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Abstract: Forest loss and degradation are central problems in the context of climate change and
biodiversity conservation. The identification of areas of loss relies on accurate base maps. Central
datasets in this context are the products of the Global Land Analysis & Discovery (GLAD) project.
Although the GLAD forest cover products are primarily intended to serve as a near real-time flag
for areas of forest loss, its historic datasets are increasingly also being used in ways that go beyond
this initial focus. To date, very little information is available on the performance of GLAD data in
temperate regions. This study aims to address this research gap by comparing the GLAD baseline
forest cover maps for the years 2000 and 2010 with UK national forest datasets. The results showed
substantial commission errors, which highlight potential problems when deviating from the GLAD
datasets’ intended use. GLAD data appear to be less useful in regions with a high proportion of
medium to low-density canopy cover. In such cases, its application in forest models should only be
used in conjunction and cross-calibration with good quality reference data.

Keywords: forest data; deforestation modelling; accuracy assessment

1. Introduction

Forest loss and degradation have long been recognized as having a negative impact
on climate change and biodiversity [1–8]. The identification of these areas of loss relies on
accurate base maps [9]. The rising demand for such base maps in areas of the world with
poorly mapped forests has led to the increased use of satellite-based global forest datasets
to aid in the creation of regional and national forest cover maps [10,11]. There is also an
increased interest and effort to monitor forest dynamics in the context of carbon accounting,
including quantifying degradation within the framework of UN REDD+ [12].

Central datasets in this context are the products of the Global Land Analysis & Dis-
covery (GLAD) project at the University of Maryland, which has been employed to gen-
erate forest cover maps from the year 2000 onwards to quantify deforestation dynam-
ics on a global scale [13]. The GLAD system defines forest cover as minimum 5 m tall
trees with a canopy closure exceeding 30% of the reference pixel. A forest loss alert
is defined as any Landsat pixel that experiences a canopy loss in excess of 50% cover
(https://glad.umd.edu/dataset/glad-forest-alerts, accessed on 16 May 2020).

Studies in Guyana [11] and Gabon [14] have included accuracy results for the GLAD
2000 forest cover base map. Notably, in both research projects, the data had to be re-
calibrated using canopy cover thresholds that were significantly higher than 30% before
reaching good agreement with local forest reference data. In the case of Guyana, the canopy
threshold below which everything is classed as non-forest was 94% canopy cover, and
in the Gabon study, a canopy threshold of 70% was used to achieve maximum accuracy
with the reference data. Therefore, Galiasatos et al. recommend careful calibration with
independent datasets before using GLAD data to estimate loss/gain statistics [11].

The apparent tendency for GLAD forest cover data to overestimate tropical forest cover
was attributed to classification challenges such as distinguishing between tree plantations
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and old forest, therefore limiting its use in the conservation world [15,16]. However, Tropek
also observed that areas with vegetation lower than 5 m such as soybeans, tea plantations,
and pineapple were being classed as forest, indicating a possible thematic link to the areas
of commission error [16].

Although the GLAD forest cover products are primarily intended to serve as a near
real-time flag for areas of forest loss, it is increasingly also being used in ways that go
beyond this initial focus. Examples are the assessment of above-ground biomass across
tropical forests [17] and the link between deforestation and malaria incidence [18]. Shah
et al. (2018) used Global Forest Cover data to estimate potential locations for the origins of
next forest-based emerging infectious disease [19]. Global Forest Cover data have also been
used to inform models for bark beetle infestation prediction models [20].

Ceccherini et al. (2020) estimated forest change in the European Union based on a
combination of Global Forest Cover data and official forest-area statistics [21]. The paper
reported substantial differences in the agreement of Global Forest Watch-derived harvest
estimates and respective official national harvest removal data, with the highest correlation
coefficients of 0.75 for Portugal and 0.73 for Slovakia and Slovenia. However, a number
of other countries such as Belgium, Denmark, Hungary, and the Netherlands showed no
or even negative correlations. The reported results and the methodological approach of
Ceccherini et al. (2020) were subject to an academic discourse that centred on the general
suitability of Global Forest Watch Data for forest harvest models [22–24]. This demonstrates
the need for a better and more detailed understanding of GLAD data.

To date, very little information is available on the performance of GLAD data in
temperate regions. One example is a study on temperate forests in Japan [25] where the
authors noted that GLAD global forest change data should be used with care because of the
observed high commission error in locations experiencing small-scale disturbances of <1 ha.
Rossi et al. (2019) investigated the ability of quantifying harvested sites in a mountainous
boreal forest catchment in south–central Norway [26] and found only a moderate quality
for detecting harvested sites.

