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Abstract: The European Union (EU) has positioned itself as a frontrunner in the worldwide battle
against climate change and has set increasingly ambitious pollution mitigation targets for its members.
The burden is heavier for the more vulnerable economies in Central and Eastern Europe (CEE), who
must juggle meeting strict greenhouse gas emission (GHG) reduction goals, significant fossil-fuel
reliance, and pressure to respond to current pandemic concerns that require an increasing share
of limited public resources, while facing severe repercussions for non-compliance. Thus, the main
goals of this research are: (i) to generate reliable aggregate GHG projections for CEE countries;
(ii) to assess whether these economies are on track to meet their binding pollution reduction targets;
(iii) to pin-point countries where more in-depth analysis using spatial inventories of GHGs at a
finer resolution is further needed to uncover specific areas that should be targeted by additional
measures; and (iv) to perform geo-spatial analysis for the most at-risk country, Poland. Seven
statistical and machine-learning models are fitted through automated forecasting algorithms to
predict the aggregate GHGs in nine CEE countries for the 2019–2050 horizon. Estimations show that
CEE countries (except Romania and Bulgaria) will not meet the set pollution reduction targets for
2030 and will unanimously miss the 2050 carbon neutrality target without resorting to carbon credits
or offsets. Austria and Slovenia are the least likely to meet the 2030 emissions reduction targets,
whereas Poland (in absolute terms) and Slovenia (in relative terms) are the farthest from meeting
the EU’s 2050 net-zero policy targets. The findings thus stress the need for additional measures
that go beyond the status quo, particularly in Poland, Austria, and Slovenia. Geospatial analysis
for Poland uncovers that Krakow is the city where pollution is the most concentrated with several
air pollutants surpassing EU standards. Short-term projections of PM2.5 levels indicate that the air
quality in Krakow will remain below EU and WHO standards, highlighting the urgency of policy
interventions. Further geospatial data analysis can provide valuable insights into other geo-locations
that require the most additional efforts, thereby, assisting in the achievement of EU climate goals
with targeted measures and minimum socio-economic costs. The study concludes that statistical and
geo-spatial data, and consequently research based on these data, complement and enhance each other.
An integrated framework would consequently support sustainable development through bettering
policy and decision-making processes.

Keywords: automated forecasting; GHG emissions; European Green Deal; neural network autore-
gression model (NNAR); statistical methods; aggregated data

1. Introduction

Climate change and environmental degradation are currently major concerns for
Europe and the rest of the globe [1]. Climate change is considered a serious problem by 93%
of Europeans, and almost eight out of ten EU individuals (78%) believe it is an extremely
serious issue [2]. In consideration of the above, the European Commission (EC) unveiled
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in December 2019 the ambitious European Green Deal [3,4], a package of policy measures
spearheaded by the EC with the goal of achieving climate neutrality in the European Union
(EU) by 2050 and an intermediate target of cutting carbon emissions by at least 50 percent
(and toward 55 percent) relative to 1990 levels by 2030 [5].

Moreover, the pledge toward the green transition has recently been acknowledged as
one of the key elements in addressing the economic meltdown caused by the COVID-19
pandemic [6,7] and thus regarded as the lifeline out of the COVID-19 pandemic [1]. Conse-
quently, one-third of the 1.8 trillion Euro investments within the European Recovery Fund
announced in July 2020 will finance the European Green Deal’s objectives [1,8].

The European Council, comprising the heads of the EU’s Member States, further
approved the new binding EU objective of at least 55% reduction in GHG emissions by 2030
in December 2020 [8]. Finally, the European Climate Law adopted in June 2021 enforced the
European Green Deal objective of making Europe’s economy and society climate-neutral
by 2050, including its intermediate 2030 goal to reduce net greenhouse gas emissions by at
least 55 percent from 1990 levels [9–11].

