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Abstract: Lacking indoor navigation graph has become a bottleneck in indoor applications and
services. This paper presents a novel automated indoor navigation graph reconstruction approach
from large-scale low-frequency indoor trajectories without any other data sources. The proposed
approach includes three steps: trajectory simplification, 2D floor plan extraction and 3D navigation
graph construction. First, we propose a ST-Join-Clustering algorithm to identify and simplify
redundant stay points embedded in the indoor trajectories. Second, an indoor trajectory bitmap
construction based on a self-adaptive Gaussian filter is developed, and we then propose a new
improved thinning algorithm to extract 2D indoor floor plans. Finally, we present an improved
CFSFDP algorithm with time constraints to identify the 3D topological connection points between
two different floors. To illustrate the applicability of the proposed approach, we conducted a real-
world case study using an indoor trajectory dataset of over 4000 indoor trajectories and 5 million
location points. The case study results showed that the proposed approach improves the navigation
network accuracy by 1.83% and the topological accuracy by 13.7% compared to the classical kernel
density estimation approach.

Keywords: indoor space; navigation graph; low-frequency trajectory; location-based services

1. Introduction

Humans spend nearly 87% of their time in enclosed indoor spaces, e.g., office buildings,
shopping malls, conference centers, airports and metro stations [1]. As the main living area, the
indoor location-based services (LBS) have received increasing attention in the field of geograph-
ical information science, such as indoor navigation, personalized information recommendation,
etc. [2,3]. Well-designed and accurate indoor navigation graphs are the foundational data
infrastructure to support various indoor LBS applications and studies [4–6].

At present, the navigation graphs of complicated indoor spaces are constructed mainly
by handmade field measurements, which are labor intensive and time consuming. Al-
though researchers are aware of the great value of automated indoor map construction ap-
proaches, only a few approaches been proposed and implemented. For example, CrowdIn-
side [7], JustWalk [5], iFrame [8] and BatMapper [9,10] adopt smartphone sensor data to
reconstruct indoor floors. This type of collected data usually includes high precision ac-
celerometers, magnetometers, gyroscopes and so on. The processing difficulty is relatively
lower. However, the users must collect the sensor data to construct motion traces in real
time by using specialized equipment. Hence, some research has proposed alternative
approaches to extract indoor maps from an indoor building data model, such as IFC,
CityGML or CAD [11,12]. I-Git [13] belongs to this type of study, as it may generate a
graph-based indoor network, including the floor level and nonlevel paths from IFC data
models. However, obtaining a large-scaled indoor data building model has a high cost. In
addition, the owners of indoor spaces are reluctant to share their floorplans in public for
privacy reasons.
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Recently, owing to the development of positioning technologies (e.g., GPS, Beidou,
WIFI, RFID) and the development of online location-based services, crowd-sourcing trajec-
tories have ushered in explosive growth in this research area. This growth motivated some
researchers to automatically generate maps by using trajectories, such as road intersection
reconstructions [14], lane-level change detections [15], CLRIC [16] and MLIT [17] road
construction systems. However, recent studies have mainly focused on constructing the
outdoor road network. To the best of our knowledge, relatively few studies were done
on generating indoor navigation graphs from massive indoor trajectories, that have better
timeliness. The acquisition cost is lower, and it may effectively avoid privacy problems.
This method is suitable for popularization to obtain large-scale navigation graphs of in-
door buildings. However, automated generations of navigation graphs of indoor space
from crowd-sourcing trajectories are very different from road network construction in an
outdoor space and face more challenges [5,9]. The main reasons for these challenges are as
follows. (1) Indoor spaces usually have complicated 3D topological structures consisting of
multiple types of indoor geographical entities, such as doors, windows, elevators, corridors,
stairs and so on, that are far more complex than topological road networks of outdoor
spaces [4]. (2) The movements of moving objects in indoor spaces are limited by more
topological constraints than the outdoor spaces. The indoor trajectories are composed of
mixed moving modes, which increases the difficulties in generating navigation graphs. For
example, indoor objects may move freely in the regions of indoor spaces such as rooms
and lobbies. They are also allowed to move along road constraints such as corridors,
stairs and evacuation routes [18]. (3) The position errors induced by an indoor positioning
system are usually larger than outdoor spaces with global navigation satellite systems, e.g.,
GPS, BeiDou, and GLONASS. Technical trials have demonstrated the capability for WIFI
to provide a position accuracy of 3–5 m, which is far less accurate than centimeter-level
position accuracy via GPS in the outdoor spaces. This issue directly led to the realization
that typically generated navigation graph solutions from outdoor trajectories would not
work for indoor spaces.

