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Abstract: Soil is a significant natural resource composed of organic and inorganic material. Nitrogen,
one of the essential elements, is traditionally measured using laboratory methods. The development
of hyperspectral imaging enables the cost-effective acquisition of both spectral and spatial information
for detecting physical, chemical, and biological attributes of the soil samples. The presented work
evaluates the suitability of airborne hyperspectral imaging for determining soil nitrogen content and
producing a soil nitrogen map on a pixel-wise basis. The measurement of spatial variability of the
soil nitrogen content was taken at two fields located at Rudice, in northeast Brno, Czech Republic,
using laboratory methods and a handheld spectrometer. The soil reflectance was also recorded
using airborne-mounted imaging spectroscopy sensors. A partial least squares regression was used
to develop a model for the calibration of the data collected with a portable spectrometer and to
predict the total nitrogen in the soils based on hyperspectral images from airborne sensors. The
determination factor for the PLSR model presented in this paper reached an R2 of 0.44. The model’s
performance could be improved by using a handheld spectrometer with a wider spectral range, using
the same acquisition period for field data collection and hyperspectral imaging, and enlarging the
sample size.

Keywords: analyses; hyperspectral; nitrogen; PLSR method; soil properties

1. Introduction

Soil is a fundamental natural non-renewable resource that people rely on for food
production, fiber, and energy. It is also a habitat for microorganisms and earthworms and
the foundation for buildings and other constructions [1]. Fundamentally, soil is a complex
matrix that consists of organic and inorganic mineral matter, water, and air. The organic
material in soils ranges from decomposed and stable humus to fresh, particulate residues of
various origins. The distribution of these different organic pools in soil influences biological
activity, nutrient availability and its dynamics, soil structure and aggregation, and water-
holding capacity [2]. The inorganic mineral fractions are often described by their particle
size distribution (proportions of sand, silt, and clay) and by additional subclasses in various
classification systems [3]. Nitrogen (N) is one of the essential elements that affect vegetative
growth and plant development because it plays a central role in all metabolic processes,
as well as in cellular structure and genetic coding [4]. Its association with phosphorus (P)
plays a vital role in plant growth as these two elements interact with each other. Therefore,
it is essential to investigate the N content in the soils and obtain the spatial distribution
information that would improve field nitrogen management efficiency and the economic
benefit from agricultural production and contribute to sustainable agriculture [5].

The goal of the research was to determine the total soil nitrogen (Ntot); its concentra-
tion was expressed in the percentage of dry weight of soil (%). It consists of all accessible
and inaccessible forms that can pass between each other. The natural nitrogen cycle de-
pends on the ability of organisms to bind and convert inert atmospheric nitrogen (N2) and
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decompose proteins. The basic mineral forms of ammonium (NH4
+) and nitrate (NO3

–)
are also important accessible forms of nitrogen for plant nutrition and indication of soil
viability. Both forms of nitrogen move in the soil sorption complex, indicating the degree
of eutrophication and the efficiency of the nitrogen cycle.

The nitrogen content in the soils is usually measured using laboratory methods. How-
ever, they are often time consuming, expensive, and destructive. Therefore, new techniques
such as laboratory spectroscopy are being developed to minimize the disadvantage of tradi-
tional laboratory methods [6]. Examples of popular spectrometers include ASD FieldSpec 3,
Peristrom NIR System 6500, and FOSS XSD Rapid Content Analyzer Spectrometer [5,7–9].
These devices measure mostly at spectral bandwidths ranging from 1 to 2 nm over a
wavelength range of 300 to 2500 nm.

Another option is to use remote sensing methods. There are aerial and satellite remote
sensing techniques. Aerial remote sensing is generally used to acquire data for smaller
areas (national scale), while satellite remote sensing is used for covering larger areas (global
scale). In addition, there are three types of optical data. The first is panchromatic, which
is characterized by high or very high spatial resolution and a single band. The band
is formed by total light energy in a visible spectrum. Multispectral data have a higher
spectral resolution consisting of multiple spectral bands with broader bandwidth instead
of lower spatial resolution compared to panchromatic data. Therefore, a pan-sharpening
method is sometimes employed, which improves the spatial resolution of multispectral
data. For example, Sentinel-2A has 13 spectral bands in visible, NIR (near-infrared), and
SWIR (short-wavelength infrared) spectra with a spatial resolution of 10, 20, and 60 meters,
respectively. The range of bandwidth is from 15 to 175 nm [10]. Hyperspectral data contain
many spectral bands compared to multispectral data. However, their main advantage is
contiguous bands with narrow bandwidth. As a result, the spectral curve of a surface is
continuous. Hyperspectral images are used for soil mapping [11] or identifying types of
iron and clay minerals [12].