As such, Europe has long positioned itself as the frontrunner in the global fight against
climate change and is making a successful transition to a low-emissions economy [12].
Figure 1 confirms that the EU managed to reduce its greenhouse gas emissions by 23%
between 1970 and 2018, whereas the world average registered an increasing trend (i.e., a
69.54% growth) over the same period.
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While under the global reach of the Paris Agreement [13,14], individual countries’
pledges to reduce their total emissions (i.e., National Determined Contributions, or NDCs)
are not legally binding or enforceable [15], the emission reduction targets under the EU
Green Deal are mandatory for EU member states [16]. This could, by itself, pose significant
problems for Europe’s more fragile economies in the CEE area that have not yet been able
to catch up with their western counterparts [17–19]. Moreover, the COVID-19 induced
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recession is expected to be significantly more severe in smaller CEE economies compared
with in the more developed EU states [20], which further adds to the pressure of meeting
binding EU climate targets while dealing with the effects of the largest health and economic
crisis in recent history [21] and managing post-pandemic recovery.

Although this is a timely issue worldwide, as all countries have to balance post-
pandemic recovery and polluting emissions mitigation [22], the CEE economies also deal
with the added pressure of legally binding reduction targets. As a result, their imple-
mentation may on one hand pose regulatory challenges [23], whereas, on the other hand,
noncompliance could have serious repercussions, including infringement procedures, legal
challenges, and ultimately financial penalties [24].

Additionally, most governments in the CEE area remain reluctant to implement ambi-
tious pollution reduction policies set by the European Commission, mainly because their
economies are still significantly dependent on coal and other fossil fuels. For example, as
of 2018, the highest shares of coal in power generation were found in Poland (80%), the
Czech Republic (54%), and in Bulgaria (43%) [25].

Poland employs roughly half of the coal workforce at the EU level, followed by
Germany, the Czech Republic, Romania, Bulgaria, Greece, and Spain [26], which further
complicates the task of implementing the European Green Deal and meeting emission
reduction targets. Additionally, citizens in Central and Eastern Europe are generally
less concerned about global warming than those in Western Europe [27–30], which also
contributes to spurring CEE government reluctance to move toward carbon neutrality.

Although polluting emissions in CEE fell after the fall of the Berlin Wall and the
dissolution of the Soviet Union, and the area is currently well behind the world average
when it comes to the contribution to world pollution (Figure 2), it should be nonetheless
recognized that this is mainly a product of diplomatic compromise and the collapse of
an inefficient communist industry, rather than the result of national pollution reduction
policies [25], and that the reduction trends remain insufficient compared with the new net
55% reduction target for 2030.
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The formulation of pollution-mitigation policies, as well as its monitoring, intrinsically
relies on emissions estimates. Thus, reliable estimates of emission trends are essential
for sound policy-making, and national and international bodies are increasingly using
forecasts of polluting emissions in their policy-making processes [31]. This, in turn, is a
major motivating factor for this research. Furthermore, accurately forecasting emissions
and reversing rising trends early-on is especially critical for the more vulnerable EU
members, preventing significant costs in the form of infringement procedures, legal battles,
and, ultimately, financial penalties. Hence, this study further contributes to assessing
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whether the CEE countries are on the right path toward the achievement of their binding
pollution mitigation targets, under the assumption that the current conditions and measures
remain unchanged.

Consequently, we identify the countries that are farthest from meeting their pollution
reduction targets and thus highlight where future research using spatial inventories of
GHGs at a finer resolution is needed to uncover specific areas that should be targeted
by additional climate combat measures. The results of this research are, on one hand,
critical for policy monitoring and its potential revision at the EU level by considering the
particularities of the CEE economies and their specific difficulties, and on the other hand for
national governments and agencies for early-warning purposes. Overall, we scientifically
reason that synergy between EU policy and national measures is key for reaching climate
combat goals at the EU level. In turn, GHG emissions forecasts serve as the foundation.

Producing accurate forecasts of polluting emissions remains a challenging research
task [32]. Mounting empirical evidence recognizes polluting emissions as a leading factor
for socio-economic indicators, including economic growth, mortality, and health vari-
ables [33–36]. The univariate time series forecasting allows producing evidence for a
leading factor unaffected by other variables and brings further advantages in the form of
increased reliability and reduced risk of model misspecification [37].

However, the strand of literature on forecasting polluting emissions over the long term
within a univariate framework, particularly with a focus on Central and Eastern Europe,
remains thin. This study contributes to filling the void by providing new insights on future
emissions trends for a relevant sample of nine CEE countries (i.e., Austria, Bulgaria, Croatia,
Czech Republic, Hungary, Poland, Romania, Slovak Republic, and Slovenia).