This study aims to address this research gap in order to guide potential users of the
data for temperate climates and to frame a better understanding in terms that consider
the original design and intended use of the data. In particular, it shall be tested if the
tendency of the GLAD forest cover data to overestimate forest cover in tropical environ-
ments [11,14,26,27] is also present over forest cover data in temperate environments. Given
that GLAD data are available on a global scale, potential users might employ the forest
cover data for purposes other than originally intended by the GLAD data creators. There-
fore, it is important to develop a better understanding of the uncertainties associated with
GLAD data for temperate climate zones. This also includes information about how the
uncertainty might vary across regions and different types of non-forest land cover. This
can inform potential users about the limits and suitability of GLAD data for studies in
temperate climate regions.

This research project compares the baseline forest cover maps from this dataset for the
years 2000 and 2010 with UK national forest datasets to investigate their level of accuracy
and suitability as a tool for generating such maps. The UK forest data not only fulfil the key
requirement that the acquisition method for the reference data should be more accurate
than the data being tested [28] (which is more difficult to achieve when both the test and
reference data are based on satellite images) but also allows ‘pixel by pixel’ comparison
over the entire area, therefore removing the necessity of sampled data.

2. Materials and Methods

The research area for this project covers the island of Britain, i.e., its nations England,
Wales, and Scotland. With its geographical location in North-West Europe, its cool and wet
winters and warm wet summers, Britain’s climate can be classified as temperate maritime.
Its choice as a study area was also motivated by the fact that a range of reference datasets
are available against which the GLAD data can be tested (see Table 1).
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Table 1. Forest cover datasets used in this research project.

Product & Data Source Year Smallest Polygon
(MMU)

Acquisition
Method Forest Definition Comment/Use of Data

in Study

GLAD 2010 Tree Cover
https://glad.umd.edu/
Potapov/TCC_2010/,

accessed on 16 May 2020

2010 Raster cell area 500 m2 Satellite, mainly
Landsat 7

All pixels > 30%
forest cover Test data

Open Zoomstack
https://www.

ordnancesurvey.co.uk/
business-government/

products/open-
zoomstack, accessed on

18 May 2020

2019 <10 m2
Airborne

imagery and
ground survey

Forest/no forest
polygons

Initial candidate
reference data,
discounted for

temporal difference
with test data but used
to test other reference
sets to aid in choice of
optimum reference set.

Corine LC 2018 https:
//land.copernicus.eu/
pan-european/corine-
land-cover/clc2018?

tab=download, accessed
on 19 May 2020

2018 250,000 m2 Sentinel-2
Satellite

All woodland related
LC categories

including agro forest,
broadleaved,

coniferous, mixed
forest, transitional
woodland-shrub

Candidate reference
data—earlier

generations of the data
(2000 and 2012) had

good temporal match
with test data but sets

discounted for
poor resolution.

CEH LC 2000
https://www.jisc.ac.uk/

geospatial-data#,
accessed on 2 June 2020

(no longer running)

2000 5000 m2

Landsat, IRS
and SPOT
(Landsat
mission

un-specified but
5 assumed)

All woodland-related
LC categories

including
broad-leaved and

coniferous

Candidate reference
data picked because it
was a good temporal

match with GLAD2000
FC, discounted because

of poor geolocation.

CEH LC 2015
https://www.jisc.ac.uk/

geospatial-data#,
accessed on 2 June 2020

(no longer running)

2015 5000 m2 Landsat
8/AWIFS

All woodland-related
LC categories

including
broad-leaved and

coniferous

Candidate reference
data picked because a
reasonable temporal

match with GLAD 2010
FC, superseded by

discovery of NFI10, LC
used in habitat analysis.

National Forest
Inventory https://data-
forestry.opendata.arcgis.
com/search?tags=GB,

accessed on 26
August 2020

2010 5000 m2
Airborne

imagery and
ground survey

All woodland-related
categories with

canopy cover < 30%
removed including

‘non-woodland’ and
‘assumed woodland’

Identified as optimum
data to test GLAD 2010

and 2000 FC.

National Forest
Inventory https://data-
forestry.opendata.arcgis.
com/search?tags=GB,

accessed on 26
August 2020

2018 5000 m2
Airborne

imagery and
ground survey

All woodland-related
categories with

canopy cover < 30%
removed including

‘non-woodland,
felled, failed,

assumed,
ground-prep, shrub,

uncertain and
wind-blow’

Similar in most aspects
to the OS2019 so used
as a ‘control’ for the
NFI dataset, i.e., low

accuracy between
NFI2018 and OS 2019
would have reduced
the credibility of the

NFI 2010 dataset.

