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Abstract: The use of very-high-resolution images to extract urban, suburban and rural roads has
important application value. However, it is still a problem to effectively extract the road area occluded
by roadside tree canopy or high-rise buildings to maintain the integrity of the extracted road area,
the smoothness of the sideline and the connectivity of the road network. This paper proposes an
innovative Cascaded Attention DenseUNet (CADUNet) semantic segmentation model by embedding
two attention modules, such as global attention and core attention modules, in the DenseUNet
framework. First, a set of cascaded global attention modules are introduced to obtain the contextual
information of the road; secondly, a set of cascaded core attention modules are embedded to ensure
that the road information is transmitted to the greatest extent among the dense blocks in the network,
and further assist the global attention module in acquiring multi-scale road information, thereby
improving the connectivity of the road network while restoring the integrity of the road area shaded
by the tree canopy and high-rise buildings. Based on binary cross entropy, an adaptive loss function
is proposed for network parameter tuning. Experiments on the Massachusetts road dataset and the
DeepGlobe-CVPR 2018 road dataset show that this semantic segmentation model can effectively
extract the road area shaded by tree canopy and improve the connectivity of the road network.

Keywords: deep learning; road; DenseUNet; attention module; semantic segmentation; remote sensing

1. Introduction

Road information is of vital importance in the fields of urban and rural develop-
ment [1], emergency and disaster relief [2], vehicle navigation [3] and geographic infor-
mation systems [4]. With the rapid development of remote sensing technology, very-
high-resolution (VHR) remote sensing images have been used for extracting road infor-
mation [5]. In practice, most road data updates still use manual interpretation, which is
time-consuming and laborious and lacks quality control. Many road extraction algorithms
have been developed [6–8]. These algorithms can be divided into traditional machine learn-
ing methods [9–14] and the latest deep learning methods [15–17]. Some traditional road
extraction methods mainly use the spectral features of remote sensing images, occasionally
supplemented by texture features. However, this method is difficult to effectively use the
geometric and context information in remote sensing images [18], and it is easy to produce
“salt and pepper” noise [19]. Among the traditional methods, the object-based approach
obviously improves the effect on road extraction. Instead of pixels, it uses image objects
as the basic unit, utilizing their spectral, geometric, textural and contextual features for
information extraction, thereby improving product quality [20,21]. On the one hand, this
method is highly dependent on the quality of image segmentation, and how to find suitable
parameters for segmentation is itself a difficult problem. On the other hand, there are
many spectral, texture, geometric and contextual features, and it is difficult to determine
which features are most suitable for road information extraction. When the data source
or regional conditions change, the features required for classification need to be adjusted
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accordingly [22–24]. The above methods are also difficult to distinguish roads from other
artificial surfaces, such as buildings and parking lots, in VHR images.