To overcome these problems, in this paper, we propose an automated indoor 3D
navigation graph construction approach in a multistep process by only leveraging the
large-scaled low-frequency indoor trajectories. First, we developed an indoor trajectory
simplification algorithm to reduce the impact of redundant stay points, which significantly
decrease the precision of generating indoor navigation graphs. The collected indoor
trajectories are refined to a more accurate representation of the indoor objects’ movements.
In the second step, a rasterized-based approach was proposed to implement rasterization
of indoor space using indoor trajectories and to extract a 2D indoor floor plan, including
two subprocesses: an indoor bitmap construction based on self-adaptive Gaussian filtering
and a 2D indoor navigation graph extraction. Finally, we proposed improved CFSFDP
(Clustering by Fast Search and Find of Density Peaks) algorithms with time constraints
to identify the 3D topological connection junctions between two different floors, such as
elevators, stairways and fire escapes. The contributions of this paper are the following aspects:

(1) We proposed an automated indoor navigation graph construction approach, including
three-step processing for an indoor 3D structure reconstruction. It depends only on the
large-scaled ubiquity of low-frequency indoor trajectories. Comparing to the classical
kernel density estimation approach proposed by Davies, our proposed approach
improves the topological accuracy by 13.7%.

(2) According to the characteristics of indoor users’ behavior, a novel ST-Join-Clustering
algorithm was developed to identify and simplify many redundancies of stay points in
indoor trajectories, which severely affected the navigation graph extraction accuracy.

(3) We introduced a new concept of a pixel’s neighbors binary code and proposed an
indoor trajectory bitmap construction based on a self-adaptive Gaussian filter and
then developed a new improved thinning algorithm to extract a 2D indoor floor plan.

(4) An improved CFSFDP algorithm with time constraints was proposed to identify the
3D topological connection junctions between two different floors. It was specially
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designed to choose an appropriate threshold in the complicated 3D space and can
find different shapes of density distributions of topological connection points.

(5) We evaluated our proposed approach using a real, continuous indoor trajectory,
which included 4000 indoor trajectories and 5 million location points over a period of
two days. These results demonstrate the advantages of our approach compared to
traditional approaches.

The rest of the paper is organized as follows. Section 2 presents a survey of indoor
map reconstruction methods. Section 3 illustrates the system architecture of our proposed
construction approach, and gives more details of our methodology. Section 4 reports the
experimental results and data analysis. Finally, conclusions are presented in Section 5.

2. Related Work

Existing automated indoor navigation reconstruction approaches may be categorized
into three categories according to the different input crowdsourcing datasets.

The first building floor plans construction methods adopted users’ smartphone sensor
data, which usually included accelerometers, magnetometers, gyroscopes and received
Wi-Fi signal strength values [19]. CrowdInside [20] JustWalk [5] and iFrame [8] adopted
many mathematical and image processing techniques to construct floorplans and detect
indoor entities with semantics. BatMapper used previously untapped acoustics to imple-
ment a fine-grained and low-cost floor plan construction. Its basic idea is to use acoustic
signal processing techniques to obtain accurate distance measurements to nearby indoor
objects [9,10]. Jigsaw employed crowd sensed images to generate highly accurate floor
plans [21–23]. Sense Wit introduced a concept called Nail to identify featured locations
in indoor spaces and utilize pedestrians’ traces for indoor location inferences [24]. The
bottleneck of this approach was that it needed professional mapping workers to conduct
the surveying and mapping activities with specialized equipment.

The second category directly extracted an indoor map from indoor building data
models, such as IFC, CityGML or CAD. The classical I-Git developed collective algorithms
to produce nonlevel paths for straight stairs, ramps and elevators and adopted the polygon
regularization on indoor space boundaries to trade-off between the path accuracy and the
efficiency of path production [11]. Khan proposed a multistep transformation workflow
to automatically generate an indoor routing graph from existing indoor buildings [25].
Jamali proposed an automated 3D model of indoor navigation networks, including two
main procedures: 3D building modeling and topological navigation networking [12].
However, these approaches depended heavily on pre-provided indoor structure or Building
Information Modeling (BIM).