Oloffson [29] details several key areas to consider when undertaking an accuracy
assessment, including the spatial unit, the labelling protocol, and defining the terms of
agreement, all of which have formed part of the data preparation for this study. Other aspects
considered here include checking the pre and post re-projection areas for any discrepancy.

https://glad.umd.edu/Potapov/TCC_2010/
https://glad.umd.edu/Potapov/TCC_2010/
https://www.ordnancesurvey.co.uk/business-government/products/open-zoomstack
https://www.ordnancesurvey.co.uk/business-government/products/open-zoomstack
https://www.ordnancesurvey.co.uk/business-government/products/open-zoomstack
https://www.ordnancesurvey.co.uk/business-government/products/open-zoomstack
https://www.ordnancesurvey.co.uk/business-government/products/open-zoomstack
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018?tab=download
https://www.jisc.ac.uk/geospatial-data#
https://www.jisc.ac.uk/geospatial-data#
https://www.jisc.ac.uk/geospatial-data#
https://www.jisc.ac.uk/geospatial-data#
https://data-forestry.opendata.arcgis.com/search?tags=GB
https://data-forestry.opendata.arcgis.com/search?tags=GB
https://data-forestry.opendata.arcgis.com/search?tags=GB
https://data-forestry.opendata.arcgis.com/search?tags=GB
https://data-forestry.opendata.arcgis.com/search?tags=GB
https://data-forestry.opendata.arcgis.com/search?tags=GB
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The GLAD FC data are produced by the University of Maryland and are freely avail-
able for download via the GLAD (https://glad.umd.edu/Potapov/TCC_2010, accessed on
15 May 2020) website. Although the focus of the GLAD laboratory is on identifying areas of
forest loss in near real time as well as decadal forest gain [13], this research focuses on the
positional and thematic accuracy of the forest cover datasets for the years 2010 and 2000,
upon which the forest loss and gain maps are built. Although it was originally intended that
the baseline forest cover maps should be updated every 10 years, the forest cover map for
2020 was not available; therefore, it was only possible to test GLAD forest cover maps for
2000 and 2010. The data are based on the interpretation of multispectral satellite imagery,
predominantly from the Landsat 7 satellite at a spatial resolution of 30 m × 30 m (at the
equator) and consist of a set of pixels each with an attribute representing the percentage of
tree canopy cover. The data were re-projected to EPSG 2770 (British National Grid), and a
comparison was made with canopy areas obtained from a report generated from the Global
Forest Watch website to confirm that the process of re-projecting the data had not affected
the grid cell areas. The resulting difference between the report and the uploaded data is
less than 1%, which was deemed to be an acceptable level of uncertainty.

To ascertain the best reference dataset, four reference sets were considered as possible
candidates (in order of consideration); OS Open Zoomstack (OS) followed by the Corine
LC data, the Centre for Ecology and Hydrology (CEH) LC, and lastly the National Forest
Inventory (NFI) data. The inclusion of 4 different sets was not foreseen at the study outset
but was a consequence of attempting to improve either the temporal difference, method
of acquisition, or resolution (MMU) of the optimum dataset. Although the OS data were
initially considered as the ideal reference set due to its high resolution and superior method
of acquisition and ground-truthing, due to the lack of availability of pre- 2019 data, it was
subsequently only used to test the other candidate reference sets to quantify the differences
and further aid the choice of an optimum set.

The pre-analysis data preparation methods involved downloading vector files covering
England for each dataset. Then, polygons belonging to categories that best represented the
GLAD forest definition (30% canopy cover) were aggregated and rasterized into forest/no
forest grid cells using the same grid dimensions as the GLAD FC data to enable the creation
of accuracy grids.

A description of each candidate dataset follows in the order that the analysis was
carried out, with a brief explanation of its respective pros and cons, which is further
expanded in Sections 2.1 and 2.2.

The OS data produced by the Ordnance Survey constitute a geospatial database
containing over 400 million human-made and natural landscape features across the UK
(including forests) that is constantly updated using a combination of GPS technology and
aerial photography (https://www.ordnancesurvey.co.uk/about/history, accessed on 17
July 2020). The minimum mapping unit (MMU) is less than 10 m2 with widths of less than
10 m and the data are in a forest/no forest format, so aggregation of categories was not
necessary. Due to its acquisition method being different from and higher resolution than
the test data, the OS data was initially seen as the optimum set, but because digital data
were only available for the current year (2019) resulting in a time gap of 9 and 19 years
with the test data, it was discounted as a suitable reference set.

Corine LC is a pan-European product that includes data from the Sentinel-2 satellite
run by the European Space Agency and was the second dataset to be considered. The data
have an MMU of 250,000 m2 and are classified into 43 different land cover classes. It was
discounted because of its large MMU of 250,000 m2.