Aerial and satellite hyperspectral images enable the mapping of relatively large areas
over a short period. However, the raw data must be corrected to eliminate the influence of
the atmosphere in the determination of soil properties [13]. Hyperspectral imaging com-
bines conventional spectroscopy with imaging techniques to acquire spectral and spatial
information to detect physical, chemical, and biological attributes of the samples [14,15].
A soil spectrum is generated by directing radiation containing all relevant frequencies to
the sample. Depending on the constituents present in the soil, the radiation will cause
individual molecular bonds to vibrate, either by bending or stretching, and absorb light
to various degrees. The resulting absorption spectrum produces a characteristic shape
that can be used for analytical purposes [16]. Visible and near-infrared (vis–NIR) regions,
encompassing wavelengths between 400 and 2500 nm, contain useful information on or-
ganic and inorganic materials in the soil. Absorptions in these regions can be used to detect
mineral content associated with iron, soil organic matter, clay, carbonates, or water [17–20].
It can also be used to detect soil matter, such as organic carbon (SOC) or total nitrogen,
as a result of the stretching and bending of NH, CH, and CO groups [21–25]. Viscarra
Rossel and Behrens [26] present a summary of important fundamental absorptions in the
mid-infrared (mid-IR) region and the occurrence of their overtones and combinations in
the vis–NIR regions, which can be used to help with the interpretation of soil constituents.

Diffuse reflectance spectra of soil in the vis–NIR regions is largely nonspecific due to
the overlapping absorption of soil constituents. This inherent lack of specificity is com-
pounded by scattering effects caused by soil structure or its specific components such as
quartz. All these factors result in complex absorption patterns that need to be mathemati-
cally extracted from the spectra and correlated with soil properties. Hence, the analyses
of soil diffuse reflectance spectra require a sophisticated statistical technique to discern
the response of the soil attributes from spectral characteristics [27]. The most common
calibration methods for soil applications are based on linear regressions, namely, stepwise
multiple linear regression (SMLR), principal component regression (PCR), and partial
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least squares regression (PLSR) [28]. The main reason for using SMLR is the inadequacy
of more conventional regression techniques such as multiple linear regression (MLR) and
the lack of awareness among soil scientists of the existence of full-spectrum data com-
pression techniques such as PCR and PLSR. Both methods can cope with data containing
large numbers of predictor variables that are highly collinear. PCR and PLSR are related
techniques, and in most situations, their prediction errors are similar. However, PLSR is
often preferred by analysts because it relates the response and predictor variables so that
the model explains more of the variance in the response with fewer components, and the
algorithm is therefore computationally faster. The use of data mining techniques such
as neural networks (NN) [23,24], multivariate adaptive regression splines (MARS) [25]
and boosted regression trees [26] is increasing. Viscarra Rossel et al. [29] combined PLSR
with bootstrap aggregation (bagging-PLSR) to improve the robustness of the PLSR models
and produce predictions with uncertainty. MLR, PCR, and PLS are linear models, while
the data mining techniques can handle nonlinear data. Viscarra Rossel and Lark [28]
used wavelets combined with polynomial regressions to reduce the spectral data, account
for non-linearity, and produce accurate and parsimonious calibrations based on selected
wavelet coefficients. Mouazen et al. [30] compared NN with PCR and PLS for predicting
selected soil properties. They found combined PLSR-NN models to provide improved
forecasts compared to PLSR and PCR. Viscarra Rossel and Behrens [26] examined the use of
PLSR to several data mining algorithms and feature selection techniques for predictions of
clay, organic carbon, and soil acidity (pH). The comparison included MARS, random forests
(RF), boosted trees (BT), support vector machines (SVM), NN, and wavelet transform. Their
results suggest that data mining algorithms produced more accurate results than PLSR.
Some of the algorithms provide information on the importance of specific wavelengths in
the models so that they can be used to interpret them.

The objectives of the presented study were to evaluate the suitability of airborne
hyperspectral imaging, determine the soil nitrogen content, and produce a soil nitrogen
map on a pixel-wise basis usable for precision agriculture. The goal was fulfilled with
emphasis on the use of geoinformation technologies, for processing of hyperspectral data
and performing spatial analyses in a GIS environment.