The univariate methods for forecasting air quality that have been proposed in the
extant literature belong to the two major categories delineated by [38], namely statistical
methods and deep-learning methods [39]. Ref. [40] used the logistic equation to model
CO2 emissions in three Chinese industries and further combined estimations to explain the
total CO2 emissions in China.

Ref. [41] employed several econometric methods, including the ARIMA model, Holt–
Winters, exponential smoothing, and singular spectrum analysis (SSA). They also intro-
duced a new combination forecast, which includes the SSA and the forecast provided by
the Energy Information Administration (EIA). The new combination model was found
to out-perform the other candidates and was further used to provide 12-month ahead
forecasts for US CO2 emissions energy series.

More recently, [42] used a univariate autoregressive integrated moving average (ARIMA)
and several scenarios to forecast CO2 emissions for Pakistan for the 2030 horizon. However,
this excludes alternative forecasting methods. Authors that employ machine-learning
models generally confirm their suitability for predicting polluting emissions and conclude
their forecasting superiority relative to statistical methods.

Ref. [43] used statistical and machine-learning models, including a naive model, ETS,
STS, TBATS, HW, ARIMA, and the neural network autoregressive model (NNAR) for mod-
eling and forecasting the evolution of CO2 emissions in Bahrain. They reported that the
NNAR model outperformed in the out-of-sample setting model. More recently, [44] mod-
eled and forecast the trend of Bahrain’s CO2 emissions by employing multiple forecasting
methods (i.e., the Gaussian process regression rational quadratic model, the neural network
time series nonlinear autoregressive model, and Holt’s method. They also identified the
NNAR model as outperforming the other methods by showing the lowest root mean square
errors (RMSE) for out-of-sample predictions.

Finally, [45] offered a more extensive study on forecasting polluting emissions. They
employed seven statistical and machine-learning methods that are also used in our investi-
gation to predict the GHG emission trends in the twelve world’s top polluters. Similar to
its predecessors, it also establishes that NNAR is superior in terms of predictive ability at
different forecasting horizons by reporting both the lowest root mean square error (RMSE))
and mean absolute scaled error (MASE). Of note, the vast majority of previous research
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is usually focused on a single country and stops at exploring the predictive ability of
concurrent methods by estimating forecasting accuracy metrics.

This study performs multi-country analysis and further defends its results against the
Kolmogorov–Smirnov (KS) predictive accuracy test (KSPA). Additionally, we go further
than previous research by monitoring EU net-zero policy implementation within the sample
of CEE countries. This is achieved through estimations of GHGs policy-target values that
are compared to GHGs estimations produced by the country-specific overperforming
forecasting model. A preliminary assessment of the forecasting ability observed for the
years 2019 and 2020 is also provided, indicating high accuracy (i.e., 98.5%) in predicting
GHG emissions values for the year 2019, albeit, as expected, an overestimation of GHGs
values for the year 2020, when the accuracy decreased to 90%, but remained satisfactory,
especially in light of the black-swan event.

Furthermore, whereas most related studies employ CO2 emissions as the variable of
interest, the current research inputs the more relevant variable of aggregate GHG emissions
at a national level. Thus, while acknowledging that estimates of GHG emissions at a
national level are less helpful for the development of pollution mitigation strategies and
measures [46], we reason that accurate forecasting of aggregate GHG trends still has merits,
as it is informative for policymaking purposes.

To this end, six predictive models are implemented through automated forecasting
algorithms: the exponential smoothing state-space model (ETS), the Holt–Winters model
(HW), the trigonometric ETS state-space model with Box–Cox transformation, ARMA
errors, trend, and seasonal components (TBATS) model, the autoregressive integrated
moving average (ARIMA) model, and the structural time series (STS) model) within the
statistical methods category, and the neural network autoregression model (NNAR) within
the machine-learning category.

A naive model, which always predicts the last observed value as per the usual ap-
proach in the time series forecasting literature, is also estimated, serving for comparative
purposes. The results indicate that the neural network autoregression model (NNAR)
shows the best out-of-sample forecasting performance for aggregate GHG emissions at the
national level in the sample of CEE countries.