The third important crowd-sourcing dataset for generating navigation graphs adopted
ubiquitous trajectories. However, recent studies have mainly focused on constructing road
networks in outdoor spaces, which are classified into road segment-level, road intersection-
level and lane-level networks. Many feasible and robust approaches have been developed,
such as clustering-based methods, map matching-based methods and rasterization-based
methods [26–29]. Huang proposed a robust and flexible road map generation method
by using a principal graph structure learning and tree linking strategy to a low-quality
trajectory [30]. Tang proposed an incremental road map construction method that adopted
Delaunay triangulation during the fusion process to obtain higher accuracy [31]. The
raster-based strategy is commonly used to estimate the road segments [32,33]. Some
image processing, deep residual convolutional neural networks and vision computation
techniques have been employed to extract road information [34–36]. Compared with
road segment construction, generating a road intersection mode is more difficult due to
its complex structure and low-frequency trajectories. Deng proposed a novel three-step
approach to extract the structural and semantic information of road intersections from low-
frequency trajectories [14]. Li proposed a two-step method for extracting road intersections
that identifies and merges similar dominant orientations to improve the geometric accuracy
of intersections [37]. Wang employed a simplified road network graph model to extract
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road intersections, which also determined its circular boundary and traffic rules [38]. In
addition to the basic structure of intersections, detailed traffic elements such as traffic lights,
turning direction and time were extracted by using deep learning technologies [39,40].
Lane-level road reconstruction methods show the most fine-grained level, and they also
pose the largest challenge. MLIT [17] and CLRIC [16] generated lane-level road network
information from low-precision vehicle GPS trajectories by using the number and turn rules
of traffic lanes based on the naïve Bayesian classification scheme. Yang proposed a two-step
approach, including map matching at the lane level and lane-level change recognition to
implement an updated lane-level road network [15]. Crowd-sourcing trajectories were
mainly used for generating road networks in outdoor spaces, rather than indoor space.
Few studies have focused on generating indoor navigation graphs from low-frequency
indoor trajectories. Our proposed approach is inspired by these methods and combines
a rasterized-based reconstruction method of 2D indoor floor plan and a vector-based
extraction method of 3D topological connection junctions.

3. Methodology

Our proposed approach is composed of the following three steps: indoor trajectory
simplification, 2D indoor floor plan extraction and 3D navigation graph construction, as
shown in Figure 1. The refined indoor trajectory is handled as the input to the second step
and the third step. Finally, we reconstruct the 2D indoor navigation graph and topological
connection points into a complete 3D indoor navigation graph.
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Indoor trajectory simplification: Data preprocessing methods for the indoor moving
objects’ movements were necessarily executed by using many predefined rules in this
step. It includes the outlier indoor location points, spatial-temporal constraints, time
repetitive or location repetitive points and the minimum number of indoor trajectories.
Then, an ST-Join-Clustering algorithm was developed to identify and reduce the stay points,
which represents a geographic region where a user stayed over a certain time interval.
Finally, we pretreated the original indoor trajectories into a more formal and less redundant
representation of users’ movements.

2D indoor floor plan extraction: Due to indoor trajectories having a low frequency,
the vector-based outdoor network reconstruction methods [14,15] cannot be easily executed.
Our proposed approach adopts a raster-based solution. However, the traditional KDE-
based methods [33] were not suitable for generating indoor navigation graphs, because of
more noisy data in indoor spaces. We proposed an indoor bitmap construction method
based on self-adaptive Gaussian filtering to implement rasterization of indoor spaces using
indoor trajectories. Then, we developed a new improved thinning algorithm to extract a
2D indoor floor plan to further optimize the construction of indoor navigation graphs and
to reduce the burrs phenomenon.

3D indoor navigation graph reconstruction: Topological connection junctions (e.g.,
elevators, stairs, escalators) play an important role in the reconstruction of 3D indoor
navigation graphs, especially for the complicated indoor space. We took the refined indoor
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trajectory as an input and adopted a vector-based clustering optimization that estimates
the location of the topological connection junctions. Considering that the shapes of density
distributions of topological junctions are different and hard to distinguish, we proposed an
improved CFSFDP clustering algorithm to identify the 3D topological connection points
between two different floors.

3.1. Indoor Trajectory Simplification Step

Different from the outdoor trajectories, indoor moving humans usually spend more
time in specific rooms, such as local bars, clothes shops, cinemas, snack bars and so on, to
enjoy their lives. This dynamic resulted in the very high number of indoor location points
in the fixed region. These location points are often defined as stay points, which represent
a region where a moving object stayed over a certain time interval. It has semantic infor-
mation for some knowledge discovery systems, representing user’s personally meaningful
places such as homes, schools, metro stations and hotels, to support many applications for
mining interesting locations [41], trajectory recommended systems [42] and so on. In the
process of constructing indoor navigation graphs, these stay points have the opposite effect
and cause a lot of noise that reduces the precision of indoor navigation graphs.

To overcome the significant impact of redundant stay points, we propose a ST-Join-
Clustering algorithm to identify stay points and implemented a trajectory simplification,
as inspired by the DJ-Cluster algorithm [43].

Definition 1. (Spatial-Temporal neighborhood of an indoor location point ipt). The neighbor
STN of an indoor location point p, denoted by STN(ipt), is defined by the following equation:

STN(ipt) = {iqt ∈ IS|dists(ipt, iqt) 6 Eps, distt(ipt, iqt) 6 Etm} (1)

where IS is defined as the set of all indoor location points; Eps is the distance threshold; and Etm is
the time interval threshold. For any indoor location point iqt, the distance dists is less than or equal
to Eps, and distt is less than or equal to Etm.