In recent years, deep learning has been introduced into road extraction from remote
sensing images [25]. Methods based on deep learning reveal effective feature expression
capabilities and can automatically acquire useful features from images for road extrac-
tion [26,27]. The deep learning algorithms used in road extraction are mainly based on
convolutional neural networks (CNN). Zhang et al. [28] used CNN for extracting road
information in VHR images. By improving the CNN architecture, Gao et al. [17] proposed
a deep residual convolutional neural network with post-processing operations, which
showed good performance in extracting roads from complex backgrounds involving both
urban and rural areas. Fully convolutional network (FCN) is a kind of CNN. Long et al. [29]
first proposed a semantic segmentation model based on FCN to road extraction. Later, some
new semantic segmentation models were developed on the basis of FCN, such as U-Net [30],
SegNet [31], DeepLab V3+ [32], etc., which are used in road extraction from VHR images.
Zhang et al. [33] proposed deep residual U-Net for road extraction. This method reduces in-
formation loss and effectively improves the accuracy of road extraction. Buslaev et al. [15]
proposed an improved U-Net that can shorten the training time and achieved a good
result in the CVPR 2018 challenge. The patch-based approaches, like the object-based
approach, assign a single label for all pixels within a patch. Mohammad et al. [34] pro-
posed a patch-based deep neural network to detect roads in large-scale datasets. Some
studies [23,35] constructed cascaded neural networks to perform multitask learning to si-
multaneously extract road areas, centerlines and sidelines. To effectively solve the problem
of the canopy shading effect and maintain the connectivity of the extracted road network,
Tao et al. [36] proposed a spatial information reasoning network to capture and transmit
road-specific contextual information. Noticing the low computational efficiency of the
D-LinkNet, Li et al. [37] established an improved B-D-Linknet Plus. Experiments show
that the improved neural network can reduce the network size and improve the accuracy
required for road extraction. Yang et al. [38] designed a recursive convolutional neural
network (RCNN) module and integrated it into the U-Net architecture to solve problems
such as noise, occlusion and complex background. To preserve boundary information
and obtain high-resolution road maps, Abolfazl et al. [39] introduced a new convolutional
network, namely the VNet model. Xin et al. [40] proposed DenseUNet for road extraction
in complex scenes based on DenseNet, considering its powerful capabilities on multi-level
feature extraction and reuse. These deep learning methods perform well, so that roads and
buildings and other artificial surfaces are better classified.

Road extraction from VHR images usually faces two difficulties. The first is to maintain
the integrity of the road area and the smoothness of the sideline. The large tree canopies
and high-rise buildings on the roadside have a shadow effect, often occluding the road
area. The second is to maintain the connectivity of the road network so that the road is not
missing or interrupted. Some studies have tried to solve the problem of partial shading,
which leads to a lack of road area, and complete occluding leads to road interruption. One
method is to post-process the segmentation results [17,41,42]. However, the problem is
that parameters for post-processing must be manually set and the operation is complicated
and difficult for long-distance complex roads. In recent years, the attention mechanism has
been introduced into the deep learning model. Lai et al. [43] designed a visual attention
unit to locate the focus area more accurately for image fusion. The attention mechanism
can improve the effectiveness of the model in target detection [44,45]. With the help of the
attention mechanism, deep learning networks can extract more discriminative features for
the target task [46–48]. Ye et al. [49] used the attention mechanism to solve the problem
of skipping connections for building extraction. Jetley et al. [48] used an attention gating
module to generate a contextual attention map at the high level of the network, focusing on
the local information useful for middle-level prediction in the form of “global guidance”.
Jin et al. [50] used the time attention mechanism to adjust the nonlinearity and dynamic
adaptability of the electrical network, thereby improving the overall performance of the
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prediction model. Oktay et al. [51] proposed an attention module that learns weighted
images from a high level to focus on the useful features and suppresses the irrelevant
regions in the intermediate feature map, thereby improving the prediction performance.

In response to the problems, we propose an innovative Cascaded Attention Dense-
UNet (CADUNet) by imbedding two attention modules, such as global attention and core
attention, into the DenseUNet framework. We use the core attention module to extract
road areas, including the occluded parts, and use the global attention module to enhance
global context information about the road network. The main contributions of this article
are as follows:

1. The core attention modules and the global attention modules are cascaded in the
DenseUNet together to combine road information at different scales, thus improving
the connectivity of the road network and the smoothness of the sidelines.

2. An adaptive loss function is introduced to solve the problem of too-small ratio of
roads to non-road areas in the training samples.

The rest of the paper is structured as follows: In Section 2, we introduce the CADUNet
method. Section 3 specifies data preparation used in the experiment. Section 4 shows the
results. Section 5 explores the mechanisms for the effectiveness of the network model and
Section 6 provides the conclusions.