2. Materials and Methods
2.1. Study Site

The measurement of the spatial variability of the soil nitrogen content was taken at
two fields located at Rudice, northeast Brno, Czech Republic (Figure 1). These sites were
selected to provide soil samples from both agricultural land and grassland located near
a forest. This region is characterized by mean annual precipitation of 393–430 mm and a
mean annual temperature of approximately 8.3 ◦C. Due to the different soil cultivation,
both test sites varied in surface roughness, soil structure, green coverage, and straw residue.
At the agricultural test site, which has been under intensive cultivation, the soil surface
was ploughed with residue coverage of less than 10%. According to the World Reference
Base for Soil Resources [31], the dominant soil type of the test site is Luvisols.

Soil sampling and data collection with a portable spectrometer were performed on
10 October 2016. Due to unfavorable weather conditions on this day, the aerial imaging
campaign was postponed and completed one month after the soil sampling. The soil was
sampled from the top 5 cm of plough horizon at the agricultural site using core rings
around randomly selected sampling points. The top 5 cm of soil horizon was discarded
at the grassland field due to extensively dense root activity. Spatial coordinates were
measured using handheld GPS. A total of 22 topsoil samples were collected from both sites.

2.2. Conventional Soil Analysis

The soil sampling and laboratory analysis were coordinated with the Institute of
Geology and Soil Science, Mendel University in Brno. The presented study uses the results
of analyses of soil samples taken from the soil horizon A1 at a depth of 5 cm. Before
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analysis, all soil samples were air-dried, passed through a 2 mm sieve, and milled before
analysis. The total nitrogen was determined by a modified Kjeldahl method [32] that
consists of a procedure of dissolving the soil samples in a boiling mixture of sulfuric acid
and catalyst additives. The resulting NH4+ ions together with the NH4+ ions originally
present in the sample after alkalization were distilled in the form of ammonia (NH3) into a
certain volume of a standard solution of sulfuric acid (H2SO4) as specified by the method.
The captured NH3 was then determined indirectly by the titration of the excess volumetric
acid solution with a volumetric NaOH solution.

Figure 1. Location of Rudice in the Czech Republic (imagery: Sentinel-2).

2.3. Field VIS/NIR Spectroscopy

The reflectance of the soil samples was measured in the field using the FieldSpec
HandHeld2 portable spectrometer [33]. The HandHeld2 spectrometer offers a vis-NIR
spectral range (325–1075 nm) with resolution better than 3 nm at 700 nm and accuracy of
±1 nm. A white Spectralon panel (approximately 10 cm in diameter) provided the absolute
reflectance factor for field calibration of the device, and it was used before each sample
measurement was taken. The distance between the scanned surface and the equipment
was chosen so that the scanned area was approximately 30 cm × 30 cm. Three repeat
measurements of soil spectrum were recorded per sample.

2.4. Hyperspectral Imaging in vis-NIR Range

The soil reflectance was recorded with the Flying Laboratory of Imaging Spectroscopy
(FLIS). The flight campaign was conducted by CzechGlobe—Global Change Research Insti-
tute of the Czech Academy of Sciences (GCRI) on 8 November 2016. Weather conditions
allowed imaging only early in the morning between 9 a.m. and 10 a.m. when the tem-
perature ranged between −3 and 2 ◦C, as reported by a nearby meteorological measuring
station located in Vranov. Due to the late data acquisition date, an increased noise level
could be expected in the collected hyperspectral data, as reported by CzechGlobe. During
the data collection, no rain occurred, and the precipitation rates for the prior five days were
minimal, not exceeding 1 mm.

The FLIS consists of an aircraft-mounted set of three hyperspectral sensors from
ITRES, Ltd. [34], two of which (CASI-1500 and SASI-600) collected data for the study. The
CASI-1500 is a visible near-infrared (vis-NIR) sensor that offers 1500 pixels across its field
of view, and a spectral range between 380 and 1500 nm with resolution better than 3.2 nm.
The hyperspectral SASI-600 sensor captures 100 spectral channels across the shortwave
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infrared (SWIR) spectral region between 950 and 2450 nm with 600 across-track imaging
pixels. The spatial pixel resolution for CASI-1500 and SASI-600 sensors is 1.5 m and 2.5 m,
respectively, based on a 40-degree field of view and flight altitude of 2060 m. Radiometric
calibration, an atmospheric correction, the exclusion of water absorption bands, and the
georeferencing of the hyperspectral images were carried out by CzechGlobe to derive nadir
normalized ground reflectance. Furthermore, as part of the pre-processing steps, the data
from the two sensors were joined into the final hyperspectral image.