Definition 2. (Spatial-Temporal Join). If there are n indoor location points ipt that belong to
STN(ipt) and STN(iqt) simultaneously, with respect to the threshold Eps and Etm, we define
STN(ipt) as joinable to STN(iqt).

Figure 2 illustrates the process of ST-Join-Clustering.
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Algorithm 1 shows the process of the ST-Join-Clustering algorithm. First, it traverses
all indoor location points and calculates the spatial-temporal neighborhood of an indoor
location point. If the distance and time interval meets the threshold conditions of Etm
and Etm, all the points in the neighborhood form one cluster. Second, each indoor cluster
is then merged with any existing overlapping clusters with respect to ipt. Finally, the
iterations are completed and there is no new cluster. Moreover, each cluster is disjoined
from other clusters.
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Algorithm 1 ST-Join-Clustering Algorithm

Input: Indoor Trajectory Location point pi
Output: Stay points SP
1. while there is at least one unprocessed indoor point ipt do
2. Compute the spatial-temporal neighborhood STN(ipt)
3. if STN(ipt) 6= null then
4. else if there is existing cluster STNex(ipt) contain the STN(ipt) then
5. Merge(STNex(ipt), STN(ipt))
6. else
7. Create a new spatial-temporal cluster STC based on STN(ipt)
8. SP.append(STC)
9. end if
10. end while

Definition 3. (Center of Stay Points). After we adopted ST-Join-Clustering to identify clusters,
we created a new indoor location point for each cluster, which is defined as IC(x, y, t):

IC(x, y, t) =

(
1
m

m

∑
i=0

xi,
1
m

m

∑
i=0

yi,
(

Min{t1, t2, . . . , tm}+
∆t
2

))
(2)

where m is the number of indoor location points for each cluster. ∆t denotes the time interval of
each cluster. Figure 3 illustrates an example of the center of stay points.
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Figure 3. An example of stay points. (a) trajectory points; (b) center of stay points.

3.2. 2D Indoor Floor Plan Extraction Step
3.2.1. Indoor Bitmap Construction

In this section, we proposed the indoor bitmap construction method based on self-
adaptive Gaussian filtering to implement rasterization of indoor spaces using indoor
trajectories. First, the indoor space is divided into a M × M matrix. Each cell covers a
square area. Then, we counted how many indoor location points are in a square cell, as
shown in Figure 4.
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Figure 4. Indoor bitmap construction.

After the construction, we obtained a raw indoor bitmap where the density of indoor
location points was represented by the pixels of the indoor bitmap. However, there is
considerable noise in indoor bitmap images. This noise will lead to a significant decrease in
the extraction of indoor navigation graphs. Accordingly, we proposed a novel self-adaptive
Gaussian smoothing operator to reduce the noise of indoor bitmap.

The Gaussian filter is widely used in image smoothing, which modifies the input
image by a convolution with a Gaussian function, in the field of the computed vision and
signal processing. The Gaussian smoothing operator is a 2D convolution operator that is
used to “blur” images and remove detail and noise. In two dimensions, it is the product of
two such Gaussians, and it has the form of:

G(x, y) =
1

2πσ2 e−
x2+y2

2σ2 (3)

where x is the distance from the origin in the horizontal axis, y is the distance from the
origin in the vertical axis and σ is the standard deviation of the Gaussian distribution.

The Gaussian template is used to smooth the digital images. (2l + 1)× (2l + 1) is
the Gaussian kernel. The pixel value of the neighbor (2l + 1)× (2l + 1) matrix is defined
as follows:

IHi,j =
1

2πσ2 e−
(i−l−1)2+(j−l−1)2

2σ2 (4)

The standard deviation σ greatly affects the Gaussian kernel. If the σ is too small, the
weight value of the indoor noncenter pixel’s value is very low and the Gaussian filter has
no impact on image processing. In contrast, if the σ is too high, the indoor image would
lose image details after applying the Gaussian smoothing operator. Hence, we must choose
the best σ to keep the indoor skeleton maximally connected and preserve the geometry of
the indoor image.

The traditional Gaussian filter will select the fixed Gaussian kernel to smooth the in-
door image. To maintain the features of indoor image as much as possible in the processing
of extracting the indoor graph, we first need to differentiate the internal pixels from the
edge pixels of the indoor image. The amount of variation or dispersion of the internal
pixels of the indoor images is relatively small, and the standard deviation of the internal
pixels of indoor images is also small. Instead, the standard deviation of the edge pixels of
indoor images is relatively large. According to this feature, we first calculate the standard
deviation ID within the neighbor. Then, the is selected adaptively based on the ID. If σ is
small, we will choose the smaller Gaussian kernel. If σ is large, the larger Gaussian kernel
will be adopted. The calculation formula is as follows:

ID =
1
m ∑

(
xij − x

)2 (5)

x =
1
m ∑ xij (6)
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where m is the number of indoor pixels in the neighbor, and x denotes the average value.
Figure 5 shows an example of indoor bitmap construction.
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Figure 5. Indoor bitmap construction results. (a) traditional Gaussian filter; (b) self-adaptive
Gaussian operator.

