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Abstract: With the growing number of digitally available collections consisting of images depicting
relevant objects from the past in relation with descriptive annotations, the need for suitable infor-
mation retrieval techniques is becoming increasingly important to support historians in their work.
In this context, we address the problem of image retrieval for searching records in a database of silk
fabrics. The descriptors, used as an index to the database, are learned by a convolutional neural
network, exploiting the available annotations to automatically generate training data. Descriptor
learning is combined with auxiliary classification loss with the aim of supporting the clustering in the
descriptor space with respect to the properties of the depicted silk objects, such as the place or time
of origin. We evaluate our approach on a dataset of fabric images in a kNN-classification, showing
promising results with respect to the ability of the descriptors to represent semantic properties of
silk fabrics; integrating the auxiliary loss improves the overall accuracy by 2.7% and the average F1
score by 5.6%. It can be observed that the largest improvements can be obtained for variables with
imbalanced class distributions. An evaluation on the WikiArt dataset demonstrates the transferability
of our approach to other digital collections.

Keywords: deep learning; image retrieval; fine-grained similarity; semantic similarity; continuous
triplet margin; auxiliary classification loss; incomplete training samples; cultural heritage; silk fabrics

1. Introduction

Preserving our cultural heritage for future generations and making it available to
both historians and a wider public is an important task. In this context, a key strategy
is the digitization of collections of historical objects in the form of searchable databases
with standardized annotations and, potentially, images, which is also a prerequisite for
fast and easy access to the related knowledge by both expert and non-expert users. It was
the goal of the EU H2020 project SILKNOW (http://silknow.eu/, visited on 30 November
2021) to take one step in this direction for the preservation of European cultural heritage
related to silk. Silk has played an important role in many different areas for hundreds of
years and still does so in the present. For instance, it has triggered technical developments
such as the Jacquard loom, which introduced the concept of punched cards for storing
information. It also has an economic impact through the textile and creative industries and
a functional aspect as a component of clothes and furniture, and it is also relevant from a
cultural and symbolic perspective through forming individuality and identity [1]. To make
silk-related knowledge from the past accessible for future generations, a knowledge graph
related to silk fabrics was built by harvesting existing online collections and converting
the meta-information into a standardized format [1]. The present paper is motivated by
the requirement to provide easy access to this knowledge graph and presents a new deep
learning-based method for image retrieval that can be used to search for records in a
database on the basis of images.
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For image retrieval, a feature vector (descriptor) is pre-computed for every image
available in the database. As soon as a user provides a query image, a corresponding query
descriptor is derived, which serves as an index to the database: the images that are most
similar to the query image are identified by finding the most similar descriptors of database
images, typically using the Euclidean distance as a similarity measure. To speed up the
search for nearest neighbors, the descriptors of the images from the database are stored
in a spatial index, typically a kd-tree [2]. Several approaches for image retrieval have
focused on hand-crafted image descriptors; e.g., encoding visual properties of images [3,4]
or exploiting text associated with images [5]. More recent approaches utilize methods based
on convolutional neural networks (CNNs) [6,7] to learn descriptors that reflect the similarity
of image pairs. The training process of such a CNN usually requires training samples
consisting of pairs of images with a known similarity status; i.e., it has to be known whether
the two images of a training pair are similar or dissimilar [8]. In the training process, the
network learns to generate descriptors with small Euclidean distances for similar image
pairs and descriptors with large Euclidean distances for dissimilar ones.

In this context, a major problem is the generation of training samples. Often, they
are generated by manual labeling [9,10], but this is a tedious and time-consuming task; in
the context of image retrieval for searching in a database of works of art, it also has the
disadvantage that, in particular if based on purely visual aspects, it is highly subjective.
To solve this problem, it is desirable to generate the training samples automatically by
defining similarity based on additional information that is assigned to images; e.g., class
labels describing the type of the depicted object [11–14] or descriptive texts [15,16]. This
strategy for generating training data was also applied for image retrieval in the context of
digital collections of works of art [17–19]. It allows the generation of samples consisting of
pairs of images with a known similarity status from existing datasets containing images
with annotations. In most of the cited approaches, the similarity of images is considered to
be a binary concept: a pair of images is either similar or not [11,17].

However, in the context of image retrieval in databases of works of art, a gradual
concept of similarity [13,14] might be more intuitive than a binary one. One option to
define such a non-binary concept of similarity can be obtained by measuring the level
of similarity of an image pair by the level of agreement of the semantic annotations for
multiple variables—a concept we referred to as semantic similarity in [20,21]. In these works,
we also considered the problem of missing information: if harvested automatically from
online collections of museums, many records in a database containing information about
cultural heritage objects will not contain annotations for all variables considered to be
relevant for defining similarity.

In this paper, we present a CNN-based method for image retrieval that can be applied
to any database containing images with semantic annotations. Based on our previous
work [21], training samples are determined automatically from the database, leading to
a gradual concept of semantic similarity, which also can be combined with visual ones.
This is expected to lead to retrieval results that are particularly meaningful for persons
wanting to learn something about the properties of the query images by analyzing the
annotations of the retrieved images, and it also allows a quantitative evaluation based
on a k-nearest neighbor (kNN) classification. Our method also allows for samples with
incomplete annotations to be considered in training. Compared to our previous work,
we modify the training loss for learning similarity slightly and, more importantly, add an
additional auxiliary classification loss for every training sample, which we expect to support
the clustering in the descriptor space by forcing the descriptors to have a better intra-class
connectivity.

The scientific contributions of this paper can be formulated as follows:

• To the best of our knowledge, ours is the first work exploiting class labels of multiple
semantic variables for defining similarity for image retrieval in combination with
in an auxiliary classification loss in an end-to-end training strategy. Existing works
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employing an auxiliary classification loss that we are aware of [22–24] do not exploit
multiple variables and thus do not use a gradual concept of similarity.

• We use a gradual rather than a binary concept of similarity of images based on multi-
ple semantic variables while taking into account the problem of missing annotations,
which is important when dealing with collections of records harvested from the inter-
net. Other works implicitly allow a different number of labels per image because the
scene contains multiple objects, e.g., [12–14], which is not the case in our application.

• We transfer the gradual definition of the similarity status of image pairs into the triplet
loss of [25] to learn fine-grained image representations so that the Euclidean distances
of the learned descriptors are forced to reflect the different degrees of similarity
without the need to carefully select a margin in the loss. The margin is adapted to the
degree of similarity and uncertainty of the similarity status.

• Our formulation of the loss allows us to combine different concepts of similarity for
training to obtain descriptors that are both visually as well as semantically similar.

• We present an extensive set of experiments based on a dataset of silk fabrics, using
kNN classification for a quantitative evaluation, which also highlights the impact
of the classification loss on the results. To show the transferability of the approach,
we also present experiments for image retrieval based on the WikiArt dataset (http:
//www.wikiart.org, visited on 30 November 2021).

The remainder of this paper starts with an overview about the related work (Section 2).
Our new method for image retrieval is presented in Section 3. Section 4 describes the
datasets used for the evaluation of this method, whereas Section 5 presents a comprehensive
set of experiments based on these datasets. Finally, Section 6 summarizes our main findings
and makes suggestions for future work.

2. Related Work

Early work on image retrieval relied on hand-crafted features. In content-based image
retrieval (CBIR), the descriptors exclusively reflect the visual content of an image in form
of color histogram features, shape features and texture features [3,4]. As such, these
features focus on the visual appearance of images, and the retrieval results are often not
representative on a conceptual level, which is referred to as the semantic gap [26]. In order
to provide semantically meaningful retrieval results and thus to overcome this semantic
gap, additional semantic features derived from textual annotations of images have been
investigated in the context of semantic-based image retrieval (SBIR). For instance, ref. [27]
derived text features from image captions among others that can be integrated in image
retrieval [5]. However, none of these early works learn the descriptors from training data,
which is considered to be the strength of methods based on deep learning.

It was already shown in [28] that representations derived by a CNN pre-trained for a
completely different task, e.g., classification, can be used to achieve more meaningful image
retrieval results than classical methods specifically designed for image retrieval. Many
deep learning approaches designed for image retrieval apply Siamese CNNs consisting of
two branches with shared weights [29]. When training a Siamese network, the contrastive
loss [8] is often applied. It forces the network to produce similar descriptors for image pairs
considered to be similar and to produce dissimilar descriptors for image pairs considered
to be dissimilar. As the Euclidean distance is used to measure the similarity of descriptors
in this loss, it can also be used for image retrieval, e.g., [10]. Whereas training with a
contrastive loss requires pairs of images that are either similar or dissimilar, the triplet
loss [9] requires image triplets, each consisting of an anchor image, a positive sample—i.e.,
an image defined to be similar to the anchor—and a negative sample that is dissimilar
to the anchor. This loss forces the descriptor of the positive sample to be more similar
to the descriptor of the anchor in terms of the Euclidean distance than the descriptor of
the negative sample by at least a predefined margin. Both training procedures require
training samples with known binary similarity status, which are often generated by manual
labeling; e.g., [9,10].

http://www.wikiart.org
http://www.wikiart.org


ISPRS Int. J. Geo-Inf. 2022, 11, 82 4 of 29

2.1. Exploiting Semantic Annotations

An alternative to manual labeling is to exploit semantic annotations assigned to the
images to define similarity. A straightforward way to do this while maintaining a binary
similarity concept is to consider class labels of one semantic variable only: if two images
have the same class label, they are considered to be similar; otherwise, they are dissimilar.
An example for such an approach is [11], where the resultant pairs with a known binary
similarity status are used in a training procedure involving the triplet loss. Although this
strategy solves the problem of manual labeling if a database with annotated images is
available, the similarity status of an image pair is still defined in a binary way, which does
not take into account the fact that some images may be considered more similar to each
other than others and does not allow a method to be trained to retrieve images that are
similar to the query image with respect to multiple semantic variables.