2. Methods

The proposed CADUNet is a composite semantic segmentation network established
by imbedding global and core attention modules into the DenseUNet framework. The
DenseUNet is an integration of two classical networks of UNet and DenseNet [52]. UNet
usually consists of two parts: encoder and decoder. DenseUNet normally consists of dense
blocks and transition down layers associated with UNet. When making the DenseUNet, the
dense block and transition down layers are inserted into the encoder part of UNet to replace
the original convolutional layers and pooling layers, thus improving the performance of
UNet in semantic segmentation [40,45]. In the CADUNet, global attention modules are
further added to the decoder part of UNet (Figure 1). In addition, core attention modules
are embedded between the encoder and decoder. To obtain better results, it is necessary to
obtain high-level semantic information from images while retaining the low-level detailed
information. The information from the lower layers can be transferred to the higher layers
along the information transmission path. This compensates for the details of the low-level
function and high-level semantic information [44]. The following subsections provide
the details.

2.1. Encoder

We use dense blocks and transition down layers in the encoder part of UNet. The
dense block is composed of four dense layers (Figure 2), and the output of each dense layer
has a feature map of the same channel dimension. In each dense block, all layers maintain
dense connections. Dense blocks are connected through transition down layers between
them. In a single dense block, the function Fl( ) is used for nonlinear conversion between
layers. The dense connection is defined as Equation (1) [52]:

Dl = Fl([D0, D1, D2, . . . Dl−1]) (1)

where l is the number of dense layers in each dense block, D1 is the output feature map of
the first layer and [D0, D1, D2, . . . , Dl−1] is a cascade of all previous feature maps of the
first layer.

Considering that DenseNet will generate too many feature maps, associated with too
many model parameters, we define a growth rate K to control the number of feature maps,
where K represents the number of feature layers output by each layer. We set K to 48. It is
the same as the size of the feature maps inside each dense block (Figure 2).
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To reduce the amount of calculation and increase the receptive field, a down transition
layer is used after each dense block. Each transition layer is composed of batch normaliza-
tion (BN), rectified linear unit (ReLU), bottleneck layer (1 × 1 convolution) and average
pooling layer (2 × 2).

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 21 
 

 

Considering that DenseNet will generate too many feature maps, associated with too 

many model parameters, we define a growth rate K to control the number of feature maps, 

where K represents the number of feature layers output by each layer. We set K to 48. It is 

the same as the size of the feature maps inside each dense block (Figure 2). 

To reduce the amount of calculation and increase the receptive field, a down transi-

tion layer is used after each dense block. Each transition layer is composed of batch nor-

malization (BN), rectified linear unit (ReLU), bottleneck layer (1 × 1 convolution) and av-

erage pooling layer (2 × 2). 

 

Figure 1. Architecture of CADUNet (The parameters include: k, the kernel size; n, the number of output channels; s, the 

stride size; p, the padding size). 

 

Figure 2. Structure of dense block. 

Figure 1. Architecture of CADUNet (The parameters include: k, the kernel size; n, the number of output channels; s, the
stride size; p, the padding size).

ISPRS Int. J. Geo-Inf. 2021, 10, x FOR PEER REVIEW 4 of 21 
 

 

Considering that DenseNet will generate too many feature maps, associated with too 
many model parameters, we define a growth rate K to control the number of feature maps, 
where K represents the number of feature layers output by each layer. We set K to 48. It is 
the same as the size of the feature maps inside each dense block (Figure 2). 

To reduce the amount of calculation and increase the receptive field, a down transi-
tion layer is used after each dense block. Each transition layer is composed of batch nor-
malization (BN), rectified linear unit (ReLU), bottleneck layer (1 × 1 convolution) and av-
erage pooling layer (2 × 2). 

 
Figure 1. Architecture of CADUNet (The parameters include: k, the kernel size; n, the number of output channels; s, the 
stride size; p, the padding size). 

 
Figure 2. Structure of dense block. 

This image cannot currently be displayed.

Figure 2. Structure of dense block.