The CEH data are a parcel-based land cover classification that divides satellite images
into 21 Broad Habitats as defined by the Joint Nature Conservation Committee, which
encompass all UK habitats [30]. Two datasets were available for the years 2000 and
2015. The CEH2000 dataset, which was a good temporal match with GLAD 2000 FC,
was found to have significant geolocation problems and discounted. The incorporation

https://glad.umd.edu/Potapov/TCC_2010
https://www.ordnancesurvey.co.uk/about/history
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of OS geolocation data into the CEH2015 LC solved the geolocation problems, and this
dataset was subsequently used in our commission error habitat analysis.

NFI data were the fourth and final dataset to be included. It represents a rolling pro-
gramme of the Forestry Commission (FC), which is Great Britain’s principal organisation
for forestry and tree-related research. This dataset combined the geolocation accuracy
of the OS dataset for its forest boundaries with additional advantages of airborne ac-
quisition and extensive ground surveys for validation. These ground surveys provide a
randomly selected and representative sample of approximately 10,000 one hectare plots
across Britain. In a second step, a Quality Assurance team undertook visual checks of 100%
of the ground sample assessments and additionally reassessed a minimum of 5% of sample
sites (https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/
about-the-nfi/, accessed on 10 July 2020). Therefore, the authors of this paper are confident
that the NFI data had been rigorously tested and validated and could serve as a reference
dataset for our analysis of GLAD data accuracy.

The NFI data are available yearly from 2010 to the present. It includes both urban and
rural woods larger than 5000 m2 with a canopy cover of 20% and contains attributes such
as tree type and land use as additional information. Its major advantage over the OS data
is that yearly datasets are freely available back to the year 2010.

Whilst temporal and resolution differences are abundantly clear between the sets, the
selection and aggregation of different forest categories that best represented the GLAD
forest cover definition (i.e., any vegetation above 5 m with a canopy cover of around 30%)
were recognized as being an equally important metric in the choice of reference set. Whilst
the OS2019 dataset was based on a simple forest/no forest format, the Land Cover and
forest inventory reference sets contained several categories, and the decision to include or
exclude the data was based on the category name, so in the case of the LC datasets, this
included all categories associated with woodland LC such as ‘broadleaf’, ‘conifer’, and
‘mixed woods’, and for the NFI, it excluded categories such as ‘windblow’ and ‘felled’.
Although the inclusion of ambiguous categories (such as ‘transitional woodland shrub’ or
‘uncertain and windblow’) inevitably leads to the possibility of including areas that are less
than 30% canopy cover, these categories were found to be an insignificant proportion of
the datasets. The choice of attributes making up the forest data in the candidate reference
datasets is outlined in Table 1.

The logic used to generate accuracy grids for determining a suitable reference dataset
as well as determining the accuracy of the GLAD FC for 2000 and 2010 can be defined in
the simplest terms due to the binary forest/no forest structure of the data. Each dataset
contains either ‘forest’ or ‘no forest’ pixels, and combining the sets generates 4 outcomes
(Table 2).

Table 2. Reference data vs. test data logic.

Reference Value Test Data Value Sum Result

Forest 1 Forest 200 1 + 200 = 201 True Positive

Forest 1 No Forest 0 1 + 0 = 1 False Negative

No Forest 0 Forest 200 0 + 200 = 200 False Positive

No Forest 0 No Forest 0 0 + 0 = 0 True Negative

The results are defined in terms of their commission and omission error [28] as set
out below:

Commission error = 1 − (True Positive/(True Positive + False Positive)) and is a ratio
of the total area of test data relative to the incorrectly placed test data. It is the inverse of
the Positive Predictive Value (PPV), which is also known as the Users accuracy.

Omission error = 1 − (True Positive/(True Positive + False Negative)) and is the ratio
of the total area of reference data relative to the incorrectly placed test data. It is the inverse
of the TPR or True Positive Rate and known as the Producers accuracy.

https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/about-the-nfi/
https://www.forestresearch.gov.uk/tools-and-resources/national-forest-inventory/about-the-nfi/
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To create an inter-map agreement matrix, the reference and test data grids were
combined to produce a summed grid containing pixel counts for each of the four outcomes
(True Positive, True Negative, False Positive, and False Positive). The pixel counts were
multiplied by the pixel size to calculate the areas of commission and omission errors. The
grids were visually inspected for spatial patterns. This method was performed between
candidate reference datasets as a way of determining the optimum reference dataset as
well as to assess the accuracy of the GLAD FC data.

The commission error grids from the accuracy assessments were combined with 2015
CEH habitat data. The resultant habitat-classed commission error grid was combined with
the GLAD FC percentage canopy cover, as summarised in Figure 1.