If multiple annotations per image are considered, different degrees of similarity of two
images can be defined [12–14]. In [12], different levels of semantic similarity are defined
on the basis of the number of identical labels assigned to two images. Training is based
on a triplet loss, using the different degrees of similarity to weight the importance of a
triplet in training while maintaining a constant margin hyperparameter. Thus, the minimal
distance that is enforced between the distances of the descriptors of the positive and the
negative samples from the anchor descriptor is identical for all triplets, independently of
their degree of similarity.

In [13], training requires the descriptor distances to reflect different degrees of similar-
ity. Using the contrastive loss, descriptors of images whose annotations agree completely
are forced to have a distance shorter than a pre-defined positive margin, whereas the
margin defining the minimal descriptor distance between images with partly or completely
different annotations is weighted by the degree of similarity; the margin is a hyperparame-
ter to be chosen. A gradual definition of semantic similarity based on the cosine distance
between two label vectors is proposed in [14]. The authors formulate a loss based on
pairs of images that forces the image descriptor similarity to match the gradual semantic
similarity during training without the need to tune a margin hyperparameter.

All of the cited papers using multiple annotations [12–14] aim to learn binary hash
codes as image descriptors instead of real-valued feature vectors. The labels used in these
papers describe different aspects of the depicted scene, e.g., different object types, whereas
in our work, they are related to more abstract semantic properties of the depicted object,
e.g., the place and time of origin of the depicted object. Furthermore, even though they
allow for a different number of labels assigned to an image, the cited papers do not consider
missing annotations in theirs definitions of similarity. We explicitly deal with missing
annotations in triplet-based learning, using them to define a degree of uncertainty of the
similarity status that has an impact on the margin of the triplet loss.

2.2. Auxiliary Losses

The usability of feature vectors learned in the context of image classification to serve
as descriptors for image retrieval has already been investigated [28,30–32]. Even leveraging
the softmax layer activations for image retrieval seems to be possible [33]. In [34], classifica-
tion is used to restrict the search space for image retrieval to the images belonging to the
same category as the search image. To further improve the clustering of image descriptors
with respect to the similarity of the represented images, descriptor learning can be realized
by combining the pairwise or triplet losses with an additional auxiliary classification loss.

In [22], descriptor learning based on the contrastive loss is combined with a classifica-
tion loss. A single variable only is considered both for defining the similarity of images in a
binary way and for classification. Similar approaches relying on a single variable are shown
in [23,24], but in these papers, the triplet loss is used in combination with a classification
loss. This is also the case in [35], where two additional auxiliary loss functions are proposed:
a spherical loss, designed to support the learning of inter-class separability, and a center
loss, expected to support the intra-class connectivity. All of these works exploit the class
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labels of one variable only to define similarity, which leads to a binary similarity status
of images and thus does not allow different degrees of similarity to be learned. In [36],
descriptor learning is also combined with a classification loss, where several semantic
variables are used to perform multi-task learning. The goal of descriptor learning is to
force the high-level image descriptors that are produced by the last layer of the feature
extractor to be invariant to the characteristics of the dataset an image belongs to; in [36],
two different descriptors are considered. For that purpose, the descriptors produced by
two multi-task network architectures, one per dataset, are presented to a triplet loss, forcing
the descriptors belonging to different datasets to be more similar than a descriptor pair
belonging to images from the same dataset. Although [36] exploits the class labels of several
variables to learn descriptors by means of multi-task learning, the concept of similarity is
still defined in a binary way.

We could identify exactly one work that allows for a fine-grained definition of simi-
larity and additionally utilizes a classification loss to support descriptor learning. In [37],
a fine-grained definition of similarity by exploiting the semantic relatedness of class labels
according to their relative distance in a WordNet ontology [38] is proposed. Descriptor
training, which can be optionally combined with the training of a classifier, is realized by
learning a mapping from images to embeddings that are enforced to match pre-calculated
class embeddings, where the class embeddings can iteratively be derived from a similarity
measure for images considering semantic aspects. To the best of our knowledge, there is no
work that learns different degrees of descriptor similarity in combination with a classifica-
tion loss in an end-to-end manner. In particular, we could not find any work that exploits
the classes of several semantic variables to both define a fine-grained concept of semantic
similarity and to learn to predict the variables in order to support descriptor learning.

2.3. Image Retrieval for Cultural Heritage

All works cited so far address descriptor learning for image retrieval, but in the
context of applications that do not involve the preservation of cultural heritage. Many
works investigating machine learning methods in the field of heritage preservation focus on
the image-based classification of depicted artworks with respect to one [39–41] or multiple
variables [42–44]. Nevertheless, image retrieval is becoming an increasingly important task
in that field as well [45].

The first approaches exploit graph-based representations of images in order to search
for similar objects in a database [46]. More recent approaches for image retrieval in the
context of cultural heritage rely on high-level image features learned by a CNN; e.g., [17,47].
In [47], an unsupervised approach for image retrieval based on extracting image features
with a pre-trained CNN is proposed. After transforming these features to more compact
descriptors by means of a principal component analysis, image retrieval is performed by
searching the nearest neighbors in the descriptor space based on Euclidean distances. In
contrast, the authors of [17] propose to train a CNN to generate image features suitable
for retrieval by minimizing a triplet loss. For that purpose, they generate training data
exploiting the class labels of five semantic variables to define the similarity of images in a
binary way; two images are assumed to be similar in cases with more than two identical
class labels.

Instead of aiming to retrieve the images that are most similar to a query image, cross-
modal retrieval aims at finding the images most closely related to a provided query text
or at finding the best descriptive texts for a query image. Cross-modal image retrieval
plays an important role in the context of querying art collections, e.g., [18,19], where it is
a challenging task to match images and texts in cultural heritage related collections [48].
In [18], descriptors are learned by minimizing a variant of the triplet loss, where image
descriptors and text descriptors are forced to be similar with respect to their dot product.
The approach in [19] also addresses cross-modal retrieval using strategies that are similar
to the ones used in our work. The authors obtain image descriptors for retrieval on the
basis of a CNN (ContextNet) pre-trained for the multi-task classification of four semantic



ISPRS Int. J. Geo-Inf. 2022, 11, 82 6 of 29

variables. In order to learn semantically meaningful image representations, the training of
ContextNet combines classification with the mapping of image descriptors to node2vec
representations [49] that describe the context of the depicted object with respect to a
knowledge graph containing works of art. Nevertheless, the authors do not investigate
image-to-image retrieval but evaluate the potential of the image descriptors learned using
their method for cross-modal image retrieval.

Although there are works addressing image retrieval in the context of cultural heritage
applications, none of them except for our own previous work [21] exploits multiple semantic
variables to define different degrees of similarity for training. Furthermore, no work could
be found that combines descriptor learning with an auxiliary classification loss to support
the clustering in feature space. The approach in [19] is most similar to ours, but on the
one hand, image classification and descriptor learning are realized in two steps in that
paper, and on the other hand, this approach addresses multi-modal retrieval instead of
image-to-image retrieval. Finally, we could not find any work on image retrieval in the
field of cultural heritage that focuses on images of silk fabrics; all works cited so far utilize
datasets of images showing paintings.

2.4. Discussion

Even though there are quite a few works addressing image retrieval for images showing
fabrics, most of them address the retrieval of processed fabrics such as clothes [36,50–52]
instead of plain fabrics. A few works also investigate image retrieval for plain fabrics, but
they define the similarity status of training pairs exclusively on the basis of the class labels
of a single variable [53], or they train the network for fabric classification only and use the
high-level features for image retrieval [54]. To the best of our knowledge, ours is the only
work addressing fabric image retrieval in the context of cultural heritage except for our
previous work [21].

Whereas there are existing methods focusing on learning different degrees of simi-
larity [13,14] as well as methods dealing with image retrieval in the context of cultural
heritage [17,19], there does not seem to be any work investigating a fine-grained similarity
concept on the basis of multiple variables under consideration of missing annotations
except for our previous work [21]. Furthermore, to the best of our knowledge, there is no
work that combines such a similarity concept with an auxiliary classification loss to predict
the variables used to define similarity. In [22–24,36], descriptor learning is combined with
an auxiliary loss, but these approaches are all based on a single variable either for the
auxiliary classification or for the similarity concept, or for both.

The most similar works to the approach presented in this paper are [19] and our own
previous work [21]. Even though [19] learns to predict multiple variables describing the
properties of cultural heritage, training the classifier can be seen as a preprocessing step
from the perspective of the subsequently trained descriptors for cross-modal retrieval. In
this paper, we adopt a variant of the visual and semantic similarity defined in [21] that
allows for different degrees of similarity while explicitly considering missing semantic
annotations. In contrast to [21], we introduce an additional auxiliary classification loss
in order to improve the clustering behavior in the descriptor space with respect to the
semantic properties of the silk objects depicted in the related images. For that purpose,
we exploit a variant of a multi-task classification loss that is also able to deal with missing
annotations [55].

3. Methodology

The main objective of the proposed method is image retrieval based on descriptors
that can serve as an index to a database. The result consists of the set of k images in
a database with the most similar descriptors to the descriptor of a query image. Our
approach for learning descriptors requires a set of images with known annotations for an
arbitrary set of variables. These annotations may be incomplete; i.e., annotations for some
variables may be missing for some or even all samples. Our method is based on a CNN
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that takes an RGB image as an input and generates the required descriptor. In the training
process, it learns to generate descriptors whose Euclidean distances implicitly provide
information about the degree of similarity of the input images. In this context, our focus
is on semantic similarity, which measures the similarity of two images by the degree of
agreement of the semantic properties of these images. As shown in [21], visual similarity
aspects can improve the learning of semantic similarity with a strongly varying frequency
of the individual properties, so a combination of semantic and visual concepts of similarity
are also considered here, but in a slightly modified form compared to [21]. The training
data are derived automatically from available data.

