
1  

λ 

β 

= (4) 

(

S

 

 

 

RUSLE parameter calculations for Magna Roman Fort. 

Rebecca Guiney (r.guiney1@ncl.ac.uk) 

 

This document contains supplementary material for the paper: ‘Integration and analysis of multi-modal 
geospatial secondary data to inform management of at-risk archaeological sites’. In particular it details the 
methodology used to calculate parameters in the RUSLE model and briefly reports on some results that were 
not included within the main paper. 

 
Methodology 

Topographic Factor (LS) 

The LS factor is one of the input parameters into the Revised Universal Soil Loss Equation (RUSLE) used 
to study soil erosion risk at Magna. It summarises the effects of topography on soil erosion, combining the 
influence of both slope length (L) and slope steepness (S). To calculate the LS factor, we have used equations 
proposed by [1]’s algorithm, given by, 

 

LS = L × S (1) 
 

L = ( 
22.13 

)m (2) 

 

m = 
1 + β 

(3) 

sin(θ) 
β 

3(sin(θ)0.8) + 0.56 
 

= 
10.8 sin(θ) + 0.03 ,  θ < 9% 

16.8 sin(θ) − 0.5, θ ≥ 9% 

 
(5) 

where λ is the slope length (in meters), m is the variable length-slope exponent ranging from 0 to 1, β is the 

ratio of the rill to interill erosion and θ is the slope angle. [2] and [3] suggested slope length should be limited 

to a maximum threshold of 333m as the reliability of RUSLE at these long slope lengths is questionable. 
Furthermore, empirical evidence and thus validity suggest that RUSLE should be limited to slope gradients 
less than 50% [4]. 

A LiDAR Digital terrain model (DTM) with a spatial resolution of 1m produced by the Environment Agency, 
was used for the LS factor computation [5]. The hydrology toolset on ArcGIS Pro, available with the Spatial 
Analysst license, was employed for data processing and computation [6]. For data pre-processing, the fill 
sink algorithm was used to create a depressionless DEM. Flow accumulation and slope were derived and 
limited according to the thresholds described above, and equations (1) - (5) were applied using the raster 
calculator tool to compute an LS factor map of Magna and the surrounding land. The main limitation of this 
methodology is the presence of landscape features e.g. roads, stone walls or fences that may interrupt runoff and 
reduce the slope length but are not identified in the DTM [7]. Further processing could identify and map these 
features, but for simplicity this has not been carried out in this study. 
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Rainfall Erosivity Factor (R) 

Rainfall is the main driver of soil erosion by water and rainfall erosivity (R) quantifies the relationship between 
rainfall and sediment yield [8]. Rainfall erosivity of a storm event is calculated directly from high temporal 
resolution precipitation data by multiplying the total kinetic energy of the storm event by the maximum 
30-minute intensity. The R factor then accumulates these values over all rainfall events and averages it over 
multiple years [9,10]: 

 
n   mj 

R =  
1 Σ Σ

(EI30) 
 

 
(6) 

where R is the average annual rainfall erosivity (MJ mm ha−1 h−1 yr−1), n is the number of years of data, 
mj is the number of erosive events in year j, and EI30 is the rainfall erosivity index of a storm event k. The 
event erosivity EI30 (MJ mm ha−1 h−1) is defined as: 

 

m 

EI30 = ( ervr)I30 (7) 
r=1 

 

where er is the unit rainfall energy (MJ ha−1 mm−1),vr is the rainfall volume (mm) during the time period 
r, and I30 is the maximum rainfall intensity during a 30 minute period of the storm event (mm h−1). The 
unit rainfall energy, er is calculated for each time interval, r as follows: 

 
er  = 0.29[1 − 0.72 exp(−0.05ir)] (8) 

where ir is the rainfall intensity during the time interval (mm h−1). The criteria proposed to define the 

delineation of an individual storm event is a cumulative rainfall volume of less than 1.27mm falling in six 
hours [11]. [12] suggested that at least 15 years of data are required to obtain representative estimates of 
annual erosivity. Thus, the lack of availability of high temporal resolution precipitation data, for sufficient 
periods of time, have limited the calculation of rainfall erosivity in many soil erosion studies [13]. 