ISPRS Int. J. Geo-Inf. 2021, 10, 329 5 of 20

2.2. Attention Mechanism

The attention mechanism can help to focus more attention on interesting targets [44,45].
This study uses two attention modules: core attention module [44] and global attention
module [45]. In the core attention module, the input value of the signal is calculated by
calculating the output of the last dense block (Figure 3). The core attention module contains
two inputs, one is the output to the three dense blocks, and the other is the attention signal
input. By connecting the low-level features to the high-level features, the core attention
module can weaken the background information and enhance useful local details, thereby
reducing the misjudgment of the original jump connection feature and improving the
integrity of the extracted road network. The introduction of the core attention module, on
the one hand, can ensure the maximum transmission of road information between all layers
of the network. On the other hand, it can assist the global attention module to improve the
integrity of the road while eliminating the tree canopy occlusion effect.
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In the global attention module, the global average pool is first used to extract global
context information from the high-level feature map (Figure 4). The global average pool is
convenient to obtain global context information in images [45]. Then, the output of global
context information is activated through a sigmoid function. Finally, weighted features
are added to the feature map to integrate global information. The global attention module
uses the global average layer to collect the global context information from the feature map
and enhances the global information of the feature map, thereby solving the interruption
of road extraction caused by tree canopy occlusion.
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2.3. Decoder

We mainly made two adjustments to the decoder in CADUNet. One is to use a simple
up-sampling operation with a step size of 2 in the first layer, and the second is to use 4 global
attention modules plus 3 improved up-sampling operations. In the improved up-sampling
operations, 1 × 1 convolution, BN and ReLU operations are performed first, followed by
3 × 3 convolution operations, BN and ReLU operations, and finally, simple up-sampling.
This matches the size of the resulting output by the attention module. We add the output
of the last global attention module to the corresponding layer in the encoder. After that,
the output relates to the corresponding layer in the encoder. Then, a simple up-sampling
operation is added to restore the size of the image to the same as the original input image
following 1 × 1 convolution, BN and ReLU operations. For the final convolution, BN,
ReLU and sigmoid operations are used to generate the predicted road map.

2.4. Adaptive Loss Function

In this paper, we consider road extraction as a binary semantic segmentation. The pro-
portion of road area is usually less than 10%, and the proportion of non-road backgrounds
is usually greater than 90%. In the case of random sampling, the training efficiency is low
since negative samples occupy most of the training samples [24]. To this end, we adopt a
new adaptive loss function to adjust the imbalance between positive and negative samples:

Loss = Proad × LBCE + Pbackground × (1 − LIoU) (2)

where, Proad and Pbackground respectively represent the percentage of roads and non-roads
in the entire area. LBCE is the binary cross entropy loss [53], and LIoU is the intersection
ratio index [54] and emphasizes the deviation between the predicted road and the actual
road. The calculation formula of each is as follows:

LBCE = − 1
n

n

∑
i=1

(gi(log pi) + (1 − gi)(1 − log pi)) (3)

LIoU = 1 − ∑n
i=1 gi pi

∑n
i=1 (gi + pi − gi pi)

(4)

where gi (i = 0, 1, 2, . . . , n) is the ground truth of the i-th pixel, pi (i = 0, 1, 2, . . . , n) is the
predictions of the i-th pixel and n is the number of pixels.

3. Experiment Preparation

The datasets used in this study are from the Massachusetts road dataset and
DeepGLOBE-CVPR 2018 road dataset (CVPR dataset) [55,56]. They are composed of
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image datasets for training, validation and test, associated with corresponding reference
maps. The Massachusetts road dataset contains a total of 1171 images. Each image in
this dataset is 1500 × 1500 pixels, with a spatial resolution of 1.2 m and a coverage area
of 2.25 square kilometers. The dataset covers a variety of typical urban, suburban and
rural areas, with a total area of more than 2600 square kilometers. The CVPR road dataset
contains 6226 satellite images with a size of 1024 × 1024 pixels and a spatial resolution of
50 cm. Accordingly, these datasets can be divided into rural, suburban and urban road
datasets, as shown in Figure 5.

