also a rise in negative Tweets ratio, this can be explained by more
positive Tweets (i.e., a polarization of sentiments).
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Table 6. Sentiments and their changes (in percentage points) per ward over time periods. Sent = Sentiment, P = time period,
NTR = negative Tweet ratio.

Count P1 Count P2 Count P3 Sent P1 Sent P2 Sent P3 Sent P1 -> P2 Sent P2 -> P3 Sent P1 -> P3 NTR P1 -> P3

mean 1508.01 1137.16 716.90 1.15 1.20 1.20 4.58 0.32 4.70 0.11
std 10,805.94 8773.74 4822.94 0.06 0.08 0.08 7.10 7.33 7.91 1.56
min 12.00 8.00 5.00 0.94 0.91 0.90 −25.00 −25.78 −26.85 −1.00
25% 155.00 121.00 84.00 1.11 1.15 1.15 0.57 −3.27 0.50 −0.64
50% 373.00 291.00 197.00 1.15 1.20 1.20 4.31 0.32 4.43 −0.16
75% 902.00 614.00 472.00 1.18 1.24 1.24 8.27 4.08 8.70 0.20
max 259,828 212,996 112,079 1.63 1.53 1.57 32.26 38.46 37.84 13.43
total 942,507 710,722 448,063

The detection of change clusters requires using the full dataset (including wards
with fewer than 10 Tweets), since otherwise there are too many “islands” (areas without
neighbors). Figure 5 shows the local Moran’s I for changes in both wards and MSOA.
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A few clusters improved in sentiment while others decreased. No clear patterns are
discernible. To check for the occurrence of MAUP, the analysis also computes clusters of
changing sentiments again at ward level.

The outputs shown in Figure 6 are distinctly different from those of the MSOAs,
suggesting a strong MAUP influence. A visual comparison with the predominant LOAC
super-groups in Figure 7 does not suggest any clear patterns. Overall, the results do not
encourage a deeper analysis of spatio-temporal patterns with more advanced methods.
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4. Discussion and Conclusions
4.1. Discussion of Results and Study Design

Section 1.2 presents several studies that are critical about the explanatory power of
geosocial media and their suitability to act as substitutes for established socio-demographic
research data, while other studies report findings that link geosocial media with mobility,
socio-demographics, events and other (urban) functions. However, these studies often
investigate specific cities for specific time periods, and it remains to be demonstrated that
any results are not idiographic to the case study but applicable to different periods and
transferable to other geographic areas. While complete transferability of data-dependent
methods and outcomes is likely to remain elusive because human perception and cogni-
tion varies over time and space, finding patterns on which methods and outcomes are
transferable when and where remains an objective of scientific inquiry.

Unfortunately, many of the studies are not very reproducible [62,64], although re-
producibility improves for more recent studies. Some of the issues stem from the ToS of
the geosocial media platforms, which frequently prohibit sharing of data in general, or
increasing restrictions on accessing their API (e.g., Instagram). In other cases, the entire
platform disappeared (e.g., Panoramio). Often, however, the studies also provide insuf-
ficient information on the data collection (exact queries, code) to enable recollection of
the data.

This research addresses these issues by examining an area that has been in the research
focus before (London), using a different data set but providing all necessary information
to recreate it, and using standard methods that are accessible to every researcher. The
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paper investigated the potential of a geosocial sensor to detect issues that are relevant to
urban planning and smart city strategies, building on existing work and theory-informed
hypotheses instead of a purely data-driven approach looking for patterns. Unfortunately,
the results fail to establish clear and general links, but thereby support similar critical views.
This study argues that in science, negative results are also valuable news.

The results further show that regarding quality criteria for a geosocial sensor, geo-
graphic coverage and representativeness remain the most serious issues. Overall, Flickr
continues to be the richer source for geographic information. Even for a global city such
as London, with a comparatively high digital information density, there are many ad-
ministrative areas without enough Tweets for reliable statistical analysis. This issue is
confounded by a biased user base and demographics, the high level of noise, and a skewed
frequency of contributions per user. An exploratory investigation of the most frequent
contributors (after accounting for bots) showed that a few contributors tweet so frequently
that any changes in their location can be highly influential, if not deterministic, for an
entire administrative unit. The same is true for bulk uploads from single users of images
on Flickr, which are not always easy to detect if their location is not identical. Further, even
after removing bots and major advertisement accounts, there were still advertisements
and other regular reporting found in the message corpus. Many of the more interesting
and information-rich Tweets were so ambiguous in their expressed sentiments that even
human manual annotation will result in low interrater reliability when assigning a single
sentiment. It is not guaranteed that better pre-processing and improved natural language
processing can solve this. For example, while lemmatization of keywords (instead of
stemming) might create more semantically meaningful output that is easier to validate
manually, the original terms used in this study are provided without context and can have
multiple meanings. This shortcoming requires using differently created vocabularies with
lemmatization. However, lemmatization may reduce recall, which is not desirable during
the initial stage of the investigation. Future work could benefit from improved entity
recognition and using n-grams instead of unigrams.