2.5. Partial Least Squares Regression (PLSR) Method

A partial least squares regression (PLSR) was used to develop a model for calibration
of the data collected with FieldSpec HandHeld2 portable spectrometer with the reference
soil nitrogen data from the laboratory analysis. Then, the PLSR was again applied to
predict the total nitrogen content in the soils based on the developed model and data
captured in the FLIS hyperspectral image. PLSR is a multi-linear regression technique
that handles often strongly correlated spectral predictor bands well. This method reduces
the dimensionality of the explanatory variables by projecting them into a certain number
of new, orthogonal latent variables (LVs) [35]. PSLR transfers the information content
of predictors to a few uncorrelated synthetic variables referred to as latent vectors. The
latent vectors are generated not only with respect to maximizing information content
regarding the spectral information but also due to their explanatory power in multiple
linear regression. The optimization process involves the simultaneous implementation of
dimensionality reduction and regression [36]. The developed PLSR models were calibrated
by fitting them to the training data and validated by omitting one of the training points in
the calibration phase and estimating the dependent variable for that point (Leave One Out,
LOO, cross-validation). This method is based on sequentially removing one value from
the dataset, testing the quality of the model’s prediction with the remaining values in the
dataset, returning the removed value, and selecting another value that is removed from the
dataset. The stability of the model was verified by predicting the total nitrogen content
on the data with known values (validation set). The ratio of calibration and validation
samples was 75% to 25%, respectively. Figure 2 shows the schematic process for predicting
total nitrogen from hyperspectral images using the PLSR method.

Performance of the developed model was described using the coefficient of determi-
nation (R2) between measured and predicted values and root-mean-square error (RMSE)
during the calibration and validation [37]. The optimal number of LVs is experimen-
tally selected to minimize the determination coefficient during the calibration (R2cal), so
model over-fitting is avoided and the determination coefficient during validation (R2val) is
maximized [38].

2.6. Spectrometer Data Processing

Reflectance data collected with FieldSpec HandHeld2 portable spectrometer on 22 test
sites were processed to remove the influence of the noise on the developed model. These
marginal spectral range values vary from device to device. For FieldSpec HandHeld2,
excessive noise was experimentally determined to affect the measured signal with a wave-
length of less than 450 nm and greater than 950 nm, as shown in Figure 3. Nawi et al. [39]
and Grant [40] also recommended removal of reflectance values in the wavelength range
less than 600 nm and above 1000 nm and less than 450 nm and greater than 950 nm,
respectively, to reduce the influence of the noise on measured data.
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Figure 2. Schematic flowchart for predicting soil total nitrogen using PLSR method.

Figure 3. Sample reflectance of the soil sample measured with FieldSpec HandHeld2 Spectrometer.

In the next step, the filtered spectral data were resampled to match the resolution and
center wavelength value of the FLIS hyperspectral images recorded during the flight cam-
paign. This step was accomplished using the freely available prospect package developed
for the R environment [41]. The resampling process changed the original bandwidth width
of the spectrometer’s data to about 14.2 nm and 15 nm to match the bandwidth width
of the CASI and SASI sensor, respectively. This step further reduced the influence of the
noise in the spectral data for model development. After noise removal and resampling, the
reflectance data were transformed to absorbance using the following equation:

absorbance = log10

(
1

reflectance

)
(1)
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2.7. Hyperspectral Data Processing

The FLIS hyperspectral image was imported into the R environment using the stack
function of the raster package. However, the supplied hyperspectral image contained
pixels with a value of 0 for the areas that were not imaged, as shown in the black color in
Figure 4. Therefore, the values for 385,595 pixels, representing 36% of the hyperspectral
image, were changed to “NoData” value.

Figure 4. False color FLIS hyperspectral image (band 9 as red, band 40 as green, and band 67 as blue).

After loading the FLIS hyperspectral image into the R environment, spectral bands that
were not available in the resampled spectral information from the handheld spectrometer
were removed. This step had to be performed because the hyperspectral image data on
which the prediction itself was performed must have the same range and form as the data
on which the model was built. This step led to the removal of SASI data with a wavelength
of more than 1062.5 nm.

2.8. Model Development

The most critical step of the entire process was building the model, because the
resulting values depend on the character of the model. Furthermore, the precision and
accuracy of the prediction are dependent on the quality of input data, which often cannot
be influenced, and on the quality of the developed model. Due to the relatively small
size of the dataset (total of 22 samples), the standard procedure of dividing the entire
dataset into the training set and validation set was not implemented, and the entire dataset
was used to build the model. Validation of the developed model was performed using
only the cross-validation method. During the model development, an iterative process of
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leave-one-out cross-validation was used. It sequentially hides one value from the dataset,
tests the quality of its prediction with the remaining values, returns the value into the
dataset, and then selects another value and hides it. Since the dataset was not extremely
large, the model was built with a maximum number of latent variables. The PSLR function
then calculated the RMSEP for the different number of latent variables, as seen in Figure 5.