To make training, validation and test datasets for this experiment, all image datasets
were cropped and augmented. First, the images and the corresponding reference maps
were expended by random rotation (90 degrees, 180 degrees and 270 degrees), random
horizontal and vertical flips and random brightness adjustment (0.5–1.5). Then, they were
randomly cropped to 256 × 256 pixels [36]. Finally, from the Massachusetts dataset, we
obtained 50,545 images, of which 42,963 were for training and 7582 were for validating,
and the test dataset is 49 original 1500 × 1500 images. From the CVPR road dataset,
84,000 images were obtained, of which 71,400 were for training, 12,600 images were for
validating and the test dataset is 105 original 1024 × 1024 images.

We compare this method with UNet [30], DeepLab v3+ [32], DenseUNet [40], the im-
proved DenseUNet (CDenseUNet) with only the core attention modules and the improved
DenseUNet (GDenseUNet) with only the global attention modules.
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This experiment is implemented on a high-performance computing platform: the
CPU is composed of 2 groups of Intel Xeon 5120 with 14 cores, associated with 128 GB of
working memory, the GPU is 2 groups of NVIDIA P100 with 16 GB of memory and the
operating system uses CentOS 7. We used the TensorFlow backend to execute on the deep
learning framework of Keras. The Adam function [57] is used for parameter optimization.
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Each epoch processed 16 images. The learning rate was initially set to 0.0001, and was
reduced by 0.02 times per period, and the number of epochs was set to 50.

In this experiment, we use overall accuracy (OA), precision, recall, F1−score, and In-
tersection over Union (IoU) for validation. Equations (5)–(9) [36,54,58] describe these
assessment metrics:

OA =
TP + TN

TP + FP + FN + TN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1−score =
2TP

2TP + FP + FN
(8)

IoU =
TP

TP + FP + FN
(9)

where, TP, FP, FN and TN represent true positive, false positive, false negative and true
negative, respectively.

4. Results
4.1. Pavement Integrity and Sideline Smoothness of Roads
4.1.1. Massachusetts Dataset

In the Massachusetts dataset, the road occluding mainly comes from the tree canopy
aside the rural and suburban roads, while the images occluded by urban roads are few.
Figure 6 shows the partial roads occluded by tree canopies in rural areas (scenes 1–3),
the partial roads occluded by tree canopies in suburbs (scenes 4–5) and the partial roads
occluded by urban high-rise buildings in urban areas (scene 6).

According to these results, the CADUNet proposed in this paper has achieved good
results on the blocked roads in the rural, suburban and urban areas. It can be found that
there is a gap between the results of DeepLab v3+ and UNet when the road is occluded by
tree canopy and its shadows. The results derived from the proposed CADUNet are closer
to the ground truth than those from the other methods. The smoothness of the road edges
is significantly improved. UNet performs well in the scenes 3 and 6, but performs poorly in
the scenes 1, 2 and 4. DeepLab V3+ performed well in the scenes 1 and 3, and DenseUNet
performed well in the scenes 3 and 5 but did not perform well in the remaining scenes. In
the scenes 1 and 2, the performance of CDenseUNet and GDenseUNet is poor, and the
performance in the other scenarios is better. Finally, the CADUNet has achieved the best
results in all six scenes by eliminating the occluding effects of tree canopies aside the road.

4.1.2. CVPR Dataset

Figure 7 shows the extracted results from the CVPR road dataset with these 6 methods.
The first and second scenes contain roads occluded by tree canopies in rural areas, and the
third and fourth scenes are roads covered by tree canopies in the suburbs. The fifth and
sixth scenes show roads in the urban area covered by the shadows of high-rise buildings.
Our CADUNet method has achieved good results in the information extraction of rural,
suburban and urban roads. The first scene shows that when facing a partially covered
road, the results obtained by the UNet method are better than that from DeepLabv3+ and
DenseUNet. In the second and sixth scenes, when part of the tree canopy and high-rise
building shadows block the road, the performance of DeepLab V3+ is better than UNet
and DenseUNet. The DenseUNet only shows better performance in the fourth scene, while
CDenseUNet performs better in the third and sixth scenes, merely. GDenseUNet and
CADUNet obtained the best results in the first, second, third and fifth scenes occluded
by the tree canopy. Obviously, the global attention mechanism plays an obvious role in
extracting roads occluded by tree canopy and building shadows. In the CVPR dataset,
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the global attention mechanism plays a key role in solving the occluding problem. Other
methods show poor effects on the fourth scene, owing to not using the core attention mech-
anism. Therefore, this CADUNet method has achieved good results with the cascading
dual attention mechanism.
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Figure 6. Pavement integrity and sideline smoothness of the extracted roads in the Massachusetts dataset. (1–3) The partial
roads occluded by tree canopies in rural areas; (4,5) The partial roads occluded by tree canopies in suburbs; (6) The partial
roads occluded by urban high-rise buildings in urban areas.
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4.2. Road Network Connectivity
4.2.1. Massachusetts Dataset