The key idea of this paper is to combine descriptor learning with multi-task learning for
predicting the semantic properties used to define semantic similarity. A joint representation
that is used both for generating the descriptors and for predicting the class labels of multiple
semantic variables is learned end-to-end by minimizing a loss related to the similarity
of pairs or triplets of images together with a multi-task classification loss. Adding the
classification loss to descriptor learning is assumed to lead to descriptors whose Euclidean
distances reflect the degree of semantic similarity of the corresponding image pairs in
a better way. This combination is expected to lead to better clusters corresponding to
images with similar semantic properties, because this will be favored by both types of
tasks in training. Consequently, it is also assumed to lead to a better representation of
underrepresented classes, because the CNN learns that certain patterns are related to such
a class.

The remainder of this section starts with a detailed description of the CNN architecture
in Section 3.1. In Section 3.2, the training procedure as well as the loss function proposed
to train the CNN is introduced. To make this paper self-contained, Section 3.2.1 briefly
presents the similarity concepts introduced in [21] as well as a detailed description of the
integration of the similarity concepts in the image retrieval training objective. The auxiliary
image classification loss is described in Section 3.2.2. Finally, details on the way in which
training batches are generated can be found in Section 3.3.

3.1. Network Architecture

The main objective of the CNN is to map an input image x to an image descriptor
f (x) to be used for image retrieval. For that purpose, the network architecture presented in
Figure 1 is proposed. It consists of three main parts: a feature extraction part delivering
features f j f c(x), an image retrieval head delivering the actual descriptor f (x) and a classifi-
cation head delivering normalized class scores ymk(x) that can be interpreted as posterior
probabilities P(Cmk|x) for the kth class of the mth semantic variable. The classification head
exists only during training to allow for an auxiliary classification loss that is supposed to
support descriptor learning.

The feature extraction part is a ResNet152 [56] backbone without the classification layer.
It takes an RGB input image x of the size 224 by 224 pixels and calculates a 2048-dimensional
feature vector fRN(x, wRN), where wRN denotes a vector containing all weights and biases
of the ResNet152. The ResNet output fRN(x) is the argument of a ReLU (rectified linear
unit [57]) nonlinearity and afterwards, a dropout [58] with a probability ρd is applied. This is
followed by NLj f c fully connected layers (joint fc in Figure 1) consisting of NNj f c nodes each.
They are at the core of our method because the resulting feature vectors f j f c(x, wRN , wj f c)
are the input to both the image retrieval and classification heads. Thus, the weights wj f c of
the joint fc layers are both influenced by the auxiliary multi-task classification loss as well
as by the losses used for descriptor learning. Accordingly, it is assumed that the learned
image representation f j f c(x, wRN , wj f c) is more meaningful with regard to the semantic
annotations of the input image.

The image retrieval head consists of a simple normalization of the feature vector
f j f c(x, wRN , wj f c) to unit length and does not require any further network weights. In the
remainder of the paper, we use the shorthand wdescr := [wT

RN , wT
j f c]

T to denote the weights



ISPRS Int. J. Geo-Inf. 2022, 11, 82 8 of 29

that have an influence on the descriptor. The result of normalization is the image descriptor
f (x, wdescr) to be used for image retrieval.

Figure 1. CNN architecture. The input is an RGB image x of 224 × 224 pixels that is passed to
a ResNet152 [56] backbone, resulting in a 2048-dimensional feature vector fRN(x). After a ReLU
activation and a dropout layer, the feature vector is presented to NLj f c fully connected layers joint fc
consisting of NNj f c nodes each and delivering the feature vector f j f c(x). The head of the network
consists of two branches: a classification head and an image retrieval head. The image retrieval head
normalizes the vectors f j f c(x) to unit length, leading to the descriptors f (x) for image retrieval; it is
used both in training and in testing. The classification head consists of NL f c−tm further fully connected
layers f c-tm with ReLU, each consisting of NN f c−tm nodes. They map the joint representation f j f c(x)
to task-specific representations and m classification layers f c-cm for multi-task classification with as
many nodes as there are classes for the mth variable. The softmax activations ymk can be interpreted
as posterior probabilities P(Cmk|x) for the kth class of the mth variable. The broken line indicates that
the classification head exists only at training time.

The image classification head takes the unnormalized vector f j f c(x, wRN , wj f c) =
f j f c(x, wdescr). After being processed by a ReLU activation, it is presented to M separate
branches, each corresponding to one classification task to be learned; i.e., to the prediction
of one of the M variables. Each branch is connected to the joint fc layer and consists of
NL f c−tm task-specific fully connected layers f c-tm of NN f c−tm nodes, each with a ReLU.
Finally, each branch has a classification layer f c-cm with Km nodes, where Km is the number
of classes to be distinguished for the mth variable, delivering unnormalized class scores
amk(x, wdescr, wclass). The weights wclass := [wT

f c−tm
, wT

f c−cm
]T denote all weights in the

classification head, where w f c−tm denotes the weights in the layers f c-tm and w f c−cm are
the weights of the layers f c-cm. All M classification layers have a softmax activation [59]
delivering the normalized class scores ymk(x, wdescr, wclass)

ymk(x, wdescr, wclass) =
exp(amk(x, wdescr, wclass))

∑Km
j=1 exp

(
amj(x, wdescr, wclass)

) , (1)

which can be interpreted as posterior probabilities P(Cmk|x, wdescr, wclass); i.e., the net-
work’s beliefs that the input image x belongs to class k for variable m.

3.2. Network Training

The training of the CNN depicted in Figure 1 is achieved by minimizing a loss function
L(x, w). The proposed CNN has two sets of parameters from the perspective of training:
the weights wRN of the ResNet152 and the remaining weights whead := [wT

j f c, wT
class]

T of
the additional layers. The weights wRN are initialized by pre-trained weights obtained on
the ILSVRC-2012-CLS dataset [60], whereas the weights whead of the additional layers of
the CNN are initialized randomly using variance scaling [61]. As it is expected that silk
fabrics or other objects in the context of cultural heritage belong to another domain than
objects depicted in the ImageNet dataset, the last residual blocks consisting of NLRN layers
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are potentially fine-tuned [62]. Denoting the parameters of the frozen ResNet layers by
wRN f r and those of the fine-tuned ResNet layers by wRN f t , the parameters to be determined
in training are wtr = [wT

RN f t
, wT

head]
T . Note that the entire parameter vector becomes

w = [wT
RN f r

, wT
tr]

T .
Training is based on a set of training samples x that consist of images with semantic

annotations for at least one of the M variables. In addition, the information that two or
more images show the same object can be considered in training if available; for instance,
the images can be exported from a database containing records about objects that are
associated with multiple images [21]. Training is based on stochastic gradient descent
mini-batch with adaptive moments [63]. In each training iteration, only a mini-batch xMB

consisting of NMB training samples is considered, and only the loss L
(
xMB, w

)
achieved

for the current mini-batch is used to update the parameters wtr. We use early stopping; i.e.,
the training procedure is terminated when the validation loss is saturated.

As the key idea of this paper is to support descriptor learning by simultaneously learn-
ing an auxiliary multi-task classifier in order to improve the clustering of the descriptors,
the loss L

(
xMB, w

)
consists of an image retrieval loss LR

(
xMB, w

)
, a classification loss

LC
(
xMB, w

)
and a regularization loss Lwd(w):

L
(

xMB, w
)
= λR · LR

(
xMB, w

)
+ λC · LC

(
xMB, w

)
+ Lwd(w). (2)

The image retrieval loss LR
(
xMB, w

)
incorporates several similarity concepts to learn

the trainable network weights wtr based on a set of training samples xMB such that the
Euclidean distances of the descriptors f (xi), f (xo) (cf. Figure 1) correspond to the degree of
similarity of xi, xo ∈ xMB; this is described in detail in Section 3.2.1. The image classification
loss LC

(
xMB, w

)
realizes a mathematical dependency of the weights w on the network’s

ability to predict the correct class labels for all images xi ∈ xMB. Thus, it can be seen as an
auxiliary loss term for descriptor learning that supports the clustering of the descriptors
with respect to the semantic properties of the depicted objects; details on that loss are
presented in Section 3.2.2. The weights λR and λC in Equation (2) control the impact of
the image retrieval and classification losses, respectively, on the total loss. Finally, Lwd(w)
denotes a weight decay term that is defined as [59]:

Lwd(w) =
λ

2
· ‖wtr‖2 =

λ

2
·
(

wT
tr ·wtr

)
. (3)

Adding weight decay to a loss function aims to avoid overfitting by penalizing large
values of wtr. The parameter λ controls the influence of the regularization term on the loss
L
(
xMB, w

)
, as another hyperparameter to be tuned.

3.2.1. Image Retrieval Training Objective

The image retrieval loss should train the network by adapting the learnable parameters
wtr to produce descriptors such that for any pair of images xi, xo, the Euclidean distance
∆n

i,o,w of the corresponding descriptors f (xi, w) and f (xo, w) reflects the degree of similarity
of the two images, where

∆n
i,o,w = || f (xi, w)− f (xo, w)||2, (4)

where n is an index of a pair xi, xo that will be defined differently for different loss functions.
We propose a loss function that consists of three similarity loss terms:

LR

(
xMB, w

)
= αsem · Lsem

(
tMB, w

)
+ αco · Lco

(
pMB

co , w
)
+ αsl f · Lsl f

(
pMB

sl f , w
)

. (5)

Each of the three terms in Equation (5) corresponds to a specific concept of similarity
and requires a specific type of training samples generated from the images of the mini-
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batch xMB. The loss term Lsem
(
tMB, w

)
, requiring a set tMB of NMB

t triplets of training
images from xMB, integrates semantic similarity into network training. The second term,
Lco
(
pMB

co , w
)
, considers color similarity. It requires a set pMB

co of NMB
co pairs of training

images from xMB. Finally, Lsl f

(
pMB

sl f , w
)

realizes the learning of self-similarity and requires

a set pMB
sl f of NMB

sl f pairs of images of the same object extracted from xMB. The impact of the

individual loss terms on LR
(
xMB, w

)
is controlled by the weights αsem, αco, and αsl f . The

subsequent paragraphs contain a detailed description of all three similarity concepts as well
as their integration into losses in the order in which they occur in Equation (5). The way
in which the set tMB of triplets and the sets pMB

co and pMB
sl f of image pairs are determined

given a mini-batch xMB is described in detail in Section 3.3.