Figure 5. Validation of model performance based on number of used latent components.

The accepted recommendation for the selection of the number of latent components
is based on displaying the RMSEP for a different number of latent components and then
selecting one with the lowest RMSEP or from which RMSEP is not significantly reduced.
Melvik and Wahrens [42] further refined this recommendation by claiming that it is prefer-
able to select the number of components that display the first local root-mean-square error
of prediction minimum, not the overall minimum. Based on the chart above, six compo-
nents were chosen as RMSEP has the lowest value of 0.0178, while the model reached an
R2 of 0.45.

2.9. Prediction

For the prediction of soil nitrogen content, the PLSR library again employed FLIS
hyperspectral image input, and the number of components was set to 6. The resulting
predicted pixel values were then inserted into the original raster to maintain the identical
geospatial structure. Before exporting the predicted total nitrogen content values, all but
the first band were removed, as all the spectral bands contained the same predicted data.
The matrix containing predicted total nitrogen content values was exported into TIF format
in the final step.

2.10. Establishment of Bare Soil

The last step involved a process of removing pixels that do not logically correspond to
the possible soil properties values and determining the bare soil to which the resulting data
should correspond. The acquired raster for total nitrogen content also showed a certain
number of negative values (Table 1). This is logically impossible because the investigated
quantities cannot have negative numbers. Therefore, these pixels were also removed to
preserve only the portion of the raster with relevant data.

Table 1. Descriptive statistics for pixels with negative values.

Model Number of Negative Pixels Number of Negative Pixels (%)

N.abs 1255 0.17
N.abs = total nitrogen content in the soil (N), variant of the N model with the pre-treatment of the absorbance applied.
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The mask for distinguishing pixels in the raster representing the bare soil was created
using the normalized difference vegetation index (NDVI) and the cellulose absorption
index (CAI). According to the authors of [43], this is one of the most reliable methods
for determining the bare soil. To calculate the NDVI index from hyperspectral images,
wavelengths of 800 nm for the NIR band, where the reflectivity of vegetation is increased,
and 670 nm for the RED band were used [44]. The NDVI values in our area of interest
ranged from −0.25 to 0.82. Negative values normally correspond to impermeable and
artificial surfaces, such as roads or structures. Values approaching the value of 1 represent
surfaces with a high chlorophyll content, such as dense green vegetation. Two masks were
used to remove both extremes. Experimentally, it was determined that the first extreme
included pixels with NDVI values ranging from −0.25 to 0.08 and the second one from
0.3 to 0.82.

The CAI index is used to determine the health status of vegetation based on the
cellulose content. Gerighausen et al. [45] used the CAI index for detecting the arable land
that was covered with vegetation. The index was developed for hyperspectral data and
works with wavelengths of 2000, 2100, and 2200 nm. Since the hyperspectral image used in
the present work was taken in November, after the end of the agronomic season, most of
the surface forming the arable land was without visible vegetation cover. Based on this, it
was possible to use the CAI index to extract impermeable surfaces with zero vegetation
content. The NDVI index was therefore supplemented with this index, showing remaining
artificial surfaces such as roads and buildings. The application of this index resulted in
values ranging from −1.281 to the extreme of 13.348. In general, the values of this index
rise linearly from the surface, with 0% vegetation to 100% coverage. We experimentally
determined that the CAI values from −1.281 to −0.02 identified impermeable surfaces.

3. Results

Data containing information on the spectral signature of the soil samples were ob-
tained in the form of reflectance according to the spectral range of the scanning instrument.
Each sampling site (or soil sample) was measured three times (Table 2). Based on notes
on high cloud transitions recorded during measurements and graphical visualization of
spectral curves, a single measurement was selected for further analysis.

Table 2. Sample of the reflectance measured by the handheld spectrometer (abbreviated).

Soil Sample Waveband (nm)
325 326 327 328 329 330 331 332

5-R1-A1 0.0290 0.0143 0.0073 0.0229 0.0219 0.0137 0.0254 0.0264
5-R1-A1 0.0265 0.0166 0.0096 0,0069 0.0129 0.0232 0.0310 0.0305
5-R1-A1 0.0168 0.0483 0.0671 0.0323 0.0215 0.0348 0.0507 0.0572
5-R2-A1 0.0888 0.1531 0.2266 0.2187 0.4448 0.8333 0.1952 -0.1263

The processed data were then combined with soil data (Table 3), so all 22 sampling
points had information about their location, total nitrogen content measured in the labora-
tory from soil samples, and the spectral reflectance characteristics.