Furthermore, the research findings indicate, based on existing conditions, that CEE
countries are projected to miss the mandatory reduction targets under the European Green
Deal. Austria and Slovenia are farthest from meeting the 2030’s 55% emissions reduction
target, whereas Poland (in absolute terms) and Slovenia (in relative terms) are farthest from
meeting the EU’s 2050 net-zero policy target.

Consequently, the EU’s post-COVID recovery plan constitutes a timely occasion to
formulate and implement additional measures aimed at putting the CEE countries on the
right track toward carbon neutrality. In this respect, this study opens another research
direction where the proposed method can be replicated for specific cases on more reliable
and finer-scale GHG emission inventories to reveal trouble areas and further intervene
with targeted policies and measures, which would minimize social and economic costs for
the still fossil-fuel-dependent CEE economies.

For exemplificative purposes, geo-spatial analysis is implemented for the country that
is most at risk from meeting EU-set pollution mitigation targets, i.e., Poland. Our findings
indicate that pollutants are highly concentrated in and around the city of Krakow, thus,
pinpointing where targeted policy intervention should be directed. Forecasts of PM2.5
levels in Krakow indicate an upward trend that is a cause for alarm and highlights that,
absent of further policy interventions, the air quality in Krakow will remain under EU
standards with negative public health and economic consequences.

For other vulnerable CEE countries, geo-spatial inventories are not publicly available
to our knowledge. Nonetheless, among others, [47–49] provided approaches for disaggre-
gating national GHG data that can be further used to perform in-depth analyses for other
countries that are projected to significantly miss policy targets under the status-quo hypoth-
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esis. This research thus serves to provide a base for future research aimed to complement
its findings.

Summing up the above consideration, the main goals of this research are (i) to generate
reliable aggregate GHG projections for CEE countries; (ii) to assess whether these economies
are on track to meet their binding pollution reduction targets; (iii) to pin-point the countries
for which more in-depth analysis using spatial inventories of GHGs at a finer resolution is
needed to uncover specific areas that should be targeted by additional measures; and (iv)
to perform geo-spatial analysis for the most at-risk country, Poland.

The remainder of the paper is organized as follows. Section 2 explains the data and
method employed in the empirical investigation. Further, Section 3 presents the empirical
results, performs robustness checks, and provides estimates of emissions trends. Next,
Section 4 discusses the main findings, whereas Section 5 concludes the study.

2. Materials and Methods
2.1. Data

This study uses annual data on aggregate GHG emissions measured in kt of CO2
covering the 31 December 1970–31 December 2018 period, or a total of 49 years, retrieved
from the World Development Indicators (WDI) database of the World Bank. The time span
for the dataset covers the maximum period of data availability. First, GHG emissions data
were extracted from the WDI for all world countries with 49 available annual observations,
resulting in a sample of 218 individual time series. Subsequently, data corresponding
to nine Central and Eastern European countries that make up the subject of the current
research (i.e., Austria, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania,
Slovak Republic, and Slovenia) was subset. Thus, the final dataset of the study comprises
49 annual observations for nine GHG emissions time series.

The following subsection provides an overview of the state of affairs in the nine CEE
countries included in the analysis.

GHG Emissions in Selected Central and Eastern European Countries

Table 1 reflects the total GHG emissions registered during the most recent year of avail-
able data, i.e., 2018 in the nine CEE countries, together with the GHG emissions percentage
changes over the past decades and policy-relevant periods. The average values at the Euro-
pean Union level as well as at the world level are also reported for comparative purposes.

Table 1. Greenhouse gas emissions in nine EE countries: 2018 data and historical evolution.

Country Income Category
GHG Emissions
2018 (Total, kt
of CO2)

% Change
(Relative to 2015)

% Change
(Relative to 1990)

% Change
(Relative to 1970)

Austria High income 74,980 −0.66 −1.68 9.6

Bulgaria Upper middle 53,330 −6.94 −45.77 −39.42

Croatia High income 22,550 −0.62 −21.4 −12.4

Czech Republic High income 122,840 0.45 −32.63 −42.2

Hungary High income 60,920 4.44 −31.64 −30.56

Poland High income 389,650 6.39 −11.91 −16.42

Romania Upper middle 109,010 0.85 −55.54 −38.16

Slovak Republic High income 39,930 5.72 −40.39 −25.37

Slovenia High income 17,170 5.27 −3.32 54.52

European Union Aggregates 3,567,090 −1.50 −21.69 −22.38

World Aggregates 45,873,850 3.27 53.69 69.54

Average 1.65 −27.14 −15.60
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Of note, the CEE countries reflected in Table 1 mostly belong to the high-income
category as per the World Bank classification, and only Romania and Bulgaria are upper-
middle-income economies. As of 2018, the top GHG emitters in the CEE area in absolute
terms are Poland, the Czech Republic, and Romania.