For the Massachusetts road dataset, the 6 methods are used to extract complex road
networks, including rural (scenes 1–3 in Figure 8), suburban (scenes 4–5 in Figure 8) and
urban road networks (scene 6 in Figure 8), and transportation hub (scenes 7–8 in Figure 8).
From the extraction results in rural, suburban and urban areas, CADUNet performs well on
sparse rural roads, suburban and urban roads neighboring parking lots. When comparing
other models, the CADUNet method not only depends on the visual characteristics of
the road, but also has a certain reasoning ability by modeling the road context. It can be
seen from Figure 8 that the road network obtained by UNet and Deeplab V3+ networks
has obvious defects. Compared with UNet and DeepLab V3+, DenseUNet has some
improvements. Compared with the standard DenseUNet, CDenseUNet and GDenseUNet
reduce road interruption and enhance the connectivity of the road network. Compared with
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the previous 5 models, the results obtained by CADUNet perform better road connectivity
and fewer road interruptions.
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Accuracy assessment shows that the OA, recall, precision, F1-score and IoU obtained
by CADUNet are the highest, reaching 98.00%, 76.55%, 79.45%, 77.89% and 64.12%, respec-
tively (Table 1). Compared with UNet, the F1-score and IoU with the CADUNet method
increased by 2.49% and 4.26%, respectively. Compared with the standard DenseUNet, the
F1-score and IoU by CADUNet increased by 3.25% and 4.16%, respectively. After adding
two attention modules, the intersection ratio by CADUNet increased by 3.04% and 2.21%
respectively, compared to CDenseUNet and GDenseUNet.
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Table 1. Accuracy assessment of the road extracting results obtained by six methods in the Mas-
sachusetts dataset.

Model Name OA Recall Precision F1-Score IoU

U-Net 97.82% 73.29% 77.91% 75.40% 59.86%
DeepLab V3+ 97.80% 72.30% 78.15% 74.89% 60.23%
DenseUNet 97.64% 76.29% 72.67% 74.64% 59.96%

CDenseUNet 97.80% 74.97% 76.49% 75.55% 61.08%
GDenseUnet 97.84% 75.90% 76.79% 76.17% 61.91%
CADUNet 98.00% 76.55% 79.45% 77.89% 64.12%

4.2.2. CVPR Dataset

As shown in Figure 9, the results based on the CVPR road dataset include rural
roads (scenes 1–3), suburban roads (scenes 4–5) and urban roads (scene 6). The best
results extracted by CADUNet are rural roads, followed by suburban roads and urban
roads. Comparison among the 6 models shows that the results of UNet and DeepLab V3+
have the worst road network connectivity and severe road incompleteness. CDenseUNet
and GDenseUNet have made progress based on DenseUNet, but still have their own
shortcomings, and the connectivity of the road is poor. Due to imbedding the cascading
dual attention mechanism into the DenseUNet, the CADNUnet method has obtained the
best results in terms of road network connectivity.
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In the experiment with the CVPR road dataset, the CADUNet method reached the
highest overall accuracy, F1-score and IoU, reaching 97.09%, 76.28% and 62.08%, respec-
tively (Table 2). Compared with UNet, the recall and IoU of this method are increased
by 6.14% and 3.83%, respectively. Compared with Deeplab V3+, the CADUNet method
increases the IoU by 5.57%. After adding two attention mechanisms, the CADUNet method
has increased F1-score and IoU by 1.67% and 2.11% compared to the DenseUNet.