After constructing the indoor bitmap IBP, we adopted two morphological opening
and morphological closing operators to further erase noises in the images. Next, we will
briefly describe the two morphological operations. Morphological opening is the dilation
of the erosion of indoor image IBP A by N × N convolution kernels CK. Morphological
closing is the erosion of the dilation of indoor image IBP A by N × N convolution kernels
CK. The calculation formula is as follows:

IBP ◦ CK = (IBP	 CK)⊕ CK (7)

IBP•CK = (IBP⊕ CK)	 CK (8)

Generally, in the indoor bitmap, there are some small, jagged lines at the edge of the
indoor corridor. We apply morphological opening to remove the sawtooth and obtain a
smoother corridor image. Some morphological closing operators are conducted in small,
closed spaces such as rooms to reduce the noisy data. After this transformation, a more
accurate indoor bitmap is constructed, as shown in Figure 6.
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3.2.2. 2D Indoor Navigation Graph Extraction

The thinning algorithm is a useful tool for calculating the skeleton of a binary bitmap
in image processing. There are already many thinning algorithms to extract a road network
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skeleton in outdoor space. However, these common thinning algorithms still need to be
improved and further optimized for the construction of indoor navigation graphs. For example,
the traditional thinning results cannot ensure the pixel width, and the burrs phenomena are
worse. Considering the small indoor space, the indoor navigation graph usually has a more
complex structure than an outdoor road network. We introduce a new concept of a pixel’s
neighbors binary code and propose a new improved thinning algorithm to compute the 2D
navigation graph structure of a single indoor floor, based on the fast-parallel thinning algorithm
proposed by Zhang [44]. We describe our algorithm as follows.

Definition 3. (Eight-connection neighbors of indoor pixel). It is assumed that the neighbors of
pixel INZ(P0) are P1, P2, P3, P4, P5, P6, P7 and P8, as shown in Figure 7. In addition, when the
pixel value of Pi is zero, Pi is defined as the blank point, when the pixel value of Pi is 1, Pi is defined
as the target point.
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Figure 7. Pixel neighbors. (a) eight-connection neighbors; (b) indoor pixel code.

Definition 4. (Indoor pixel’s binary code). Figure 8 illustrates an example of binary code
IZB(P0) for an indoor pixel’s eight-connection neighbors. The code ranges from 0 to 255. The
eight-connection neighbors of P0 are transformed into one byte in the clockwise direction. The
upper-left pixel P1 is put into the first byte place.
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Figure 8. Binary code of indoor pixels.

The traditional fast parallel thinning algorithm adopts the following conditions to
extract the network skeleton:

(1) 2 6 INZ(P0) 6 6
(2) IZ(P0) = 1
(3) P2 × P4 × P6 = 0
(4) P4 × P6 × P8 = 0

where INZ(P0) denotes the number of pixels among P0. The value of IZ(P0) must examine
the frequency of target points among the eight-connection neighbors. To overcome the
problem of a single pixel width in an indoor space and to keep the skeleton maximally
connected, the pattern of target points around eight-connection neighbors are further
classified into two categories in our methodology.

The first category has two target points around eight-connection neighbors, as
shown in Figure 9. In all 4 sequence patterns, the target points D = {D1, D2, D3, D4} are
involved in this category. Then, the binary code of indoor pixel P0 may be defined as
IZB(P0) ∈ {5, 20, 80, 65}.
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The first category has three target points around eight-connection neighbors, as shown
in Figure 10. There are 8 sequence patterns of target points in this category, and it may be
defined as E = {E1, E2, E3, E4, E5, E6, E7, E8}. Then, the binary code of indoor pixel P0 may
be defined as:

IZB(P0) ∈ {13, 22, 52, 67, 88, 97, 133, 208}
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The optimized fast parallel thinning algorithm introduces new two conditions as
follows:

(1) IZB(P0) ∈ {13, 22, 52, 67, 88, 97, 133, 208}
(2) IZB(P0) ∈ {5, 20, 80, 65}

The process of extracting a 2D navigation graph of an indoor space may be defined as
Sn(X):

Sn(X) =
4⋃

i=1

J(X, D, E, n, i) n = 0, 1, · · · , N (9)

J(X, D, E, n, i) =
{((

Xn � Di)− ((Xn � Di) ◦ Di)) ∪ ((Xn � Di+1)− ((Xn � Di+1) ◦ Di+1))∪((
Xn � Ei)− ((Xn � Ei) ◦ Ei))} (10)

Xn = X � n
(

D1 ⊕ D2 ⊕ D3 ⊕ D4 ⊕ E1 ⊕ E2 ⊕ E3 ⊕ E4
)

n = 0, 1, · · · , N (11)

As previously stated, when we iteratively execute the algorithm throughout each
indoor pixel, the 2D navigation graph of the indoor space may be extracted. Figure 11
illustrates an example of an indoor navigation graph.
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Figure 11. 2D navigation graph.