ISPRS Int. J. Geo-Inf. 2022, 10, x FOR PEER REVIEW 6 of 18 
 

 

The results are defined in terms of their commission and omission error [28] as set 
out below: 

Commission error = 1 − (True Positive/(True Positive + False Positive)) and is a ratio 
of the total area of test data relative to the incorrectly placed test data. It is the inverse of 
the Positive Predictive Value (PPV), which is also known as the Users accuracy. 

Omission error = 1 − (True Positive/(True Positive + False Negative)) and is the ratio 
of the total area of reference data relative to the incorrectly placed test data. It is the inverse 
of the TPR or True Positive Rate and known as the Producers accuracy. 

To create an inter-map agreement matrix, the reference and test data grids were com-
bined to produce a summed grid containing pixel counts for each of the four outcomes 
(True Positive, True Negative, False Positive, and False Positive). The pixel counts were 
multiplied by the pixel size to calculate the areas of commission and omission errors. The 
grids were visually inspected for spatial patterns. This method was performed between 
candidate reference datasets as a way of determining the optimum reference dataset as 
well as to assess the accuracy of the GLAD FC data. 

The commission error grids from the accuracy assessments were combined with 2015 
CEH habitat data. The resultant habitat-classed commission error grid was combined with 
the GLAD FC percentage canopy cover, as summarised in Figure 1. 

 
Figure 1. Flow chart showing steps involved in the creation of the accuracy assessments and com-
mission analysis. 

2.1. Reference Data Analysis Results and Discussion 
As mentioned earlier in the section, to choose the optimum reference dataset, the 

Ordnance Survey (OS) data were compared to the Corine Land Cover and the Centre for 
Ecology and Hydrology (CEH) Land Cover as well as the National Forest Inventory data 
(Table 3). 

Table 3. Accuracy results comparing OS with CEH, NFI, and Corine data. 

Reference vs. Test Time Diff Commission Error Omission Error 
Reference data accuracy assessment 

OS 2019 vs. Corine forest 2018 1 0.216 0.496 
OS 2019 vs. CEH forest 2015 4 0.205 0.217 
OS 2019 vs. CEH forest 2000 19 0.463 0.421 

OS 2019 vs. NFI 2018 1 0.133 0.198 

Figure 1. Flow chart showing steps involved in the creation of the accuracy assessments and
commission analysis.

2.1. Reference Data Analysis Results and Discussion

As mentioned earlier in the section, to choose the optimum reference dataset, the
Ordnance Survey (OS) data were compared to the Corine Land Cover and the Centre for
Ecology and Hydrology (CEH) Land Cover as well as the National Forest Inventory data
(Table 3).

Table 3. Accuracy results comparing OS with CEH, NFI, and Corine data.

Reference vs. Test Time Diff Commission Error Omission Error

Reference data accuracy assessment

OS 2019 vs. Corine forest 2018 1 0.216 0.496

OS 2019 vs. CEH forest 2015 4 0.205 0.217

OS 2019 vs. CEH forest 2000 19 0.463 0.421

OS 2019 vs. NFI 2018 1 0.133 0.198

OS 2019 vs. NFI 2010 9 0.137 0.162

Further assessments to aid choice of ref for GLAD 2000

CEH 2000 vs. GLAD FC 2000 0 0.47 0.42

NFI 10 vs. GLAD FC 2000 10 0.39 0.26
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A visual inspection of the resultant grids reveals some of the more obvious causes
of the errors, which can be categorized by differences in minimum mapping unit (MMU),
positional inaccuracies, and temporal issues.

The OS 2019 MMU is <10 m2, which is considerably smaller than the Corine and CEH
MMU of 250,000 m2 and 5000 m2, respectively. This difference causes an omission error
of nearly 50% when the OS 2019 data are compared to the Corine 2018 and illustrates the
potential for large inaccuracies when using low-resolution land cover datasets in areas with
small land parcel size. Figure 2 compares the two datasets over a small area in the north
of England, with the Google Earth image further demonstrating the small parcel size of
woods captured in the OS 2019 data that are absent in Corine 2018 (A).
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Figure 2. (a) OS 2019 forest (reference in green) vs. 2018 Corine (test in red stripe), (b) Google Earth
imagery date 17 July 2021.

The lowest errors were calculated between the OS and NFI data partly due to its
shared positional data and, in the case of the 2018 NFI data, its temporal similarity. The
lack of significant difference between the OS 2019 versus NFI 2018 and NFI 2010 result (the
latter with an 8-year gap in the datasets) is an indication that the amount of forest change
over this period is low. This is a trend seen in the NFI data over a longer period of 15 years
with an overall increase in forest cover of 4% from 2000 to 2015 corroborated by the 2015
NFI report [31].