Table 2. Accuracy assessment of the road extracting results obtained by six methods in the
CVPR dataset.

Model Name OA Recall Precision F1-Score IoU

U-Net 96.89% 72.52% 74.98% 73.16% 58.25%
DeepLab V3+ 96.64% 74.27% 70.54% 71.73% 56.51%
DenseUNet 96.94% 77.78% 72.79% 74.61% 59.97%

CDenseUNet 96.96% 77.30% 71.47% 73.63% 58.75%
GDenseUnet 97.04% 77.15% 72.17% 73.93% 59.16%
CADUNet 97.09% 78.66% 74.89% 76.28% 62.08%

4.3. Loss Function

Figure 10a,b reflects the changes of the loss function with epochs on the Massachusetts
and CVPR training datasets. As the training epochs increases, the losses of all 6 models
gradually decrease with the increased training batches. The CADUNet proposed in this
paper shows a better descending rate on the loss function than UNet, DeepLab V3+,
CDenseUNet and GDenseUNet. UNet and DeepLab V3+ performed the worst. Figure 6c,d
reflects the changes in the loss function corresponding to the training epochs on the
Massachusetts and CVPR validation datasets, respectively. The CADUNet proposed in this
paper has the lowest loss value verified on the two datasets, that is, the result obtained by
the method is the closest to the truth. After 25 epochs of CADUNet, the model tends to
be stable.
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5. Discussion

In the results of road extraction from VHR images, the occluding effect of the tree
canopy and high-rise buildings aside the road often leads to the incompleteness of the
road surface and even the interruption of the road network. As the basic framework
of the proposed CADUNet, the DenseUNet semantic segmentation network performs
well on employing the deep features of the image, avoiding gradient dispersion and
making the network easy to train. Its feature reuse function can ensure that the most road
information is preserved between the network layers, thereby improving the connectivity
of the extracted road network. Therefore, it lays a solid foundation for road information
extraction. Furthermore, the global attention module that we added to the DenseUNet
model can enhance the global context information from the road feature map, thereby
reducing the road interruption caused by tree canopy occlusion and building shadows to a
certain extent, and the road integrity is significantly improved. We added the core attention
module to the DenseUNet model to fuse more low-level features into the high-level feature
map, so as to ensure that road information is transmitted to the greatest extent in dense
blocks in the network, and further assist the global attention module to obtain more road
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information at the encoding part. This module improves the connectivity of the road
network, and at the same time restores the integrity of the road surface and the smoothness
of the sideline at the decoding part.