Table 3. Descriptive statistics of the total nitrogen content from 22 sampling points.

Ntot (%)

Minimum 0.140
First quartile 0.175

Median 0.190
Mean 0.189

Third quartile 0.200
Maximum 0.245
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Several pre-treatment methods were tested to ensure the best results were achieved
when using the PLSR method. The results (Tables 4 and 5) differed quite significantly
according to the selected variant (a) without resampling the spectra and thus intended for
possible new data from the spectrometer, or (b) with resampled spectra for building a model
for prediction based on analyzed hyperspectral data. Table 4 shows the characteristics of
the developed models after fitting the original spectral information from which the noise
was removed without performing another spectral resampling.

Table 4. Evaluation of developed models for original data collected with the spectrometer.

Transformation LVs R2 RMSEP RPD

Ntot (%)

none 4 0.3554 0.0195 1.2455
Abs. 6 0.3083 0.0199 1.2024

Abs. + SG 4 0.2113 0.0212 1.1260
SG + 1. der. - - - -

SG 4 0.2704 0.0204 1.1708
SNV 2 0.0217 0.0214 1.1173

Transformation—type of pre-treatment method, LVs—number of latent variables, R2—coefficient of determination,
RMSEP—root mean square error of prediction, RPD—ratio of standard error of prediction to standard devia-
tion, Abs.—absorbance, Abs. + SG—absorbance with Savitzky–Golay smoothing, SG + 1.der—Savitzky–Golay
smoothing with first derivation, SG—Savitzky–Golay smoothing, SNV—standard normal variate.

Table 5. Evaluation of developed models after resampling the spectral information for the purpose
of prediction from hyperspectral data.

Transformation LVs R2 RMSEP RPD

Ntot (%)

none 6 0.0009 0.0239 1.0004
Abs. 6 0.4445 0.0178 1.3418

Abs. + SG 5 0.2312 0.0205 1.1405
SG + 1. der. 9 0.0598 0.2355 1.0313

SG 5 0.3340 0.0195 1.2254
SNV - - - -

Transformation—type of pre-treatment method, LVs—number of latent variables, R2—coefficient of determination,
RMSEP—root mean square error of prediction, RPD—ratio of standard error of prediction to standard devia-
tion, Abs.—absorbance, Abs. + SG—absorbance with Savitzky–Golay smoothing, SG + 1.der—Savitzky–Golay
smoothing with first derivation, SG—Savitzky–Golay smoothing, SNV—standard normal variate.

Table 5 presents results of the evaluation of models that were built for the prediction
of total nitrogen content in the soils for a specific hyperspectral dataset. Therefore, their
spectral information was resampled into the resolution of hyperspectral images. Models
for which the values are not available indicate that after cross-validation the R2 became a
negative number. This statistical indicator describes how much of the dependent variable
is explained by the model and how much remains unexplained [42].

For determining the total soil nitrogen content from data collected with the spectrom-
eter, the model using four latent components and reflectance without pre-treatment (R2,
0.36; RMSEP, 0.0195; and RPD, 1.25) achieved the best results. Other variants for both
elements resulted in a lower predictive power. When predicting the total soil nitrogen using
hyperspectral data, the best predictive abilities of all 48 built models were achieved using
a pre-treatment model with absorbance (R2, 0.44; RMSEP, 0.01; and RPD, 1.34). The de-
veloped application and the prediction procedure of the PLSR method were subsequently
tested on this model.

Since the data sample included only 22 samples, the maximum number of components
was about 20 depending on the applied pre-treatment method. This is important because
the best model required six components, which is almost one-third of all available data.
Figure 6 shows the basic predictive abilities of the model using six components determined
based on cross-validation. The closer the individual values are to the line of best fit, the
better the model performed.
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Figure 6. Model prediction of N-absorbance using six components.

Regression vectors in Figure 7 show that the use of seven components contributes to
the prediction, but this contribution is not significant and, according to cross-validation
(Figure 8), there is a slight deterioration in the prediction ability. Although the use of seven
components would not be wrong, only six were used to avoid over-fitting the model and,
as a result, increasing the noise.

Figure 7. Regression coefficients for four to seven components. The y-axis shows the values of the
regression coefficient.