Semantic Similarity Loss

The goal of the semantic similarity loss is to learn the CNN parameters such that
the resulting descriptors reflect the semantic similarity of the respective images. For that
purpose, a concept of semantic similarity exploiting the class labels of M semantic variables
is required. The degree of equivalence of the class labels of M variables assigned to an
image pair (xi, xo) can be measured by means of the semantic similarity defined in [21]:

Ysem(xi, xo) =
1
M
·

M

∑
m=1

dm(xi, xo) · πi
m · πo

m. (6)

In Equation (6), π
q
m with q ∈ {i, o} denotes whether the class label of the mth variable

is known for the image with index q (πq
m = 1) or not (πq

m = 0). The actual comparison of
the Km class labels of the mth variable in Equation (6) is realized by the function

dm(xi, xo) =
Km

∑
k=1

δ(lmk(xi) = lmk(xo)), (7)

where lm(xq) := [lm1(xq), ..., lmk(xq), ..., lmKm(xq)]T is a vector indicating the class label for
the mth variable that is assigned to xq, with q ∈ {i, o}. If the kth class of the mth variable
is assigned to the image xq, the indicator lmk(xq) is 1; otherwise, lmk(xq) = 0. Thus, the
Kronecker delta function δ(·) returns 1 in case the kth class label is assigned to both xi
and xo, and it returns 0 in all other cases. This formalization of dm(xi, xo) implies that the
label for the mth variable may be unknown either for xi or for xo or for both of them. If
annotations for all variables are known, all values of π

q
m will be 1, and Ysem(xi, xo) will

correspond to the percentage of identical annotations for the two images. Consequently,
the uncertainty about the equivalence of the class labels of the M variables depends on
the percentage of variables for which either xi or xo has no annotation, which can be
expressed as

u(xi, xo) = 1− 1
M
·

M

∑
m=1

πi
m · πo

m. (8)

The goal of the semantic similarity loss is to learn the CNN parameters w such
that the semantic similarity Ysem(xi, xo) of the image pair (xi, xo) defined in Equation (6)
corresponds to the descriptor similarity ∆i,o,w in Equation (4). For that purpose, the triplet
loss [25] was adapted in [21], resulting in the semantic similarity loss

Lsem(tMB, w) =
1

NMB
t
·

NMB
t

∑
nt=1

max
(

M(xnt
i , xnt

p , xnt
n ) + ∆nt

i,p,w − ∆nt
i,n,w, 0

)
. (9)

The loss function in Equation (9) requires triplets tnt := (xnt
i , xnt

p , xnt
n ) with tnt ∈ tMB,

each consisting of an anchor sample xnt
i ∈ xMB, a positive sample xnt

p ∈ xMB and a negative
sample xnt

n ∈ xMB, where xnt
p is a sample that is more similar to the anchor sample than
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xnt
n . This loss forces f (xnt

p ) to have a Euclidean distance from f (xnt
i ) that is smaller than the

distance of f (xnt
n ) from f (xnt

i ) by at least a margin of M(xnt
i , xnt

p , xnt
n ):

M
(

xnt
i , xnt

p , xnt
n

)
= Ysem(xnt

i , xnt
p )−

(
Ysem(xnt

i , xnt
n ) + u(xnt

i , xnt
n )
) !
> 0. (10)

In Equation (10), u(xnt
i , xnt

n ) represents the uncertainty of the similarity status of the
pair (xnt

i , xnt
n ) according to Equation (8). Thus, the term Ysem(xnt

i , xnt
n ) + u(xnt

i , xnt
n ) can be

interpreted as the maximal positive semantic similarity of xi, xn (i.e., assuming all missing
annotations were identical), and the margin becomes the difference between the similarity
Ysem(xnt

i , xnt
p ) of the anchor and the positive sample and the maximum positive similarity

of the anchor and the negative sample. Accordingly, M
(
xnt

i , xnt
p , xnt

n
)

can be interpreted
as the guaranteed difference in semantic similarity between the image pairs (xt

i , xt
p) and

(xt
i , xt

n). The constraint M
(
xnt

i , xnt
p , xnt

n
) !
> 0 expressed in Equation (10) is considered in the

definition of the set of triplets considered in this loss: only triplets of images fulfilling that
constraint are eligible for contributing to this loss (cf. Section 3.3).

Color Similarity Loss

The goal of the color similarity loss is to learn the CNN parameters such that the
resulting descriptors are similar for images with a similar color distribution and dissimilar
for images with a different color distribution. The agreement between the color distributions
of two images xi and xo, denoted as color similarity, can be calculated by means of the
normalized cross correlation coefficient ρ(xi, xo) of color feature vectors h(xi) and h(xo) [21]:

ρ(xi, xo) =
∑lh

j=1(hj(xi)− h̄(xi))(hj(xo)− h̄(xo))√
∑lh

j=1(hj(xi)− h̄(xi))2 ·∑lh
j=1(hj(xo)− h̄(xo))2

, (11)

where hj(xq) is the jth element of h(xq) with q ∈ {i, o}, lh is the number of elements of a
feature vector, and h̄(xq) is the mean over all hj(xq). The color feature vector h(xq) of an
image xq describes the color distribution of that image in the HSV (H: hue, S: saturation, V:
value) color space. To derive this feature vector, the hue H and saturation S values of every
pixel of the image xq resized to 224 × 224 pixels are considered to be polar coordinates.
They can be converted to Cartesian coordinates

[xc(H, S), yc(H, S)]T =
[ r

2
,

r
2

]T
+

r
2
· S · [cos (2π · H), sin (2π · H)]T , (12)

so that all values of xc and yc are in the range [0, r]. We define a discrete grid consisting
of r× r raster cells (we use r = 5) and count the number of points (xc(H, S), yc(H, S)) in
each raster cell (ic, jc). Finally, we concatenate the corresponding rows to form the vector
h(xq). Thus, hj(xq) is the number of points in the raster cell (ic, jc), where j = ic + r · jc; this
implies lh = r2 .

The correlation coefficient ρ(xi, xo) ∈ [−1; 1] expresses the linear dependency between
the two color feature vectors h(xi) and h(xo). In case of identical color distributions of
xi, xo in HSV color space, the color descriptors h(xi), h(xo) are identical and thus ρ(xi, xo)
becomes 1, indicating 100% color similarity. The lower the correlation coefficient, the lower
the degree of similarity is supposed to be.

The color similarity loss aims to learn descriptors f (xi), f (xo) whose Euclidean dis-
tance corresponds to the color similarity ρ(xi, xo) of the image pair (xi, xo) defined in
Equation (11). This can be achieved by minimizing the following loss function [21]

Lco(pMB
co , w) =

1
NMB

co
·

NMB
co

∑
nco=1

max
(

0, |∆nco
i,o,w −

(
1− ρ(xnco

i , xnco
o )
)
|
)

. (13)
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This loss function requires pairs pnco
co :=

(
xnco

i , xnco
o
)

of images from the mini-batch,
with pnco

co ∈ pMB
co ; NMB

co is the number of pairs of images from xMB. Essentially, it forces
the descriptor distance ∆nco

i,o,w to be small for pairs of images with a large color similarity
and to be large for image pairs of low similarity. If ρ(xnco

i , xnco
o ) = 1, indicating 100% color

similarity of xnco
i and xnco

o , the descriptor distance is forced to be zero; in the other extreme
case of maximum dissimilarity—i.e., ρ(xnco

i , xnco
o ) = −1—it should be ∆nco

i,o,w = 2—i.e., the
maximum possible descriptor distance given the fact that the descriptors are normalized to
unit length (cf. Section 3.1).

Self-Similarity Loss

The goal of the self-similarity loss is to learn that the descriptors of images showing
the same object are similar and thus to learn descriptors that are invariant to geometrical
and radiometric transformations to some degree. Self-similarity means that an image xi is
defined to be similar to an image x′i that depicts the same object. This is the only similarity
concept in our method that is not gradual. The corresponding loss requires the descriptor
distances of all pairs (xi, x′i) to be zero [21]:

Lsl f (p
MB
sl f , w) =

1
NMB

sl f
·

NMB
sl f

∑
nsl f =1

∆
nsl f
i,i′ ,w, (14)

This loss function requires pairs p
nsl f
sl f := (x

nsl f
i , x′

nsl f
i ) of images where x

nsl f
i is an

image of the mini-batch, with p
nsl f
sl f ∈ pMB

sl f . As there will be one such pair for every image

x
nsl f
i ∈ xMB, we have NMB

sl f = NMB. There are two options for the origin of x′
nsl f
i given an

image x
nsl f
i ∈ xMB.

• If the dataset contains images showing the same object, x′
nsl f
i is selected to be one of

these objects. This corresponds to rule 1 of the rule-based similarity proposed in [21];
note that the related rule-based loss of [21] is not considered in this paper.

• If the dataset contains no such images or if it is not known whether it contains such
images, the image x′

nsl f
i is generated synthetically from x

nsl f
i , and in this case, the loss

in Equation (14) could be seen as a variant of data augmentation; this is the only case
considered in the self similarity loss of [21].

Compared to [21], the set of transformations potentially applied to x
nsl f
i in the second

case has been expanded. It includes the following geometrical transformations: a rotation of
90◦, horizontal and vertical flips, cropping by a random percentage bcrop ∈ [0.7; 1] and small
random rotations ω ∈ [−5◦;+5◦]. The set of potential radiometric transformations consists
of a change of the hue H ∈ [0; 1] by adding a random value delta ∆H ∈ [−0.05;+0.05]
and an adaptation of the saturation S by multiplying it by a random factor δS ∈ [0.9; 1.0].
Finally, a random zero mean Gaussian noise with a standard deviation σG = 0.1 can be
added to generate the image x′

nsl f
i .