A significant proportion of the areas of omission in the OS 2019 vs. NFI 2018 grids are
located in plantations (or tree farms) and are likely due to the OS being less rigorous with
its monitoring of these fast-changing intra-forest areas, which explains the slight increase
in omission errors in 2018 NFI data compared to the 2010 NFI results. The NFI data contain
attributes detailing felled areas within plantations, as a central part of its remit is to monitor
these areas.

2.2. Choice of Optimum Reference Dataset

Based on the initial analysis described above, the NFI 2010 data were chosen as
the optimum reference dataset for both the GLAD FC 2010 and 2000 data. For the 2010
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FC, a direct temporal agreement is present. Although there is a temporal difference of
10 years between GLAD FC 2000 and this reference dataset, the coarse data resolution of
the 2000 Corine data immediately precludes its use a reference dataset, the 2000 CEH data
are beset with positional and thematic errors, and the 2000 NFI data are not available in a
digital format.

This time difference is potentially problematic because observed differences might
be caused by genuine changes in forest cover. However, the areal difference between the
NFI datasets report a 1% increase in forested area over this 10-year period, which is in
stark contrast to the GLAD FC, which calculates a 30% increase. The low level of change
calculated by the NFI data is corroborated by Bibby [32], whose report on land change in
the UK from 1983 to 2008 states that the largest change in land use over this period was
from agriculture to forestry and woodland, initially at a rate of 1% increase a year, slowing
to 0.24% post 2000.

Therefore, the assumption was that the areal extent of forest cover over this period
remained relatively stable, with minor amounts of loss and gain by way of tree harvesting
and grant-assisted broadleaf wood regeneration.

3. Results
3.1. GLAD FC 2010 and 2000 Accuracy Assessment

Having identified the 2010 NFI as the most suitable reference dataset for both GLAD
FC datasets, a series of accuracy grids were generated for England, Wales, and Scotland. A
summary of the results is presented in Table 4.

Table 4. Accuracy results of GLAD FC 2000 and 2010.

England Area km2 Wales Area km2 Scotland Area km2

GLAD FC 2010

NFI 10 12,570.49 NFI 10 3083.98 NFI 10 14,140.25

GLAD 2010 > 30 20,357.60 GLAD 2010 > 30 5033.47 GLAD 2010 > 30 20,885.17

True positive 9844.49 True positive 2377.45 True positive 10,690.67

False negative 3332.43 False negative 706.53 False negative 3449.58

False positive 10,513.12 False positive 2656.01 False positive 10,194.50

True negative 106,704.97 True negative 14,995.00 True negative 54,440.25

Commission error (%) 51.6 Commission error (%) 52.8 Commission error (%) 48.8

Omission error (%) 25.3 Omission error (%) 22.9 Omission error (%) 24.4

GLAD FC 2000

NFI 10 12,570.49 NFI 10 3083.98 NFI 10 14,140.25

GLAD 2000 > 30 15,181.63 GLAD 2000 > 30 3866.06 GLAD 2000 > 30 15,884.75

True positive 9269.93 True positive 2277.00 True positive 9967.00

False negative 3300.56 False negative 806.98 False negative 4173.25

False positive 5911.71 False positive 1589.06 False positive 5917.75

True negative 111,912.80 True negative 16,061.96 True negative 58,717.00

Commission error (%) 38.9 Commission error (%) 41.1 Commission error (%) 37.3

Omission error (%) 26.3 Omission error (%) 26.2 Omission error (%) 29.5

The most notable results are the high commission errors particularly regarding 2010
NFI vs. 2010 GLAD FC with commission errors of around 50%. This indicates that 50%
of the 2010 GLAD FC data is not flagged as “Forest” in the reference dataset. It is also
notable that the GLAD 2000 data compared to the NFI 2010 has a smaller commission error
(a decrease of around 10%) despite a 10-year time gap.
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A visual inspection of both accuracy maps highlights this 10% difference in com-
mission error and also illustrates that the spatial distribution of the commission errors is
predominantly situated in areas that are isolated from the reference forest and are likely to
be thematic errors rather than problems with geolocation (Figure 3a,b).
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3.2. Commission Error Habitat Analysis for GLAD FC Forest Data

To analyse the thematic errors associated with the high commission errors calculated
for both GLAD FC maps, these errors were combined with the CEH 2015 Land Cover
dataset, which comprises 20 habitats covering the whole of the UK, including heathland
habitats such as heather, heather grassland, bog, and inland rock. The results of this analysis
are summarized in Figure 4.

It can be seen that in England and Wales, the habitat classification with the highest
commission error is the land cover class Improved grassland (pasture), whilst in Scotland,
the Heather land cover class has the highest error. Approximately 70% of that land cover
class was falsely labelled as “Forest” in the GLAD 2010 data. This illustrates that classifica-
tion errors were not only confined to heathland habitats but, overall, were more prevalent
in improved grassland habitats.