Figure 11 shows the accuracy assessment results of six examples using the total six
models on the Massachusetts dataset, where the green, red and blue areas represent TP, FP
and FN, respectively. The first line in the figure shows an image with a loop road and its
extraction results. Only the CDenseUNet and CADUNet models with the core attention
mechanism have the most extent of TP and the least area of FP and FN, and the loop
is relatively complete. This shows that the core attention mechanism makes up for the
deficiency of the global attention mechanism to a certain extent. The second row shows
the extraction result of the road that is sheltered by the elevated railway. It can be seen
from these panels that the use of CDenseUNet, GDenseUNet and CADUNet models can
extract limited roads sheltered by railways. This reflects the superiority of the core and the
global attention modules. CADUNet has the most TP areas and the least FP and FN areas
due to the use of two cascaded attention modules. The third row shows the extraction
result of an image with the intersection of the main road and the minor road. With UNet
and the DeepLab V3+ model, only the main road can be identified. Based on DenseUNet,
CDenseUNet and CADUNet models, the extraction quality is better than the other three
models. The CADUNet model achieves the largest TP areas and the smallest FP and FN
areas, which embodies the advantage of the cascaded attention mechanism. The fourth
row shows the extraction results of roads that are occluded by dense tree canopies on the
roadside. The CDenseUNet, GDenseUNet and CADUNet models obtained good results.
The dual attention mechanism integrated in the CADUNet model can solve the problem of
roads being occluded by the tree canopy. It can be seen from the panels in row 5 that all the
above six models can identify the main road but cannot identify the minor road connected
to residential houses. In the Massachusetts dataset, the labeled dataset generally does
not include such minor roads, so that they were ignored in the six network models when
learning. Therefore, the error is due to the inconsistency of the labeling data and the overall
labeling dataset. Row 6 concerns an image with the main and minor road intersection area.
In the extraction results, the DeepLab V3+ and DenseUNet models present poor results,
while the minor roads are not recognized. However, the main road and one of the minor
roads can be well-identified by using CDenseUNet, GDenseUNet and CADUNet models,
and the most TP areas and the least FP and FN areas can be achieved with the CADUNet
model. At the same time, all six models still missed one of the minor roads labeled in the
evaluation dataset. Although the minor road is labeled in the evaluation data, its features
as a road are not obvious, which makes it difficult for the six models to recognize.

Figure 12 shows the accuracy assessment results of six examples of road extraction
using the total six models on the CVPR dataset, and the color definitions are consistent
with the foregoing. The panels in the first row show an image with the intersection of the
main road and its minor roads in rural areas. These 6 models merely extract the main road,
but not the minor road, which is related to the labeling dataset. In the labeling dataset,
only a small part of the roads of this type are labeled, and most are not labeled. As a result,
these deep learning models cannot be used to recognize the minor roads of this type. The
panels in the second line show the country road that is shaded by trees. For this kind of
image with rural roads, DenseUNet, CDenseUNet, GDenseUNet and CADUNet models
have achieved good results, obtaining more TP areas and fewer FP and FN areas, which
highlights the effectiveness of DenseUNet, as the basis of these networks, and the dual
attention mechanisms in road extraction. For the image with parallel roads shown in the
third row, the CADUNet model performs well, achieving the most TP area and the least FP
and FN area, which reflects the superiority of the cascaded attention mechanism. However,
there is still a gap between this extracting result and the labeled dataset, because one of
the parallel roads is omitted from the labeling data. The images in the fourth row show
the crossing area of the two roads, associated with a roadside canopy occluding effect.
For this image, the CADUNet model achieved more TP areas and the least FP and FN
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areas, achieving the best recognition effect, thus reflecting the advantages of the cascaded
attention mechanism. The fifth and six row reflects the image of a curved road and its
extracting effect in an urban area, and part of the road is obviously occluded by the shadow
of the buildings. Good results were derived only through the CDenseUNet and CADUNet
models, and the results through the other four models are relatively poor, which indicates
that the core attention mechanism has a significant role in extracting this type of road.
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intersection area.
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6. Conclusions

In this study, we proposed an innovative CADUNet model based on the DenseUNet
framework to solve the problems of incomplete road surface, uneven sidelines and poor
road network connectivity due to roadside tree canopy in HRV images. We added global
attention modules to obtain the global information of the road and introduced core attention
modules to ensure that road information is transmitted to the greatest extent among the
various layers of the network in dense ranges. The model can extract more road information
from multiple locations to improve road integrity and enhance the robustness of feature
extraction under tree canopy and urban high-rise building shadows. Finally, an adaptive
loss function was introduced to balance the ratio of road areas to non-road areas in the
training samples. This article used the Massachusetts dataset and the DeepGLOBE-CVPR
2018 dataset for comparative experiments. The results showed that the CADUNet model is
more encouraging in road extraction from VHR images.

Although our network model has achieved good performance, there is still room for
improvement for the problems of insufficient and excessive semantic segmentation of roads
concerning sideline smoothness, interruption and the connectivity of the road network. In
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addition, it is expected that the quality of the label data set will be further improved in the
follow-up work.
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