3.3. 3D Indoor Navigation Graph Reconstruction Step

Indoor space usually has a complicated 3D topological structure. Two different
floors are connected through points such as elevators, stairs or escalators. In this section,
we propose a vector-based 3D navigation graph reconstruction method to capture these
topological connection points from crowd-sourced indoor trajectories. We observe that
moving objects often spend time waiting around these 3D connection areas because they need
to transfer from one floor to another. Inspired by this behavior of moving objects, applying
clustering algorithms to indoor trajectories that have removed the impact of stay points in the
step of trajectory simplification may be beneficial for identifying connection points.

Clustering has been widely studied and many effective algorithms have been devel-
oped, such as ST-DBSCAN [45], K-Means [46] and BIRCH [47]. To select an appropriate
clustering algorithm for identifying the 3D connection points, we put forward the following
selection criteria: (1) The clustering algorithm should be automated as much as possible,
without manually choosing the density threshold. Determining an appropriate threshold
in a complicated 3D space is difficult. (2) The clustering algorithm can find different shapes
of density distributions. It has a strong robustness of processing cluster centers for different
types of indoor topological connection points.

CFSFDP was developed by Rodriguez and Laio [48], and it basically meets our se-
lection criteria. The classical CFSFDP clustering algorithms maintain the advantages of
partition-based and density-based clustering algorithms. However, it does not apply to
indoor location points with spatial-temporal characteristics because it does not consider the
time constraints. Figure 12 shows the clustering results of CFSFDP without time constraints.
The clusters A and B are correctly recognized. However, if we consider the sequence and
time intervals of indoor location points, the cluster should be split into three clusters: A, B
and C.
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In our methodology, we proposed improved CFSFDP algorithms with time constraints
to identify the 3D topological connection points between two different floors. We now
describe the algorithm as follows. We group each simplified indoor trajectory into one floor
into a dataset of indoor location points IPTf loor. It is defined as follows:

IPTf loor = {ipt1, ipt2, . . . , iptN}

ipti = (lat, lon, time, f loor)

where lat denotes latitude, lon is the longitude, time denotes the timestamp and f loor is
the floor identifier in the indoor space.

In the improved CFSFDP, the cluster centers gave the following selection character-
istics: (1) The cluster centers have a higher local density than their neighbors. (2) The
cluster centers have smaller time interval densities than their neighbors. (3) There is a rela-
tively larger distance between the cluster center and other points within higher densities.
Algorithm 2. gives a formal description of our improved CFSFDP with time constraints.

Algorithm 2 The Improved CFSFDP Algorithm

Input: Indoor Trajectories
Output: The clusters CS
1. Compute the spatial distance matrix stDisMat
2. Compute the time distance matrix tmDisMat
3. denseArray = null
3. while there is at least one unprocessed indoor point ipt do
4. Compute the local density ρi and δi
5. denseArray.append(ρi, δi)
5. end while
6. dentistySort = argsort(denseArray)
7. for each element ele in dentistySort do
8. Compute the parameter γ = ele.ρi ∗ ele.δi
9. end for
10. Calculate the number of clusters based on the decision graph classNum
11. CS = extract_clustering(γ, classNum, stDisMat, tmDisMat)
12. return CS

First, for each indoor location point ipti ∈ IPt f loor, we calculate its local density ρi and
its distance δi from the indoor location points of higher density:

ρi =
N

∑
j

χ
(
idij − idc, itij − itc

)
(12)

χ(id, it) =
{

1, id < 0, it < 0
0, id > 0, it > 0

(13)

where if idij < idc, and itij < itc, χ(id, it) = 1. If idij > idc and itij > itc, χ(id, it) = 0. A
very critical component in this processing is the cutoff distance value idc. We calculate the
distance idij and time intervals itij between any indoor location points as follows:

idij = distd
(
ipti, iptj

)
(14)

itij = distt
(
ipti, iptj

)
(15)

Then, the distance sequence id and times interval sequence it are sorted in ascend-
ing order:

id = {(id1, id2, . . . , idM) | idi 6 idi+1} (16)

it = {(it1, it2, . . . , itM) | iti 6 iti+1} (17)
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The cutoff distances idc and itc are defined as follows:

idc = f (id)and itc = f (it) (18)

According to the methods of [48], the function is defined as the average number of
neighbors being approximately 1 to 2% of the total number of points in the dataset. After
the calculation of local density ρi, the local density sequence ρ is sorted in descending order,
and its distance δi from the indoor location points of higher density is defined as follows:

ρ =
{(

ρq1 , ρq2 , . . . , ρqN

) ∣∣ ρqi > ρqi+1

}
(19)

δi =


min

qj

(
idqiqj

)
, i > 2

max
j>2

(
δqiqj

)
, i = 1

(20)

According to the decision graph and assumptions, when the indoor location points
ipt are larger than the local density ρi and its distance δi, the indoor location point ipt is
prone to pop up as a cluster center.