As described above, we have expanded the concept of self-similarity in [21] by priori-
tizing images x′

nsl f
i extracted from the dataset over a synthetic generation of x′

nsl f
i for the

definition of an image pair (x
nsl f
i , x′

nsl f
i ).

3.2.2. Auxiliary Multi-Task Learning Training Objective

An auxiliary multi-task classification is supposed to support descriptor learning to
generate clusters of image descriptors that better correspond to images of objects with
similar semantic properties. As this loss affects the weights wdescr of the joint fc layers,
it is expected to support the CNN in generating descriptors f (x, wdescr) that represent
variable-specific characteristics in the images x ∈ xMB in a better way.
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In [55], a multi-task classification loss for training a CNN to predict multiple variables
related to images xi of silk fabrics was proposed:

Lmtl(x
MB, w) = −

N

∑
i=1

∑
m∈Mi

Km

∑
k=1

timk · ln(ymk(xi, w)). (15)

It is an extension of the softmax-cross entropy for multi-task learning with missing
annotations for M variables. In Equation (15), ymk(xi, w) := ymk(x, wdescr, wclass) denotes
the softmax output for class k of variable m, Km is the corresponding number of classes and
timk is an indicator variable with timk = 1 if k is the true class label of variable m for image
xi and timk = 0 otherwise. The second sum is only taken over variables m ∈ Mi, where
Mi is defined to be the subset of variables for which an annotation is available. In order
to mitigate problems with underrepresented classes, we extend the loss in Equation (15)
by a variant of the focal loss [64]. Whereas the variant presented [65] focuses on hard
training examples in multi-class classification problems, we use a combination of the multi-
class focal loss in [65] and the multi-task-loss in Equation (15), leading to the multi-task
multi-class focal loss:

LC(xMB, w) = − 1
NMB

M

N

∑
i=1

∑
m∈Mi

Km

∑
k=1

(1− ymk(xi, w))γ · timk · ln(ymk(xi, w)). (16)

In Equation (16), NMB
M is the number of available annotations for all M variables;

i.e., NMB
M := ∑N

i=1 ∑m∈Mi ∑Km
k=1 timk. The focusing parameter γ controls the influence of

the focal weight (1 − ymk(xi, w)) ∈ [0, 1] on the loss LC(xMB, w). As the focal weight
becomes 1 for ymk(xi, w) → 0 and the focal weight becomes 0 for ymk(xi, w) → 1, the
loss LC(xMB, w) depends more strongly on xi ∈ xMB with small softmax scores ymk(xi, w).
Thus, the network weights wtr are influenced more strongly by hard training examples
indicated by small ymk(xi, w) for tnmk = 1 when minimizing LC(xMB, w). Assuming class
imbalances for the class distributions of at least one of the M variables, the focal loss in
Equation (16) is supposed to improve the classification performance of underrepresented
classes as the class scores of such classes are generally low, thus also supporting the CNN to
produce descriptors which are more likely to help in retrieving images with similar semantic
properties for query images corresponding to underrepresented classes for some variables.

3.3. Batch Generation

This section gives an overview of how a mini-batch of images xMB with related class
labels as well as potential information indicating images that depict the same object is
processed in order to generate the datasets required by the individual loss terms. In general,
the auxiliary classification loss requires a set of independent images, whereas the loss terms
in the image retrieval loss need sets of pairs or triplets of images in order to learn similarity;
i.e., to produce descriptors whose pairwise Euclidean distance reflect similarity. These sets
are generated as follows:

• The semantic similarity loss Lsem(tMB, w) in Equation (9) requires triplets t = (xi, xp, xn)

∈ tMB. In a first step, all possible triplets with xi 6= xp 6= xn are generated for
every image xi ∈ xMB. As for a triplet to be valid, the positive sample xp has to
be more similar to xi than the negative sample xn, only those NMB

t triplets fulfilling
the constraint related to the margin formulated in Equation (10) are presented to
the network. As the number of NMB

t is dependent on the margin M
(
xnt

i , xnt
p , xnt

n
)

calculated from the available class labels in a mini-batch, the loss is normalized by the
number of triplets.

• The color similarity loss Lco
(
pc

MB, w
)

in Equation (13) requires pairs of images pco =

(xi, xj) ∈ pMB
co . For that purpose, all possible pairs pco in the mini-batch xMB are

generated, excluding all pairs pco = (xi, xj) with i = j. Thus, the color similarity loss
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is calculated for NMB
co = NMB!/(2! · (NMB − 2)!) pairs of training samples, where !

denotes the factorial of a number.
• The self similarity loss Lsl f (pMB

sl f , w) requires pairs of images psl f = (xi, x′i) ∈ pMB
sl f .

There is one such pair per image in the mini-batch; as described in Section 3.2.1, if
there exist other images in the dataset that show the same object as xi, one of these
images is randomly chosen to serve as the partner x′i . Otherwise, x′i is generated
synthetically using a randomly drawn transformation as defined in Section 3.2.1.
This results in NMB

sl f = NMB pairs of images psl f .

• The classification loss LC
(
xMB, w

)
in Equation (16) requires a set of independent

images x ∈ xMB with known classes for ideally all of the M variables in order to learn
w such that the predictions yk become optimal. Accordingly, all NMB images in the
mini-batch can be presented to the classification loss. As class labels are potentially
not available for all M variables, there are potentially less than NMB ·M cross-entropy
terms constituting the classification loss in case of mutually exclusive class labels per
variable. Thus, the loss is normalized by the number of known class labels NMB

M for
the M variables; i.e., the number of terms constituting the loss.

Due the normalization of all loss terms by the number of terms of the sum in the
individual loss functions, the total loss is not biased towards loss terms with a larger
number of summands.

4. Dataset

This section describes the datasets that are used to evaluate the methodology de-
scribed in Section 3. The first dataset, referred to as the SILKNOW dataset, is introduced
in Section 4.1. It contains images of silk fabrics and is used for a thorough evaluation of
the proposed image retrieval approach. The second dataset, described in Section 4.2, is a
variant of the WikiArt dataset and contains images of paintings from the last few centuries.
This dataset is used to analyze the transferability of the proposed methodology to other
cultural heritage datasets.

4.1. SILKNOW Dataset

The SILKNOW dataset is based on the SILKNOW knowledge graph [1,21] that was
generated in the frame of the EU-H2020 project SILKNOW with the goal of building and
providing a platform (https://ada.silknow.org/, visited on 30 November 2021) containing
information about European silk cultural heritage. The graph contains records of plain
silk fabrics as well as processed textiles, harvested from online collections of a variety of
museums; e.g., the Museu Tèxtil de Terrassa (IMATEX dataset) [66] or the Boston Museum
of Fine Arts. Each record corresponds to one artifact, and many of the records contain at
least one image. The semantic information available at the harvested websites was mapped
to a standardized format in the context of the SILKNOW project on the basis of a thesaurus,
which is another outcome of the project. In addition, there is a mapping of the available
information to a simplified class structure for the variables material, place, timespan and
technique that forms the basis for the dataset used in this paper.

The SILKNOW dataset used in this paper was exported from the SILKNOW knowl-
edge graph. It consists of 48,830 images of plain fabrics, with each image being associated
with a valid annotation in at least one of the four variables mentioned above. To avoid
strongly underrepresented classes, only labels occurring at least 150 times are considered
valid. In addition, a unique object identifier is associated with every image, so that the
information required to identify images showing the same object,used in the definition of
image pairs for the self-similarity loss (cf. Section 3.2.1) is available. For the purpose of
evaluating the methodology presented in Section 3, the dataset was randomly split into a
training set (60%), a validation set (20%) and a test set (20%). The training set was further
split into a subset of images used for updating the trainable weights and another subset
used for early stopping. The statistics of the class distributions in all variables and all
subsets are listed in Table 1.

https://ada.silknow.org/
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Table 1. Statistics of the distribution of samples for the SILKNOW dataset. Variable: name of the
variable considered; the number beneath the class names are percentages of samples with annotation
for that variable. Class name: classes differentiated for each variable; total: number of samples for a
class; train: number of samples used for training; update: number of training samples used for weight
updates; stop: number of training samples used for early stopping; val: number of samples in the
validation set; test: number of samples in the test set.

Variable Class Name Total Train Update Stop Val Test

material animal fibre 27,252 16,700 12,546 4154 5330 5222
(72.4%) metal thread 4208 2574 1943 631 684 950

vegetal fibre 3891 2407 1763 644 707 777

place GB 7998 5154 3908 1246 1282 1562
(71.3%) FR 7379 4452 3346 1106 1527 1400

ES 4708 2847 2127 720 921 940
IT 4700 2781 2131 650 995 924
IN 2353 1441 1069 372 420 492
CN 1399 866 636 230 276 257
IR 1294 802 608 194 248 244
JP 1097 794 588 206 163 140
BE 648 405 305 100 71 172
TR 593 342 240 102 94 157
DE 592 388 291 97 96 131
GR 479 281 206 75 69 129
NL 455 310 226 84 85 60
US 357 238 190 48 54 65
PK 352 225 165 60 67 60
RU 228 137 99 38 46 45
JM 191 105 77 28 49 37

timespan 19th century 9975 6041 4569 1472 1938 1996
(57.9%) 18th century 8423 5155 3819 1336 1539 1729

20th century 4012 2447 1821 626 778 787
17th century 3378 2170 1649 521 482 726
16th century 1829 1154 873 281 332 343
15th century 685 433 338 95 100 152

technique embroidery 6861 4333 3237 1096 1217 1310
(32.2%) velvet 3051 1854 1422 432 671 526

damask 2768 1615 1218 397 582 571
other technique 2526 1585 1203 382 463 478
resist dyeing 355 289 213 76 15 51
tabby 185 98 70 28 37 50

As the statistics in Table 1 indicate, the dataset is unbalanced, which makes it challeng-
ing. Depending on the variable, the amount of available class labels varies between 32.2%
for technique and 72.4% for material. Of the images in the dataset, 6143 have annotations for
all of the four variables. For 13,771 of the images, class labels are known for three of the four
variables, and there are 19,421 images with annotations for two variables. Furthermore, the
number of classes to be differentiated varies between 3 classes for material and 17 classes
for the variable place. Examples of images of plain silk fabrics can be seen in Figure 2.
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Figure 2. Examples for images in the SILKNOW dataset from the IMATEX collection. The five images
have the following class labels (from left to right): timespan: unknown, 18th century, unknown, 19th
century, unknown; place: IR, unknown, unknown, FR, unknown; material: metal thread, animal fibre, vegetal
fibre, animal fibre, vegetal fibre; technique: unknown, damask, unknown, unknown, embroidery. © Museu
Tèxtil de Terrassa/Quico Ortega [66].