These trends were observed for both the GLAD 2000 and 2010 commission errors.
However, there were subtle differences: the GLAD 2000 commission errors were distributed
over more heathland habitats and less improved grassland compared to the GLAD 2010
errors (Figure 4). As mentioned in the accuracy assessment results, the 2000 FC data have a
smaller commission error than the 2010 data, and this indicates that the increase in error is
predominantly in areas of improved grassland.

Further calculation of the national proportions of each habitat for England, Wales,
and Scotland revealed that ’grassland’ and ‘arable’ constituted the largest habitats for
England and Wales, whilst in Scotland, the ‘mountain, heath and bog’ habitats domi-
nated. To account for this, the respective commission errors were compared to the national
habitat proportion.
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This normalisation cancelled out the high values for improved grassland, which
dominate the commission errors and results in the proportion of commission error areas
for the Heather habitat being consistently higher than the national proportion for these
habitats. This was observed in all three nations and on both GLAD 2000 and 2010 datasets
and indicated that proportional to the national habitat, the commission error was most
prevalent for the heather.

The results also showed that whilst the heather habitat values were consistently higher
than other habitats, within the heather values, there were differences between the nations
and across the two GLAD datasets. England has the highest values for both GLAD 2000
and 2010 data, whereas Scotland has the lowest value for the 2000 GLAD FC data and
Wales has the lowest value in the 2010 GLAD FC data (Figure 5). These differences are
likely to be partly attributed to the large temporal difference between the GLAD 2000 FC
and the habitat data.

Figure 5 also illustrates that the land cover classes Fen, marsh, and swamp category
shows similarly high values across all three nations, as do the fresh water and littoral rock
values for England. However, these habitats form less than 0.7% of the national habitat.

On the nations level, the areas of heather misclassified as forest for England and
Wales constitute 5% and 6%, respectively, of the commission error. In Scotland, which has
a much higher national percentage of heather, the commission error rises to 29%. This
translates into a reduction in 2010 GLAD forest cover for England and Wales by 3% and 2%,
respectively, whilst in Scotland, it reduces the forest cover by 14%, with smaller reductions
for the 2000 GLAD forest cover.
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3.3. Relationship between GLAD FC Percentage Canopy Cover and Commission Errors

Research in the context of tropical environments showed the level of canopy cover
that is used as the threshold for GLAD forest data can have a substantial effect on the
accuracy [11,13]. This study tested if this was also the case for temperate environments.
This was completed by graphically illustrating the area of canopy cover for the full range of
percentage canopy cover. Figure 6 illustrates that for the 2010 GLAD FC, there was only a
small area of the UK with canopy cover above 90%. More than 70% of the forested area had
canopy cover between 30 and 85%. These results were consistent across the three nations.
The distribution of canopy cover over the 2000 GLAD FC showed substantially less area
with canopy covers below approximately 40% and an increase in areas with canopy cover
over 90%.

The results of combining the agreement and commission grids from the NFI accuracy
assessment with the GLAD FC percentage canopy cover grids showed the same trends
as the complete data, i.e., a smaller proportion of the 2000 data having areas below 40%
canopy cover than the 2010 data. The 2010 commission areas show a gradual decrease in
canopy cover with increasing canopy covers (until 90%), whereas the 2000 commission
areas only show this decline with increasing canopy cover in the English data. In Scotland
and Wales, the commission area remains constant across a range of canopy covers from 40
to 100% (Figure 7). This corresponds to a reciprocal increase in the agreement areas.
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The results of combining the habitat commission error data with the canopy values
show that the Improved grass habitat (which is the habitat with the highest proportion of
commission error) is relatively evenly distributed across the canopy values in contrast
to the Heather habitat that shows an overall decrease with an increase in canopy cover,
particularly in the 2010 dataset (Figure 8).
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4. Discussion

The high commission errors of both GLAD FC datasets demonstrate that they substan-
tially overestimate forest land cover in Britain of up to 50%. These errors are consistent
across all nations. This is, to the best knowledge of the authors, the first time that such
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overestimation is observed for temperate environments. It also agrees with the findings
reported on research that investigated the GLAD uncertainty in other environments such
as the tropics [11,14,26,27]. This demonstrates that the use of GLAD data needs to be
considered very carefully outside its originally intended purpose of deforestation detection.
GLAD data are global in scope and in many locations might provide the only available
land cover information. Nevertheless, as our results demonstrate, potential users should
have a clear awareness of its limitations.

It is noteworthy that the results comparing datasets with no temporal difference (NFI
2010 vs. GLAD FC 2010) calculated higher commission errors than the datasets with a
10-year time gap. This increase in errors in the GLAD 2010 FC may have been caused
by the use of Landsat 7 images affected by missing data associated with the scan line
corrector failure.