Another limitation is the difference of covered time periods in the data sets. The
census data from 2011 is the most recent available. The update frequency of census data is
a compromise between ensuring fitness-for-use of the data and the effort to collect it. While
many cities undergo rapid transformations, a difference of 6 to 9 years between census data
and social media data is not unusual in the literature but is another motivation to explore
the utility of novel data sources to support more traditional data collection. To address the
issue in this study, the IMD from 2019 was included.

4.2. Implications and Outlook

Ultimately, this study was not able to establish clear links between geosocial semantics
and socio-demographic characteristics at the ward or MSOA level. Some tentative findings
on certain LOAC super-groups or specific socio-economic variables are smaller puzzle
pieces that add to but do not yet reveal the bigger picture.

Given these considerations, a geosocial sensor could still contribute to several concrete
QoL indicators directly or indirectly. The following Table 7 lists a cross-section of the
Organisation for Economic Co-operation and Development (OECD) indicators [65] and
their adaptation by the Swiss Federal Statistical Office (SFOS) [66] and the signals that a
geosocial sensor could pick up.
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Table 7. Potential quality of life indicators for geosocial sensing.

SFOS OECD Geosocial Sensor

Traffic noise -/- Mentions of traffic noise
Air quality Air quality Mentions of air quality

Violence Homicides
Feeling safe at night Mentions of violence

Burglaries -/- Mentions of burglaries
Road accidents -/- Mentions of road accidents

Nationalities -/- Language of Tweet, user profile
information

Cultural demand -/- Mentions of wishes to visit cinemas,
theaters, museums, etc.

Cultural offer -/- Mentions of visits
-/- Recreational green space Mentions of park visits or related activities

Placing the results in context, ref. [37] used the labMT approach for health and sup-
ports the notion that Twitter sentiment is difficult to link with real-world characteristics.
Comparisons with [54] show that also at ward level all sentiments are positive, and there
are few patterns visible. Pearson’s r at ward level is slightly positive for well-being score
(0.146) and household income (0.211). These are slightly stronger correlations than in
this study.

Further, the share of population that uses publicly available geosocial media is still
too small and not representative enough for a geosocial sensor to work reliably. There
is much noise obscuring the signal, and filtering it out sufficiently is a delicate balance
in order to retain most valuable information (which might appear as outliers). Lastly, an
exploratory analysis of the content also shows that even in short messages like Tweets,
emotions and opinions are complex, context-dependent, and ambiguous. Coupled with
the fact that it is often difficult to determine whether an emotion is related to the place from
where the tweet originates or not, it seems advisable to remain critical of fully automated
approaches to processing geosocial media and extract meaning from them. In the context
of data-driven science, this might suggest searching for more data sources. However,
ref. [67] argue convincingly that the uncertain point observation problem is a fundamental
challenge for any analysis involving point data with the objective to relate those to areal
data like administrative units. Its main causes are diverging true contextual units (such as
the relation of a particular sentiment with the geographic surroundings) and measured
contextual units (i.e., placing the point into a ward or MSOA). They suggest distinguishing
local from non-local users, which might raise new issues of representativeness problematic
for some use cases.

Thus, for the time being, the role of geosocial media should still be seen as mostly
supportive, i.e., supplanting other data and evidence, and possibly enabling more col-
laboration and participation in data collection (with all the attached problems related to
sampling bias). Untargeted, passive sensing seems to be of limited utility, regardless the
large volume of the collected data. This fact is further compounded by the situation that
currently Twitter remains the only feasible platform for most research, because Facebook
never was sufficiently accessible, Instagram has restricted access for research, and the
profound recent changes to the Flickr ToS might speed up its decline as a platform for
casual (non-professional) users, further questioning its utility for future research. There
have been concerns that the removal of the “precise geotagging” feature, i.e., coordinates
from the smartphone’s GNSS unit, from Twitter would reduce this remaining source’s
utility, but ref. [68] argue that the impact is likely to be limited, because many precise
coordinators came from third-party platform integrations (like Instagram) already be-
fore this change. However, this data collection shows a significant decline in retrieved
(georeferenced) Tweets in the past year.

Despite these limitations, this paper contributes to our understanding of the rela-
tionship between geosocial media usage and the reality on the ground, as expressed in



ISPRS Int. J. Geo-Inf. 2021, 10, 52 20 of 22

socio-demographic indicators. Without such understanding, the use of geosocial media in
evidence-based policymaking, decision-making and urban planning can neither reach its
full potential, nor can we detect or prevent its misuse. The presented work should support
further, comparative analysis with more sophisticated methods and larger data sets. Work-
ing with probabilities for location and theme or topic and establishing comparability and
consistency by longitudinal and latitudinal research seem to be sensible next steps.

For example, further work might investigate whether established techniques such as
iterative proportional fitting [69] based on geosocial media instead of micro survey data
can reproduce successful creation of smaller areal units, using the different available scales
for London (from LSOAs to MSOAs to wards) to validate the findings. Future studies could
address the uncertain point observation problem by using probability fields to represent
the likelihood of point locations and associated semantics. However, this would require
performant computational infrastructures.

Supplementary Materials: Full results and code are shared in a GitHub repository at https://github.
com/foost/GeosocialSensorLondon.
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