4.2. WikiArt Dataset

In recent years, many works have investigated the image classification of cultural
heritage collections, most of which have dealt with the classification of images of paintings,
such as those in the WikiArt dataset. As the WikiArt dataset consists of images as well as
annotations for several semantic variables, it is not only suitable for evaluating classification
tasks but also fulfills the requirements of our image retrieval method. Thus, we chose
the WikiArt dataset to demonstrate the transferability of our approach to other non-silk
digital collections in the context of cultural heritage. As the WikiArt dataset is continuously
growing over time, we decided to use the version of WikiArt (https://github.com/cs-chan/
ArtGAN/tree/master/WikiArt%20Dataset, visited on 30 November 2021) provided by
the authors of [40]. They not only published the image data (81,444 images in total) and
related class labels for the three variables genre, style and artist, but also their data were
split for training and validation for each variable. We use the same split and perform the
network training as well as the hyperparameter tuning on their training set, whereas their
validation set was used exclusively for testing the trained and tuned model.

In contrast to the single-task learning experiments in [40], we consider a multi-task
learning objective in the context of image retrieval, and we also define similarity based on
multiple variables. Consequently, we refine the provided data splits by eliminating images
that occur both in the training and in the validation sets for any variable. Thus, we obtain a
data set of 80,880 images with up to three class labels per image (one per variable) with
disjoint training and validation sets. Furthermore, we split the training set into two disjoint
subsets; one for network training and one for hyperparameter tuning. In the remainder of
this paper, we denote the subset for network training as the training set and the subset for
hyperparameter tuning as the validation set. The set referred to as the validation set in [40] is
called our test set. Analogous to the SILKNOW dataset, the training dataset is also divided
into two independent subsets: update, consisting of 75% of the training samples for the
weight updates, and stop, consisting of the remaining 25% of samples for early stopping.

The resulting class structures as well as the class distributions of the three semantic
variables genre, artist and style in our multi-task WikiArt dataset can be found in Figure 3.
For the variable genre, 10 classes are differentiated, with the number of samples per class
varying between 1879 for the class illustration and 14,010 for the class portrait. For the
variable artist, there are 23 classes, where the minimum and maximum number of samples
are 461 (Salvador Dali) and 1864 (Vincent van Gogh), respectively. Finally, there are 27 different
style classes with a minimum of 106 (Analytical Cubism) and a maximum of 12,941 images
per class (Impressionism). It is worth mentioning that a class label for the variable artist is
available for 23.2% of the 80,880 images in the multi-task dataset, the information about
the genre of the depicted painting is available for 79.7% of the images, and only the style
information is known for all of the images. Examples for images in the WikiArt dataset are
shown in Figure 4.

https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset
https://github.com/cs-chan/ArtGAN/tree/master/WikiArt%20Dataset
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(a)

(b)

(c)

Figure 3. Class structures and class distributions of the WikiArt dataset for the three variables genre
(a), artist (b) and style (c). The blue bars indicate the number of images in the training set, the red bars
correspond to the validation set, and the green bars correspond to the test set.

Figure 4. Examples for images in the WikiArt dataset. The five images have the following class labels
(from left to right): artist: Rembrandt, Vincent van Gogh, Pierre Auguste Renoir, Pablo Picasso, Salvador
Dali; genre: portrait, genre painting, landscape, still life, illustration; style: Baroque, Realism, Impressionism,
Cubism, Abstract Expressionism.
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5. Experiments and Results

In this section, the methodology for learning descriptors for image retrieval described
in Section 3 is evaluated. We start with an overview of the conducted experiments and a
description of the evaluation strategy for comparing the results of different experiments
(Section 5.1). An ablation study investigating the impact of the different components of
the proposed approach can be found in Section 5.2. All of these experiments are based
on the SILKNOW dataset (cf. Section 4.1), which corresponds to the use case for which
the methodology was mainly developed. To show the transferability of the method to
other labeled datasets, an evaluation on the version of the WikiArt dataset described in
Section 4.2 was also performed. The results are reported in Section 5.3.

5.1. Test Setup and Evaluation Strategy

In order to train the CNN presented in Section 3.1, the training sets of the datasets as
defined in Section 4 are used to determine the network weights wtr, whereas the validation
set was used to find optimal hyperparameters. The test sets are used for an independent
evaluation, the results of which are reported in the subsequent sections.

5.1.1. General Test Setup

In the training process, the loss presented in Equation (2) is minimized by means of
stochastic mini-batch gradient descent [59] with a batch size of NMB = 300 utilizing the
Adam optimizer [63] using the standard parameters (α = 1× 10−3, β1 = 0.9, β2 = 0.999
and ε̂ = 1× 10−8) until the loss on an independent subset of the training data denoted as
stop in Section 4 is saturated.

A series of preliminary experiments—not reported here for lack of space—was used to
tune the hyperparameters of our method by assessing the results on the validation set. All
of these were conducted on the SILKNOW dataset; in the experiments based on the WikiArt
dataset, the same parameters were used. As far as the CNN structure was concerned, it was
found that using one fully connected layer with 256 nodes for joint fc—i.e., using NLj f c = 1
and NNj f c = 256—is to be preferred over variants with more layers or more nodes per
layer. The optimal architecture for the M = classification branches was found to consist of
NL f c−tm = 1 layer with NN f c−tm = 128 nodes. The hyperparameter tuning confirmed that
using a learning rate α of 1× 10−3 is also a good choice for our application; the optimal
values for the dropout rate was ρd = 0.3, for weight decay, it was λ = 1× 10−3, and for
the parameter in the focal loss (Equation (16)), it was γ = 1. Somewhat surprisingly, the
fine-tuning of the last residual blocks of the ResNet152 backbone did not improve the
performance; consequently, the number of layers to be fine-tuned was set to NLRN = 0,
which implies that the weights wRN determined in pre-training remain unchanged. As a
result, the vector wRN f t of fine-tuned ResNet parameters is a zero vector, and the vector of
trainable parameters is wtr = whead (cf. Section 3.2).

5.1.2. Test Series

Sections 5.2 and 5.3 show the experimental results of two series of experiments. In a
first series performed on the SILKNOW dataset (cf. Section 4.1), the impact of the individual
loss terms constituting L(x, w) (Equation (2)) on the image retrieval results is evaluated.
This test series also indicates our method’s potential to produce descriptors for image
retrieval in the use-case for which it was originally designed. For that purpose, different
values for λC, λR as well as different values for αsem, αco and αsl f are investigated. Table 2
gives an overview over the conducted experiments, identifying each of them by a name and
giving the corresponding parameter settings. In order to allow for a better interpretation of
the differences in performance given the random components of the training procedure,
each experiment is executed five times, resulting in average evaluation metrics and a
corresponding standard deviation.

The parametrization of the loss function of the variant identified to be the best one
in the first series of experiments is chosen for the experiments in the second test series,
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in addition to a variant in which all loss terms contribute to the total loss. The second
series should show the transferability of the results to other applications than the one it
was originally designed for. Unfortunately, we could not find any studies to which a fair
comparison of our method is possible, because in the context of uni-modal image retrieval
for cultural heritage applications, we are unaware of any paper for which both the results
and the datasets used to achieve them are available.

Table 2. Overview of the experiments conducted in the ablation study on the SILKNOW dataset.
First column: name by which the experiment is identified (Experiment). The other columns give the
weights of the loss function terms for each experiment. The weights λC and λR control the impact of
the retrieval loss and the auxiliary classification loss, respectively, on the total loss in Equation (2);
αsem, αco and αsl f control the impact of the individual similarity loss terms on the retrieval loss in
Equation (5). The names of the experiments refer to the loss terms that were considered (sem: semantic
similarity loss Lsem, co: color similarity loss Lco, slf : self-similarity loss Lsl f ), C: classification loss LC).
Comparing the results with and without the classification loss shows its impact on the results.

Experiment λR λC αsem αco αsl f

sem 1 0 1.0 0.0 0.0
co 1 0 0.0 1.0 0.0

sem + co 1 0 0.5 0.5 0.0
sem + slf 1 0 1.0 0.0 0.5
sem + co + slf 1 0 0.5 0.5 0.5

sem + C 1 1 1.0 0.0 0.0
sem + co + C 1 1 0.5 0.5 0.0
sem + slf + C 1 1 1.0 0.0 0.5
sem + co + slf + C 1 1 0.5 0.5 0.5

Evaluation Strategy

It is not straightforward to evaluate an image retrieval method if no samples of pairs
of images with a known similarity status is known. However, the main goal of the method
presented in this paper is to retrieve images with similar semantic properties to those of the
query image. Consequently, the available semantic annotations of a set of reference samples
(the test set of the corresponding dataset used for evaluation) can be used for a quantitative
evaluation. Thus, the image retrieval results are used for a k nearest neighbor (kNN)
classification with k = 10, and the evaluation is based on the corresponding classification
results. After training the network, the descriptors of the images in the training set are
computed. These descriptors are considered to represent the set of images in which a user
wants to search for semantically similar images; they are organized in a kd-tree [2] for a
fast kNN search. The images of the test set are considered to be the query images. For each
of them, a descriptor is computed, and the k = 10 nearest neighbors are retrieved from
the kd-tree, with the results giving access to the k most similar images in the training set.
A majority vote among the class labels of the retrieved images gives the class label of a
query image for all variables, and these labels can be compared to the reference labels for a
quantitative evaluation.