The ESDAC developed a Rainfall Erosivity Database at European Scale (REDES) based on calculations 
using high temporal resolution data (5 to 60 minutes) for rainfall stations across Europe [14]. However, under 
closer inspection only 39 stations were included for the UK, over half of which had less than 15 years of data. 
More importantly, available precipitation records were found for UK stations nearby Magna that were not 
included in the study. Therefore, to obtain a more accurate estimation of the rainfall erosivity at Magna, its 
seasonal variation, and future projections, we first created maps of the R factor and monthly erosivities over 
the UK. This included the following steps: (a) The collection and compiling of hourly precipitation data from 
stations across the UK for the years 1995-2019, (b) the calculation of the R-factor and monthly erosivities for 
each precipitation station, and (c) the spatial interpolation of R-factor point values. 

Hourly precipitation records were obtained from the Met Office Integrated Data Archive System (MIDAS) 
[15]. Stations were selected based on the following criteria: (1) at least 15 years of precipitation data were 
available between the years 1995 - 2019, (2) years were included if they contained less than 10% missing 
hourly records. This resulted in the selection of 123 precipitations stations with an average of 22.9 years 
of high temporal resolution precipitation data. Figure 1 shows the station locations. R factors were then 
calculated for each station based on equations (6) - (8) using the ‘hyetor’ R package [16]. For each month, 

average monthly erosivity was also calculated by modifying equation (6) to accumulate EI30 over individual 

months rather than years. The resulting rainfall erosivity database can be found in the project’s GitHub 
repository (accessed via: https://github.com/Adam-Booth/Group3_Project) 

A spatial regression approach, specifically a generalised linear mixed model with an additive spatial component, 
was used to interpolate point values and infer the distribution of rainfall erosivity in the UK from a series of 
correlated, but independent, climate covariates. Specifically, covariates included average monthly precipitation, 
average minimum and maximum monthly temperature, bioclimatic variables, elevation, latitude and longitude. 

j=1 k=1 

k 
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Figure 1: Map showing the location of UK rainfall stations used to calculate R factors. 

 
Climatic variables were derived for the period 2000-2018 from the WorldClim database [17], which reports 
monthly averages of precipitation and temperature globally at 1-km resolution. 13 regression models were 
fitted for each individual monthly R factors and the yearly R factor. For each model specific covariates to be 
included were selected based on correlation coefficients with the dependent variable. Model performance was 

evaluated using the coefficient of determination (R2), root mean square error (RMSE), and mean average 

error (MAE) based on a 10-fold cross validation. 

Using the fitted regression models, future rainfall erosivity was estimated for the periods 2021-2040, 2041-2060, 
2061-2080 and 2081-2100, under different future climate scenarios, or Representative Concentration Pathways 
(RCPs). Climate covariates for future projections were obtained from the WorldClim database [17], using 
the CNRM-CM6-1 climate model developed by the CNRM-CERFACS group for CMIP6 [18]. This global 
climate model (GCM) was selected as it was one of the only European GCMs available as downscaled 1km 
data comparable to the WorldClim baseline data used to train the regression models. Climate projections are 
model-driven descriptions of potential future climates under a given set of possible climate change scenarios, 
and thus, GCMs represent powerful tools to produce spatially explicit predictions on future climate scenarios 
[19]. However, given that rainfall intensity and duration have large uncertainty in future predictions, results 
should be interpreted with caution. Among the 3 climate scenarios we have selected for this study; RCP2.6 
is the conservative pathway, RCP 4.5 is the intermediate scenario and the most widely used, and RCP8.5 
represents a business-as-usual scenario and the most extreme changes to climate. For each period and climate 
scenario, monthly erosivity and R factor were estimated for the UK and then averaged over the site of Magna 
to extract a time series of projected future values. 
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Other Parameters 

EU-wide maps of the C, K and P factors, obtained from the ESDAC [20], were cropped to the same extent as 
the NY66NE UK DTM tile obtained from the Environment Agency [5] and used as the corresponding input 
layers into the RUSLE model. 