To quantitatively define the number of cluster centers, we define a new parameter γi.
Hence, a higher number of indoor location points will make cluster centers more likely to
pop up:

γi = ρiδi (21)

4. Computational Experiments
4.1. Experimental Settings

Our proposed approach was implemented based on Java as the main program lan-
guage and used Eclipse 4.7 as the development environment. The experiments were
conducted on a personal computer with an Intel Xenon CPU E5-2620 v4 @2.10 GHz, 8GB of
memory and 512GB solid-state drives, using Windows 10 operating system. The real-world
experimental data came from a commercial harmony shopping plaza in Jinan, Shandong
Province, China, which contains 4000 indoor trajectories and 5 million location points
over a period of two days. The data was provided by the Shanghai Palmap Science and
Technology Company Limited Company, an indoor location-based service supplier. The
data adopted Wi-Fi indoor positioning systems, and the location errors of points were
approximately 3 m. Table 1 shows an example of an indoor moving object’s movements in
the dataset, including fields for the hardware address, latitude, longitude, time and floor.
Figure 13 illustrates the number of location points on different floors at different times of
the day. The activity time distribution of the indoor moving objects focuses on the section
between 9:00 and 22:00.

Table 1. Example of indoor trajectories in the dataset.

ID Time X Y Floor

000C437231 2017/11/9 10:00:01 135946675 45097102 1
000C437230 2017/11/9 10:00:03 135946016 45097229 1
000C437219 2017/11/9 10:00:04 135946008 45097219 1
000C437267 2017/11/9 12:20:44 135946979 45097371 2

4.2. Evaluation Approaches

To evaluate the performance of our proposed approach and quantitatively estimate
the accuracy of the results, we compared the experimental results with a stand indoor map
from the Shanghai Palmap Corporation in a shapefile format. We apply the measurement
method of Zhang [26]. The indoor map was split into line segments, and then each line
segment was given a 0.2, 0.5 and 0.7 m buffer. We employ an accuracy measure, which is
defined as follows:
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(1) Extraction Accuracy Acc. The indoor map SIM = {ls1, ls1, . . . , lsM}, and an extract-
ing indoor navigation graph EIM = {els1, els1, . . . , elsN}, the extraction accuracy is
defined as follows:

Acc =
∑P

j=1 length
(
elsj
)

∑M
i=1 length(lsi)

(22)

where M is the line segment number in the stand indoor map, N is the number of
line segments in the extraction map, and P is the number of correct results. length
represents the function of calculating line segments.

(2) Topology validation. The topology of the indoor navigation graph will decide whether
the construction results can be used in a real-world application. We define topological
rules to find topological errors by using the topology rules check toolbox in ArcGIS.
Hence, we define a topological accuracy, which is defined as follows:

TopoloyAcc =
∑Q

j=1 length
(
elsj
)

∑M
i=1 length(lsi)

(23)

where Q denotes the number of line segments in the indoor navigation graph with
the correct topology.

(3) Baselines. Comparing the road network construction from crowd-sourcing trajectories,
few studies were done on generating indoor navigation graphs. Inspired by the ideas
of Davies [49] and Kuntzsch [33], we apply the classical KDE for the 2D indoor
navigation graph as the baselines to evaluate our proposed approach. In the step of
the 3D navigation graph construction, the extracted topological connection points will
be compared with the real key points in the stand indoor map. The distance between
these points was calculated to evaluate the extraction accuracy in this step.
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Figure 4. Indoor bitmap construction. 

 
 

 
 
 

  
(a) (b) 

 

Figure 13. Number of location points on different floors at different times of the day.

4.3. Experimental Results

Compared with the original distribution of indoor location points in Figure 14a, the
results of the indoor trajectory simplification were refined to a more accurate representation,
as shown in Figure 14b. Many stay points were reduced. This result provides the base data
for the follow-up extraction algorithms.
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Figure 15. The extracted indoor navigation graph. (a) indoor trajectory bitmap; (b) 2D navigation graph. 

Figure 14. The results of indoor trajectory simplification. (a) indoor location points; (b) indoor
trajectory simplification.