Together, the three countries account for almost 70% of 2018 GHG emissions in CEE,
with Poland alone responsible for 43.76% of GHG emissions in the area. The vast majority
of CEE countries recorded reductions in GHG emissions between 1970 and 2018, with the
Czech Republic leading the way (−42.2% between 1970 and 2018), followed by Bulgaria
(−39.42%), and Romania (−38.16%). The GHG decrease in these countries is much greater
when compared to the 1990 baseline—a development that is directly tied to the demise
of inefficient communist industries. Only two CEE countries have shown increases in
polluting emissions since 1970, with Slovenia reporting the highest growth rate (54.52%)
and Austria reporting a far more modest rate of 9.6%. Over the same time period, at the
EU level, GHG emissions decreased on average by 22.38%, whereas the nine CEE countries
reported an average reduction of 15.60%.

However, they did manage to surpass the EU average in the aftermath of the com-
munist regime collapse (a decrease of 27.14% for the CEE countries relative to an average
decrease of 21.69% at the EU level). Although, over the entire 1970–2018 period, the overall
emissions in CEE countries exhibited a declining trend, they did not manage to match their
more developed counterparts within the EU.

However, there are disparities in the emission trends at the CEE level, as further
reflected in Figure 3, showing that emissions in Poland, Romania, and the Czech Republic
remained well above the levels registered in other CEE countries, despite their more
accelerated decrease over the past decades.
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2.2. Method

An overview of the research method implemented to offer an assessment of the EU
climate-policy implementation progress in the nine Central and Eastern European countries
is first depicted in Figure 4, whereas more details on its main building blocks are provided
in the following sub-sections.
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The research method is based on two crucial elements: (i) the forecasting technique
employed to produce forecasts and (ii) the forecasting models encompassed into the
algorithm for automated forecasting purposes

2.2.1. The Holdout Period Forecasting

For forecasting purposes, the historical data series of length Ni (i ∈ {1, . . . , 9} and
N = 49) is separated into two subsets corresponding to a training (or fit) period and a test
period or lead-time period to conduct the holdout method [50]. The data up to 2010 (about
84 percent of observations) are employed in-sample for model training and validation,
while the data from 2011 to 2018 (roughly 16 percent of observations) are used to assess the
predictive models’ out-of-sample forecasting accuracy.

As the two most important benchmarks specified within the European Green Deal
for emission reduction targets are the years 2030 and 2050, we are particularly interested
in finding the best forecasting model within the universe of seven candidates over the
lead-time and subsequently using it for providing h steps ahead forecasts corresponding to
the two forecasting horizons for GHGs in the nine CEE countries. Thus, h is set to 32 (so as
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to cover the 2019–2050 forecasting horizon), and the point forecasts for years 2030 and 2050
are highlighted. Figure 5 gives a graphical representation of the holdout cross-validation
method [51] employed in this research.
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2.2.2. The Automated Forecasting Models

Machine-learning methods and traditional statistical methods are implemented through
automated forecasting algorithms to predict the GHG trends. Figure 6 depicts the univari-
ate forecasting models employed in this study for automated forecasting, delineated in the
two categories proposed by [38].
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Hence, the predictive models are automatically implemented in R software through
specific functions mainly included in two main packages, the “stats” package [52] and the
“forecast” package [53], respectively.