 
Results 

The mean value for soil erodibility (K) over the field at Magna is 0.0275. The mean value for the cover 
management factor (C) is 0.0793. This value ranges from 0.001 to 0.113 in the larger area covered by the 
tile, which we regard as a suitably accurate approximation based on values suggested in literature for low 
productivity grassland [21]. The P factor was estimated to be 1 across the area of Magna Fort, reflecting 
that no conservation practices are currently in place to limit erosion. This contradicts the existence of stone 
walls on the site, which should reduce the value. Further processing by mapping the stone walls using aerial 
photography and DTMs could be done to improve its accuracy [22]. However, given the relatively small area 
that the stone walls cover, disruptions to erosion estimates will be minimal and instead these features should 
be considered when interpreting the RUSLE results. For this study, the C, K and P factors are considered as 
sitewide constants due to the relatively small area covered by Magna and the lack of identifiable variation in 
sediment or vegetation cover across the site. 

The value for LS ranged from 0 to 42.62 in the area encompassing the fort, with a mean of 1.09. Spatially, 
the topographic factor is the only dynamic aspect of the RUSLE. Consequently, the results of the RUSLE 
formula will vary as a function of slope across the site, reflecting the primacy role of slope as a factor in 
erosion risk across smaller areas [23]. 

The rainfall erosivity factor was calculated for each of the 123 stations with long-term high temporal 
precipitation records available. The resulting database of station wise R factors is available at the GitHub 

Repository. The rainfall erosivity across stations ranged from 287.67 to 3016.63 MJ mm ha−1h−1y−1, with 

an average of 591.35 MJ mm ha−1h−1y−1. Monthly values were also calculated, with April having the lowest 

average erosivity and August having the highest, at 22.05 and 77.58 MJ mm ha−1h−1y−1 respectively. Point 
values were then interpolated using the spatial regression approach described in the preceding section. A 
summary of the cross-validation statistics are shown in Table 1. Performance of the annual model was 
relatively high, with an R2 value of 0.59, while the monthly prediction models had more variation in their 
performance due to limitations in the number of covariates [24]. Performance of the monthly models for 
October to May proved to be generally high, resulting in R2 values between 0.44 and 0.62. However, summer 

months’ R factor were less well predicted in terms of R2, particularly July with R2 values of 0.11. However, it 
was noted that summer months tend to have a broader range and higher variability of R-factor values, which 
could partly account for this higher error. Moreover, under closer inspection of the points wrongly predicted 
by our models, larger errors were introduced when predicting high values of rainfall erosivity. These values 
are likely due to extreme storm events whose distribution cannot be captured by a model based on averaged 
covariates. Given that stations close to Magna rarely observed events of these magnitudes, results can be 
trusted for our purpose. 

Table 1: Cross validations statistics for models used to interpolate 
rainfall erosivity over the UK. 

 

model R2 rmse mae 

R 0.5878094 246.219489 124.865667 
jan 0.5447863 50.675697 18.924045 
feb 0.6215346 34.564569 12.484177 
mar 0.5398655 36.813404 11.890062 
apr 0.4627176 9.873895 5.611972 
may 0.4367953 11.111546 7.266645 
jun 0.2399112 17.563723 12.086254 

jul 0.1071338 28.328712 19.913047 
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model R2 rmse mae 

aug 0.2324451 25.055743 18.637212 
sep 0.3350835 27.804575 14.210824 
oct 0.4745453 37.152341 19.457581 
nov 0.5926360 34.047407 17.032098 

dec 0.5170692 62.647806 22.561478 

 

The fitted models were then applied to produce annual and monthly maps of the estimated R-factor. Figure 2 
shows the resulting annual rainfall erosivity map of the UK. There is a clear trend of increasing erosivity from 
east to west, with northwest Scotland experiencing the highest rainfall erosivities, and south east England 
experiencing the lowest. Values of rainfall erosivity were then extracted for the site surrounding Magna. 

Annual rainfall erosivity at our site was estimated to be 597 MJ mm ha−1h−1y−1. Further details of monthly 
maps of UK rainfall erosivity can be found at the GitHub repository. Details of future monthly and annual 
rainfall erosivity can also be found at this link and in the corresponding paper. 

 

Figure 2: Map of annual rainfall erosivity in UK (MJ mm ha−1h−1y−1) 
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