For all experiments, we report the overall accuracy (OA) describing the percentage of
correctly classified images among all evaluated images. In this context, the OA of the mth
variable is computed exclusively based on images with a known class label for variable
m, taking into account the fact that some annotations may be missing for a query image.
As the class distributions of all M variables of the two datasets are very imbalanced, we
further report the mean F1 score per variable; i.e., the arithmetic mean of all class-specific
F1 scores. The class-specific F1 score is the harmonic mean of precision (indicating the
percentage of predictions of a class that actually belong to that class) and recall (indicating
the percentage of samples per class in the reference that were predicted by the CNN). Thus,
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in contrast to the OA, the mean F1 scores are not biased by dominant classes in the dataset.
All of these evaluation metrics are presented separately for the validation and the test sets.

5.2. Results of the Experiments Using the SILKNOW Dataset

The results of the first series of experiments, conducted on the SILKNOW dataset, can
be found in Tables 3–5. Whereas Table 3 focuses on the average OAs and the average F1
scores per experiment, Table 4 gives insights into the OAs per variable, and Table 5 presents
the mean F1 scores per variable.

5.2.1. General Observations

The results in Table 3 give a first impression of how the individual loss terms affect the
performance of the presented approach to retrieve images that are semantically similar to
the query image. The experiments and the corresponding evaluation metrics consist of three
groups; the first group consists of experiments exclusively training the CNN by optimizing
one of the two main loss terms Lsem,Lco of the image retrieval loss LR, the second group
contains experiments based on different combinations of the loss terms constituting the
image retrieval loss LR, and the third group combines all variants of the second group
with the classification loss LC. Unsurprisingly, the metrics obtained in the first group of
experiments show that training based on semantic similarity yields better results in an
evaluation focusing on semantic aspects. On average, in 61.2% of the cases, a majority vote
among the k retrieved images delivers the correct class label if Lsem is used for training,
which is 6.2% more than can be achieved when only using color similarity (sem vs. co). There
is also a relatively large difference in mean F1 scores (5.2%). The results of the second group
of experiments show that the combination of semantic and color similarity (sem + co) is on
par with the variant based on semantic similarity only (sem) in terms of OA; the difference
of 0.3% is not significant considering that the standard deviation of OA is in the order of
0.2%. The difference in mean F1 scores is slightly larger, but again it is statistically not
significant. Interestingly, and somewhat surprisingly, the inclusion of the self similarity loss
seems to have a considerable negative impact on the results in this group of experiments.
Finally, the third group of experiments shows that, on average, the combination of the
image retrieval loss LR with the image classification loss LC outperforms all variants of the
first and second groups.

The two best loss variants are identified to be sem + C, combining the semantic image
retrieval loss with the image classification loss, and sem + co + C combining the semantic
and color image retrieval losses with the image classification loss. The difference between
these two variants (0.2% in both OA and mean F1 score) are insignificant. Correctly
predicting the class labels of test images in 63.9% of the cases, variant sem + C outperforms
its corresponding variant without classification loss (sem) by 2.7% in OA. As the standard
deviations of the OAs are in the range of up to 0.2%, this improvement is considered to
be significant. The mean F1 score was improved by about 5.6%, which is also a significant
improvement considering the standard deviations of around 0.3% for the mean F1 scores
in these experiments. The trend for the variant also considering the color loss (sem + co +
C) is similar when compared to variant sem; the improvement compared to variant sem +
co in OA is slightly larger because that variant had a slightly worse OA than variant sem,
and it is slightly smaller in terms of the mean F1 score (4.7%) because sem + co performed
better than sem in that metric. Interestingly, the inclusion of the classification loss mitigates
the negative influence of the self similarity loss, though it cannot completely compensate
it. From this analysis, we can conclude that the inclusion of the classification loss leads to
a significant improvement of the average performance of our method to retrieve images
that are semantically similar to the query image. In OA, the improvement is 2.7% in
the best scenario. The improvement in the mean F1 score is larger (5.6%), which we
take as a first indication that the classification loss particularly mitigates problems with
underrepresented classes.
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Table 3. Results of the experiments conducted on the SILKNOW dataset. The quality metrics are
averaged over all four variables. Each experiment was executed five times, leading to the presented
means mean and standard deviations std on the test set. The names of the experiments are those
presented in Table 2.

Quality Metric Experiment Mean Std

OA [%] sem 61.2 0.18
co 54.7 0.20

sem + co 60.9 0.17
sem + slf 53.5 0.34
sem + co + slf 56.5 0.21

sem + C 63.9 0.11
sem + co + C 63.7 0.11
sem + slf + C 62.2 0.16
sem + co + slf + C 62.2 0.15

F1 score [%] sem 37.3 0.34
co 32.1 0.39

sem + co 38.0 0.48
sem + slf 29.2 0.30
sem + co + slf 32.4 0.51

sem + C 42.9 0.31
sem + co + C 42.7 0.30
sem + slf + C 40.2 0.36
sem + co + slf + C 40.0 0.40

5.2.2. Variable-Specific Analysis

A more detailed analysis of the OAs can be made based on Table 4, showing the OA
achieved on the SILKNOW test set per semantic variable. Comparing the obtained OAs of
the individual variables, it is obvious that the classes of some variables can be predicted
much better than those of other variables. Considering the class structures of the four
variables, one can infer that higher OAs can be obtained for variables with fewer classes to
be distinguished; the variable place, with 17 classes, obtains the lowest accuracies, whereas
the variable material with only three classes obtains the highest accuracies (about 75%),
which is about 30% higher than the values achieved for place. The two variants sem + C
and sem + co + C result in the highest OAs for all of the four variables, which is consistent
with the average values in Table 3. Table 4 shows that the variable material—i.e., the one
for which the best results are achieved—is hardly affected by the methodological changes
between the experiments. In particular, there is no difference in performance between the
experiments sem, sem + C and sem + co + C; all of them result in an OA of 75%. For the other
two variables, there is a larger improvement due to the inclusion of the classification loss.
In all of the cases, the variants sem and sem + C achieve similar OA values; including the
classification loss leads to an improvement of the OA by 3.2%–3.8%.

Analyzing the mean F1 scores per variable in Table 5 confirms that the two experi-
ments sem + C and sem + co + C result in the highest quality metrics for all four variables.
Comparing the mean F1 scores obtained in the two best experiments in Table 5 with the
corresponding OAs in Table 4, large differences of about 10% (timespan) to 35% (material) can
be observed. This indicates remaining problems with underrepresented classes. Comparing
the mean F1 scores of the individual classes in the best experiments, there is not such an
obvious dependency of the performance on the number of classes to be distinguished for a
variable as can be observed for the overall accuracy. Even though the lowest F1 scores of
up to 29.1% are still obtained for place, with the largest number classes, the highest scores
of up to 55.0% are obtained for the variable technique, followed by timespan, both having
six classes. A possible reason could be that different manufacturing techniques of silk
fabrics may lead to the largest visual variations in the images, and thus it might be easier to
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distinguish the individual classes of technique by means of learned image representations
produced by the trained CNN. Comparing the best performing variants (sem + C and sem +
co + C) with their corresponding counterparts, not considering the classification loss (sem
and sem + co), the largest difference in mean F1 score amounts to 8.4% (technique). For the
other variables, the improvement varies between 3.9% (material) and 6.3% place, in all cases
being significant given the standard deviation of the mean F1 score in the order of 0.5%.
Thus, the analysis confirms the significant positive impact of the auxiliary classification
loss on the ability of our method to retrieve images with semantic properties similar to
those of the query image. As the improvement in the mean F1 scores is larger than that in
the OAs, we believe that this is mainly due to a positive contribution to the differentiation
of underrepresented classes, although some problems still remain, as indicated by the gap
between OA and mean F1 scores.

Table 4. Overall accuracies [%] of the experiments conducted on the SILKNOW dataset. The
average performance on the test dataset over five executions per experiment is presented per variable.
See Table 2 for the names of the experiments.

Experiment
Material Place Timespan Technique

mean std mean std mean std mean std

sem 75.0 0.16 46.0 0.23 54.9 0.58 68.9 0.60
co 74.3 0.10 37.8 0.54 47.9 0.77 58.9 0.63

sem + co 74.9 0.25 46.1 0.41 54.3 0.36 68.4 0.50
sem + slf 74.2 0.29 35.4 0.22 46.0 1.14 58.4 0.36
sem + co + slf 74.3 0.31 39.5 0.80 49.8 0.58 62.3 0.62

sem + C 75.0 0.23 49.2 0.34 58.7 0.31 72.6 0.24
sem + co + C 75.1 0.16 49.3 0.11 58.6 0.44 71.7 0.26
sem + slf + C 74.8 0.27 47.5 0.44 56.5 0.81 69.9 0.61
sem + co + slf + C 74.7 0.09 47.5 0.31 56.9 0.39 69.7 0.38

Table 5. Mean F1 scores per variable [%] of the experiments conducted on the SILKNOW dataset.
The average performance on the test dataset over five executions per experiment is presented per
variable. See Table 2 for the names of the experiments.