Our analysis also demonstrated that the commission error is strongly related to spe-
cific habitat types. More than 50% of the commission error was spatially distributed on
various grassland habitats. However, when normalized to the national habitat proportions,
the heather habitat (a heathland shrub with a maximum height of <1 m) is overrepre-
sented in both the 2000 and 2010 data and therefore appears to be particularly prone
to misclassification.

Both the heather and grassland habitats are predominantly represented as medium to
low canopy cover forest, with the heather habitat having slightly lower canopy cover values
than the grassland. This supports the hypothesis that misclassified habitats are more likely
to be associated with areas of lower canopy cover. The observation of Tropek et al. (2014)
of misclassification of similar low shrub vegetation does not mention any association with
canopy cover, so it is not possible to make any comparisons [16]. A similar observation was
made by [26], who investigated the suitability for Global Forest Watch data for quantifying
harvested sites in a mountainous boreal forest catchment in south–central Norway. It was
found that residual seed trees caused substantial errors of omission. It was also found
that it was necessary to remove small isolated forest cover loss patches that had a high
probability of representing commission errors.

The temporal difference between the CEH 2015 Land Cover data set and the com-
mission errors introduce a potential for thematic inaccuracies, particularly between the
2000 GLAD FC map and the 2015 CEH Land Cover data, as habitat changes will in-
evitably have taken place over the 15-year time gap. However, these inaccuracies are
significantly reduced in the heathland habitats as they have been protected by EU law since
1992 (https://www.eea.europa.eu/data-and-maps/data/natura-11, accessed on 10 July
2020) [33].

The potential overestimation of forest cover in areas with medium-density canopy
cover explains the need to recalibrate the data in Gabon and Guyana, as mentioned in [14]
and [11], where values of 70% and 94% thresholds needed to be used to calibrate the
data with national reference sets. This suggests that areas that are dominated by high
canopy cover (such as tropical rain forests) and sharp transitions to no forest areas can be
recalibrated to produce a more accurate estimate of forest cover.

Attempts to recalibrate the GLAD data in the context of this study are more challenging
because medium canopy values are represented by a mix of forest and no forest habitats.
This leads to a reduction in commission error but an increased omission error and therefore
does not increase the data’s overall ability to predict forest cover.

It should be acknowledged that these commission errors (across multiple habitat types
and a wide range of canopy covers) can have multiple causes that are not addressed by
the habitat and canopy cover analysis. For example, terrain, aspect, altitude, proximity
to areas of agreement, and positional errors associated with the analysis process are all
possible additional causes as well as the choice of acquisition and processing parameters.
Further work on the proportion of errors associated with these potential causes and their
spatial occurrence would add to the better understanding of these errors and their likely
occurrence in other environments across the world.

https://www.eea.europa.eu/data-and-maps/data/natura-11
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5. Conclusions

The results of our analysis demonstrate that substantial care needs to be taken when
using GLAD data for temperate climates such as the United Kingdom. This is because
the accuracy assessment showed substantial commission errors. This highlights potential
problems that might occur when GLAD datasets are employed for other purposes than its
originally intended use, as was debated in the context of recent forest change models in
Europe [5–8].

Misclassification was observed to more likely occur in habitats with low to medium
canopy cover. This is likely to be due to the increased potential for overlapping spectral
signatures between areas of genuine medium to low canopy forest cover and non-forest
vegetation. Given the global scope of the GLAD dataset, incomplete training data might be
a contributor to misclassifications in this context [27].

The strength of both the OS 2019 and the NFI datasets as good reference data not only
lies in their high level of detail and accuracy being based on continually updated ground
surveys and aerial photography but also on their definition of forest being based on land
cover rather than land use. The use of this wall-to-wall ground-surveyed reference data has
achieved a higher level of accuracy than using sampled data, and therefore, the utilization
of ground-referenced NFIs to assess satellite-based datasets in other European countries
with similar habitats and land parcel sizes is highly recommended.

Nevertheless, GLAD data can aid in the creation of local or regional forest datasets
with the use of local reference data by adjusting the forest/no forest canopy cover switch to
match the local data. However, this approach favours areas with a substantial proportion
of high-canopy cover such as large undisturbed areas of temperate or tropical forest [11,12].
GLAD data appear to be less useful in regions with a high proportion of medium to
low-density canopy cover. In such cases, it should only be used in conjunction and cross-
calibration with good quality reference data.

The Glad FC data successfully flagged deforested areas within tree farmed areas in
our case study before they were mapped by the NFI. This demonstrates the effectiveness
of GLAD data in its intended use as a flag for forest loss. Therefore, it has the potential to
improve the temporal accuracy of areas with well-established forest inventories as well as
help in poorly mapped areas of the world.
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