The decision to use six components is also supported by a score graph (Figure 8),
which shows the variance of the data that make up the main components [46]. It is possible
to read the variance of data between individual components from this graph. The most
important component forming the model itself was the second component, explaining 87%
of the problem relevant variance in the data. This is a rather surprising result because
for most models built this way, the most important component is the first one. The sixth
component is the most important for the second part of modeling and prediction. The



ISPRS Int. J. Geo-Inf. 2021, 10, 355 12 of 18

values described by the sixth component are the values with the least variance and, except
for two outliers, describe the data very well.

The main result of the prediction is a map that displays the spatial distribution
of total soil nitrogen. The spatial component of the map output enables its immediate
application in precision agriculture for spatially variable nitrogen management. The
prediction results were refined by removing several negative values, which could be
caused by low concentration or variability of the investigated element. Further refinement
was made by removing those pixels that represent a surface (buildings and roads) for which
the model was not built, and therefore, the resulting values for these surfaces are irrelevant.

Figure 8. Score plot of the best model for first seven components.

It can be seen from Table 6 that the predicted values were slightly higher than the
values obtained by pedological measurements. This is due to the overall higher reflectance
values on the hyperspectral image than the values measured by the handheld spectrometer.

Table 6. Summary for measured and predicted values.

Basic Statistics Measured Ntot (%) Predicted Ntot (%)

Minimum 0.140 0.004
1st quartile 0.175 0.179

Median 0.190 0.194
Mean 0.189 0.199

3rd quartile 0.200 0.216
Maximum 0.245 0.391

Figure 9 shows a map with the spatial distribution of nitrogen values. It is possible to
see that higher N concentrations were observed in the northwest area.
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Figure 9. Sample of total soil nitrogen raster output, which contains predicted values for total soil nitrogen (Ntot) from
8 November 2016.

4. Discussion

The determination of total nitrogen in the soil is a very complex matter and involves
several processes. Ideally, it is necessary to include all nitrogen cycles that can help to
understand the evolution of nitrogen. However, these models will always be subject to
a certain degree of error. Pedologists deal with assessing nitrogen mainly due to better
management of nitrogen fertilizers. It is in the general interest to ensure high yields with
minimal soil degradation [8].

Soil properties are most often determined in the laboratory. Unfortunately, classical
laboratory methods are often time consuming, expensive, and destructive. Therefore, new
methods are being developed to eliminate these disadvantages [6]. One of these new
methods is laboratory spectroscopy. Another option is to employ remote sensing, which
is probably the least expensive path and non-destructive to the soil. Aerial and satellite
multispectral and hyperspectral images can map a relatively large area in a short time.
However, when determining soil properties using this method, it is necessary to eliminate
the influence of the atmosphere to achieve pure reflectance [13]. For example, aerial
photography with a hyperspectral camera has been used in the past to detect nitrogen [47].
Of the satellite systems, the Hyperion hyperspectral system [48] or the Landsat 5 and
7 multispectral systems [9,49] are widely used.

The wavelengths suitable for examining soil nitrogen content vary considerably
among published work. Dalal and Henry [22] determined the most suitable range of
wavelengths to be 1100 to 2500 nm (more specifically 1702, 1870, and 2052 nm). On the
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other hand, Sterberg et al. [50] considered 1100, 1600, 1700, 1800, 2000, and 2200 nm to be
the most appropriate wavelengths. Shi et al. [51] compared their results with previous
works, which they incorporated into their work, and the output was a series of wavebands
1450, 1850, 2250, 2330, and 2400 nm. In this work, it is pointed out that the determination
of suitable wavelengths depends mainly on the overall processing and the method used.
The latter bands are especially suitable for nitrogen (but they can also be used for other
soil properties) and for the popular PLSR method. In general, water absorption bands
from 1300 to 3000 nm are the most suitable and most widely used for determining the soil
nitrogen content [51,52]. The area is associated with water content, which changes the total
carbon content in the soil. This suggests that the soil nitrogen content can be indirectly
related to carbon content through these wavelengths [53]. Chang et al. [7] also pointed to a
high correlation between the amount of these two elements in the soil.

Several studies have further compared the vis-NIR and MIR portions of the spectrum.
MIR performed better in most of these studies [52,54,55]. The PLSR method or its variations
(e.g., CARS-PLSR) were mostly used when working with MIR. Wavelengths suitable for
measuring nitrogen in MIR were determined to be between 1676 and 1672, 1260 and
1036 cm−1 [52].

In the present work, the PLSR method was used to develop a model for the prediction
of total soil nitrogen for selected test locations. Unfortunately, the resulting parameters
and prediction capabilities were not as high as results published in some previous studies
reviewed by authors that have shown that this method can achieve accuracy higher than
an R2 of 0.8 [9,43]. The determining factor for the PLSR model presented in this paper
reached an R2 of 0.44, indicating that after cross-validation, the model describes data from
which it was created with 44% confidence. Areas for improvement are listed below.