Experiment
Material Place Timespan Technique

mean std mean std mean std mean std

sem 36.4 0.50 22.9 0.24 43.2 0.52 46.6 1.66
co 34.1 0.23 18.4 0.33 35.8 0.90 39.9 0.78

sem + co 37.3 0.67 23.7 0.75 42.4 0.42 48.5 1.51
sem + slf 33.7 1.20 14.8 0.62 31.6 0.74 36.7 0.50
sem + co + slf 34.9 0.77 17.4 0.51 36.5 0.52 40.9 1.58

sem + C 40.2 0.48 29.1 0.62 47.4 0.60 55.0 1.36
sem + co + C 40.3 0.51 28.9 0.53 47.4 0.76 54.3 0.77
sem + slf + C 39.5 0.59 27.3 0.48 44.7 1.23 49.2 1.10
sem + co + slf + C 38.8 0.20 26.2 0.60 44.7 0.39 50.3 1.21

In summary, the experiments in the first test series show that the combination of the
semantic similarity loss with losses related to other similarity concepts—i.e., color similarity
and self-similarity—does not improve the network’s ability to produce descriptors that can
be used to retrieve images having semantic properties similar to those of the query image.
In contrast, adding an additional classification loss significantly improves both the mean
F1 scores and the OAs.
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5.3. Transferability of the Approach: Evaluation on the WikiArt Dataset

The results of the second series of experiments, based on the WikiArt dataset utilizing
the best model variant in terms of the F1 score identified in the preceding section as well
as the variant using all loss terms sem + co + slf + C, can be found in Table 6. The table
provides both information about the percentage of correctly classified images per variable
(overall accuracy) as well as the variable-specific mean F1 scores. Comparing the two
investigated CNN model variants, both the OAs as well as the F1 scores are higher for a
kNN-classification with descriptors produced by the model sem + C. Whereas the average
OA over all variables is 2.8% higher for sem + C than for sem + co + slf + C, the variable-
specific OAs differ by 2.3% for genre, 2.4% for style and 3.8% for artist. A similar behavior
can be observed for the F1 scores: the average score is 3.7% higher for sem + C, where the
score of genre is improved by 2.1%, the score of artist is improved by 4.1%, and style obtains
a 4.2% higher F1 score.

Comparing the experimental results on the WikiArt dataset shown in Table 6 to those
on the SILKNOW dataset (cf. Table 3), the model variant sem + C performs best on both
of the datasets. Whereas the average OA on the test set of 63.9% is 8.1% higher for the
SILKNOW dataset than the one obtained on the WikiArt dataset, the F1 scores are higher
on the WikiArt dataset; the average F1 score of 51.1% on the WikiArt dataset is 12.2%
higher than the one on the SILKNOW dataset. This is a somewhat surprising behavior, as
one would expect the F1 scores on the SILKNOW dataset to be higher having applied the
training hyperparameters resulting from a tuning on the SILKNOW dataset. A possible
reason could be that the classes of the WikiArt variables style, genre and artist are more easy
to distinguish than those of the SILKNOW variables.

In contrast, the fact that the highest quality metrics were obtained for sem + C could
have been expected. The k-NN classification used to evaluate the image retrieval perfor-
mance considers exclusively semantic aspects of the learned descriptors, and both the
semantic similarity loss as well as the auxiliary classification loss aim to produce a se-
mantically meaningful clustering in descriptor space. The model variants considering
additionally color similarity and self-similarity may provide the best descriptors for image
retrieval from the perspective of a user as the results are assumed to be both visually as well
as semantically similar. However, these aspects of the results would have required a manual
evaluation by experts as in [21], which, besides being very subjective, is beyond the scope
of this paper. Accordingly, benefits resulting from considering concepts of visual similarity
in training cannot be empirically reflected by the presented evaluation strategy. In any case,
we consider the results to indicate that our method can indeed be transferred to another
domain and that it does have the ability to retrieve images with similar properties to those
of the query images, even though further work involving task-specific hyperparameter
tuning might be required to bring the resultant overall accuracies to a similar level as those
achieved for the SILKNOW dataset.

Table 6. Quality metrics of two model variants on the WikiArt test dataset.

Quality Metric Model Style Genre Artist Average

OA [%] sem + C 43.0 69.9 54.5 55.8
sem + co + slf + C 40.6 67.6 50.7 53.0

F1 score [%] sem + C 37.3 64.7 51.2 51.1
sem + co + slf + C 33.1 62.1 47.1 47.4

5.4. Qualitative Evaluation of the Results

In addition to the quantitative results presented in the previous sections, this sec-
tion contains some qualitative results of the proposed image retrieval method for both
datasets used in the evaluation. Examples for query images as well as the corresponding
10 most similar images retrieved by our method from the SILKNOW database are shown
in Figure 5. Figure 6 shows two examples based on the WikiArt dataset. All of these
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examples result from the model variant sem + C, identified to be the best one in terms of
the quantitative evaluation.

Even though exclusively semantic aspects of the depicted artifacts were considered in
the training process, the results seem to be visually homogeneous. In the examples from the
SILKNOW dataset (Figure 5), both the colors and the patterns of the query image and the
retrieved images are predominantly similar. Figure 5a contains fabrics of a bright color with
a stripe pattern, and Figure 5b shows fabrics in earth tones with fine-grained ornamental
pattern. Similarly, the image retrieval examples from the WikiArt dataset mostly have
colors matching those of the query images and show similar contents. Figure 6a contains
images dominated by green and brown tones and depicts landscapes; Figure 6b shows
mostly images of still-life images in red and brown. These examples also indicate that the
semantics of a depicted artifact and its appearance is related to a certain degree.

(a)

(b)

Figure 5. Qualitative results of the experiment sem + C conducted on the SILKNOW dataset, where
(a) and (b) each show one result. The first column shows the query image and the second column
lists the corresponding ten most similar images according to our method, in ascending order by
descriptor distance from top left to bottom right. © Museu Tèxtil de Terrassa/Quico Ortega [66].

(a)

Figure 6. Cont.
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(b)

Figure 6. Qualitative results of the experiment sem + C conducted on the WikiArt dataset, where (a)
and (b) each show one result. The first column shows the query image and the second column lists
the retrieved ten most similar images to the query image in ascending order by descriptor distance
from top left to bottom right.

6. Conclusions and Outlook

We have presented an approach for CNN-based descriptor learning in order to derive
suitable image descriptors for silk image retrieval in the context of preserving European
silk heritage. The training of the CNN considers both visual similarity concepts as well as
semantic similarity concepts, where training data can be generated automatically by exploit-
ing annotations related to the images in a digital collection. In this context, the annotations
assigned to an image do not have to be complete to allow the image to contribute to training,
which is of special interest given a real-world dataset. Besides similarity concepts that allow
for the generation of training data without manual labeling, we proposed the integration of
an auxiliary multi-task classification loss with the goal of supporting the clustering of the
learned descriptors with respect to the characteristics of the depicted objects. Comprehen-
sive experiments allow for an analysis of the impact of the individual loss components on
the descriptors’ ability to reflect the similarity of a query image and the retrieved images in
terms of the semantic annotations. In the experiments, k-NN-classification was conducted
to allow for a quantitative evaluation without the need for a reference defining the optimal
retrieval results for a set of test images or a known similarity status for each pair of images.
The evaluation based on a dataset consisting of images of silk fabrics shows that utilizing
the auxiliary classification loss during training indeed improves the performance by up
to 3.3% in terms of the variable-specific overall accuracy and by up to 8.4% in terms of
variable-specific F1 scores. It was observed that the largest improvements were achieved
for variables with imbalanced class distributions. Further experiments on the WikiArt
dataset showed the transferability of our approach to other digital collections, even though
it was developed in the context of querying silk databases.

Future work could either focus on variations of the dataset to further investigate the
transferability of the proposed method or to give hints for required modifications of the
approach. As the presented descriptor learning approach relies on images with annotations
indicating the classes of at least one semantic variable, it could theoretically be applied
to any dataset or digital collection consisting of image and class labels of one or several
variables. Thus, it would be interesting to analyze its behavior on other cultural heritage
datasets, e.g., Art500k [17] or OmniArt [43], both consisting of images of artworks from
different centuries, on other datasets related to fabrics, e.g., DeepFashion [67], consisting
of images depicting clothes, and finally, on datasets showing images from a completely
different domain, e.g., CelebA [68], consisting of face images with different face attributes.
As far as the WikiArt data are concerned, additional hyperparameter tuning might improve
the results beyond what could be shown in this paper.

From a methodological point of view, it would be interesting to investigate further
auxiliary losses in order to improve the clustering behavior. This could include losses
that directly address the clustering in descriptor space, such as the spherical loss or the
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center loss presented in [35]. Alternatively, a variation of the proposed self-similarity loss—
e.g., the representation learning approach in [69]—could be investigated, which forces the
descriptors to be invariant to different appearances of an object in an image. In contrast
to the self-similarity loss presented in this paper, which directly forces the descriptors of
two images of the same object to be similar, ref. [69] allows the network to learn a mapping
between the descriptors. A further possibility would be to introduce not only further
restrictions on the descriptors by formulating constraints in a loss function but to exploit
further information about the depicted objects by considering descriptive texts assigned to
images. Possible datasets to develop and test such approaches could either be generated
from the SILKNOW knowledge graph [1], like the dataset in the present work, or other
multi-modal datasets with both annotations for multiple semantic variables as well as
descriptive texts; e.g., SemArt [70].

Furthermore, an evaluation with another focus of the results of the presented image
retrieval method would be interesting. Such an evaluation could aim to obtain an impres-
sion of how visually similar the retrieved images are, which probably requires interactive
assessment by domain experts. Another conceivable goal of a further evaluation could be to
analyze the impact of the similarity losses on the image classification. Instead of handling
the classification loss as an auxiliary loss, one or several similarity losses could be analyzed
with respect to their ability to improve image classification, where the similarity losses
would than function as auxiliary losses for image classification. A strong motivation for
such experiments is our observation that the combination of descriptor learning and image
classification during training improves the ability of the learned descriptors to represent
semantic properties, primarily those of variables with many classes and imbalanced class
structures at test time. In this context, it would be interesting to compare the utilization of
auxiliary similarity losses with other strategies that aim to tackle class imbalance problems
in image classification.
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