Figure 15a shows the result of the indoor trajectory bitmap construction. Because we
adopted self-adaptive Gaussian filter operators, considerable noise in the indoor bitmap
images was removed. Meanwhile, some morphological opening and morphological closing
operators were conducted to further erase the burrs and noises in the images. Finally, we
obtained the 2D navigation graph by using a new improved thinning algorithm, as shown
in Figure 15b. However, in an area of fewer indoor location points, our proposed approach
cannot capture its structure.
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The scalable map generation approach proposed by Davies included four basic stages:
generating 2D histogram, deducing the road edges’ positions, computing centerlines and
determining the direction, as shown in Table 2. The accuracy of our proposed approach
increased by 0.8%, 2.1% and 2.5%. If we only judge the accuracy, the efficiency improvement
of our proposed approach is not obvious. That means both approaches could extract
some results of the navigation networks. However, after further analysis of topological
relations of experimental results, we found that there are more topological errors such
as dangling lines and self-intersect in the Davies’s scalable map generation approach,.
After the topology validation, the topology accuracy of our proposed approach increased
by 13.7%. The main reason is that scalable map generation approach only considers the
density of location points. However, more points do not mean more moving objects in the
indoor space. Our proposed approach adopted many measurements such as trajectory
simplification, self-adaptive Gaussian smooth and morphological operators to reduce these
redundancies and errors.
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Table 2. Experimental results of generating the 2D navigation graph.

Buffer Size (Meter)
TopologyAcc

0.2 0.5 0.7

Davies 32.1 66.5 74.1 82.50
Our proposed approach 32.9 68.6 76.6 96.20

Figure 16 shows the extraction results of topological connection junctions. Our pro-
posed approach only found four cluster areas in the F2 shopping area floor. The cluster
areas were near the elevator. This limitation is due in part to the data quality of the indoor
location points being lower than the outdoor trajectories. The distances from the extracted
points to the real-world positions are 2.14, 2.93, 2.57 and 2.01, respectively. Figure 17
illustrates the results of the generated 3D indoor navigation graph.
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Figure 4. Indoor bitmap construction. 
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Figure 16. Topological connection junctions. (a) indoor location points; (b) four centers of cluster.
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4.4. Discussions

This study shows that our proposed approach can construct a 3D indoor navigation
graph in a complicated indoor space. However, there are still limitations to our approach
that are worthy of discussion.

(1) Generating indoor navigation graphs by only leveraging crowd-sourcing low-frequency
trajectories faces many challenges. Compared with indoor building models and mo-
bile sensor data, the accuracy of an extracted indoor navigation graph is comparatively
lower; however, indoor trajectories are timelier and have lower acquisition costs. This
study represents a step towards enhancing indoor location-based services by obtain-
ing ubiquitous indoor navigation graphs over larger areas. Moreover, our proposed
approach has the advantage of discovering changes in complicated indoor spaces.
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(2) The position error of indoor location points affected the experimental results. If the
position error is lower, and the data quality of indoor location points is higher, our
proposed approach will achieve a better extraction accuracy. Next, we must perform a
deeper analysis of the relationships between the position error and extraction accuracy.

(3) The extracted results of the 2D and 3D indoor navigation graphs still mainly focus on
the corridor or arterial streets. The reason for this focus lies in our proposed approach
belonging to a raster-based solution, although we adopted a vector-based improved
CFSFDP algorithm to obtain the topological connection points. Inferring the network in
an area of fewer location points still faces challenges. More researchers will be inspired
and encouraged to benefit from the ubiquitous generation of indoor trajectories.

5. Conclusions

Increasing massive indoor trajectories have provided new opportunities to generate
indoor navigation graphs. These trajectories also pose great challenges to indoor navigation
graph reconstructions. In this paper, we only leveraged the large-scale and low-frequency
indoor trajectories to reconstruct indoor navigation graphs and did not require any other
auxiliary information. The automatic indoor navigation graph construction mechanism
includes three steps: an indoor trajectory simplification, a 2D Indoor floor plan extraction
and a 3D navigation graph construction. To reduce the impact of stay points, a novel
ST-Join-Clustering algorithm was developed to refine the collected indoor trajectories to a
more accurate representation of indoor objects’ movements. Then, considering the indoor
trajectory special characteristics, we proposed an indoor bitmap construction based on
self-adaptive Gaussian filtering to transform the indoor trajectories to a smoothing bitmap
and developed a new improved thinning algorithm introducing the new concept of a
neighbor’s binary code to extract a high-precision 2D indoor floor plan. Finally, topological
connection points between two different floors are crucial to constructing a 3D navigation
graph. The traditional CFSFDP algorithm is improved to identify these topological key
points by adding the time constraints to more effectively adapt to indoor trajectories.

Several directions for future studies are suggested. The location error of indoor
trajectories will affect the precision and coverage of the extracted indoor navigation graph.
Future research will focus on improving the robustness of our approach to handle different
indoor trajectories with various position errors. In addition, the extracted topological
connection points mainly focus on the higher density of indoor trajectories. In an area with
sparse location points, our proposed approach needs to be improved to solve these dead
zones and increase the coverage range.
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