The primary disadvantage, when developing the PLSR model, concerns the spec-
tral range of the handheld spectrometer used. The FieldSpec HandHeld2 spectrometer
measures wavelengths in the range of 325–1075 nm with an excessive noise affecting the
signal with a wavelength of less than 450 nm and greater than 950 nm. According to
Vohland et al. [52], the critical wavelengths required to build a highly accurate model
based on the spectral behavior of soil properties are in the NIR (near-infrared) and MIR
(mid-infrared) bands starting at 750 nm. Using spectral information measured up to the
infrared spectrum of the electromagnetic spectrum, Zornoza et al. [45] achieved results
with an R2 reaching up to 0.95 for total soil nitrogen content.

Another issue that possibly influenced the quality of the developed model was the
different acquisition periods for the hyperspectral imaging (8 November 2016) and field
data collection using a handheld spectrometer (7 October 2016), as the weather conditions
for these two periods were different. Hyperspectral imaging was performed at lower
temperatures, with possible ground frosts but minimal precipitation, while handheld
spectrometer data were collected at higher temperatures with higher cloud coverage.

Finally, the low sample size was identified to affect the development of the model.
The number of samples collected in our study (a total of 22 samples) was small and did
not allow us to perform the second standard validation step. Unfortunately, with this low
sample size, it was impossible to carry out a more rigorous statistical evaluation of the
dataset and the selection of the most optimal samples. This small number of samples from
only two different sites also caused the low variability of the total soil nitrogen, minimizing
the ability to capture the key relationships between the soil property and the relevant
spectral information. Studies that used hundreds of samples [47,56] achieved results with
an R2 higher than 0.8. Regarding the samples, some degree of uncertainty could also be
due to laboratory measurements.

Based on the results, it was identified that close attention should be paid to datasets, as
each can exhibit some degree of inaccuracy. In general, meteorological conditions, sample
size, and the spectrometer parameters used for field data collection should be evaluated
during the test preparation. The encountered problems could be significantly minimized
by using a larger dataset sample and by implementing a public soil spectral library for the
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Czech region. Unfortunately, the only suitable soil spectral library, created at the Czech
University of Life Sciences in Prague [57], was not publicly available. Therefore, field data
collection was performed with the handheld spectrometer available to the authors.

5. Conclusions

The present work is a contribution to the wider use of remote sensing methods in
precision agriculture. Nitrogen is a very complex component of soils that behaves unstably
in time and space. Traditional methods for assessing the soil nitrogen content involve
contact sampling and subsequent laboratory analysis. They achieve accurate results but
have several practical limitations. They are time consuming, contact and destructive
methods that require large numbers of samples to capture the soil variability. With frequent
and repeated sampling, the land and cultivated plants are also degraded. The use of
remote sensing data in the extended spectrum minimizes the disadvantages of traditional
methods. Hyperspectral data are more suitable for determining the nitrogen supply
than multispectral, and are often used in conjunction with statistical predictive modeling.
According to the reviewed literature, the best models are created by employing the PLSR
method, the applicability of which was subsequently tested in our work and confirmed
this fact.

In our study, PLSR was applied to predict new values for total soil nitrogen based on
data measured by a handheld spectrometer and laboratory-determined total soil nitrogen
content. The developed model was then applied to the hyperspectral image to determine
the predicted total nitrogen content of the soil. The application of PLSR was evaluated
as a useful method for predicting soil properties in hyperspectral images. In our case,
unfortunately, the method was not applicable for some soil properties and even the best
model came out only with a medium predictive power (R2 of 0.44). The results of the
study showed the key role of input data quality in predictive modeling. The influence of
atmospheric conditions in the collection of individual datasets and the necessity of using
spectrometers covering the entire width of the spectrum in which soil nitrogen can be
identified are significant.

Author Contributions: Conceptualization, Vilém Pechanec and Alexander Mráz; methodology,
Vilém Pechanec and Alexander Mráz; software, Alexander Mráz, Ladislav Rozkošný, and Vilém
Pechanec; validation, Vilém Pechanec, Alexander Mráz, and Pavel Vyvlečka; formal analysis, Alexan-
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Pavel Vyvlečka; data curation, Vilém Pechanec, Alexander Mráz, and Ladislav Rozkošný; writing—
original draft preparation, Alexander Mráz and Vilém Pechanec; writing—review and editing, Vilém
Pechanec and Alexander Mráz; visualization, Ladislav Rozkošný and Pavel Vyvlečka; supervision,
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