The naive model specified in Equation (1) is manually coded in R such that the k-
step-ahead forecast equals the observed GHG emissions value for country i at time t,
such as

Fi(t + k) = yi(t) (1)
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A great advantage of the automatization of model estimation is that a specified fit-
ness function (i.e., the AIC, AICc, and BIC) is run to search over a feature space (pool
of covariates) to select the optimal model parameters, thus, assuring that the in-sample
fit is maximized. Consequently, the algorithm searches through multiple pools of co-
variates to identify the optimal parameters for 63 models (i.e., 7 models × 9 countries,
or Mij, i = 1,. . . ,9, j == 1, . . . , 7) and thus identifies parameters of the seven models that
assure maximum fit on training data for each country.

The single best-performing model for each country further emerges through the esti-
mation of various accuracy metrics for the out-of-sample predictive ability. Its forecasting
superiority is subsequently assessed through formal SPA testing. Further details on imple-
menting traditional statistical methods in the R environment are provided next, while more
information can be found in [54,55].

The exponential smoothing state-space (ETS) model was developed by [56] through
extending the standard Exponential Smoothing (ES) approach. A forecast equation and a
smoothing equation are included in the basic ETS model, which is then incorporated into an
innovation state-space model. Each time series is handled as a mixture of three components:
the trend (T), seasonal (S), and error (E) components in exponential smoothing, with the
trend component further being a combination of a level term (l) and a growth term (b).

The trend and seasonal elements can be none (N), additive (A), additive damped (Ad),
multiplicative (M), or multiplicative damped (Md) The final model is a three-character
string (Z,Z,Z), with the first letter indicating the state-space model’s error assumption, the
second indicating the trend type, and the third indicating the season type [53,56,57]). The
estimation of the ETS model is entirely automated using R’s “forecast” package and its
embedded “ets” function. In this research, the system is prompted to choose the error, type,
and season autonomously and to identify the optimal parameters by running the corrected
Akaike information criterion (AICc) as the fitness function.

The Holt–Winters Model (HW) was first proposed by [58,59] and is often referred to as
double exponential smoothing. The model smooths the time series with three exponential
smoothing formulae that are applied to the mean, trend, and each seasonal sub-series.

The exponential component (Et) is given by

Et = wYt + (1− w)(Et−1 + Tt−1), 0 < w < 1 (2)

The trend component is given by

Tt = v(Et − Et−1) + (1− v)Tt−1, 0 < v < 1 (3)

Finally, the k-step-ahead forecast is issued as

Ft+k|t = Et + kTt (4)

The “HoltWinters” function in the “stats” package in R software is used to automate
the estimation of the HW model for the nine annual GHGs time series of interest by
performing HW filtering on each series and using the squared prediction error to detect
specific parameters.

The TBATS Model (Exponential Smoothing State Space Model with Box–Cox Transfor-
mation, ARMA Errors, Trend, and Seasonal Components) was developed by [60]. It can be
automatically estimated in R through the “TBATS” function in the “forecast” package. The
fitted model is specified as TBATS(omega, phi, m1, k1 >, . . . , mJ, kJ >), where omega is the
Box–Cox parameter; phi is the damping parameter; m1, . . . , mJ are the seasonal periods;
and k1, . . . , kJ are the number of Fourier terms utilized for each seasonality. A TBATS
model thus requires the estimation of 2(k1 + k2 + . . . kT) initial seasonal values. In our
estimations, we instruct the algorithm to employ AIC to automatically identify the model
parameters for each of the nine time series (countries).
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The ARIMA model (Autoregressive Integrated Moving Average) of [61] is a general-
ization of the ARMA (autoregressive moving average) model, widely popularized by [62].
A seasonal model is expressed as ARIMA (p,q,d)(P,Q,D)s, where s signifies the seasonal
period and the lowercase and capital letters reflect the number of nonseasonal and seasonal
parameters for each of its components, as per [54]. An ARIMA(p,d,q)(P,D,Q)s model is
expressed in equation form as:

(1− ϕ1B− . . .− ϕpBp)(1−Φ1Bs − . . .−ΦPBsP)(1− B)d(1− Bs)DYt =
(1− θ1B− . . .− θqBq)(1−Θ1Bs − . . .−ΘPBsQ)εt

(5)

where εt is a random variable that has a mean of zero and the standard deviation σ.
The “auto.arima function” within R’s software’s “forecast” package is run to return the

best ARIMA model for each series, by using unit root tests, AICc minimization, and MLE.
The function can determine whether the data that are employed to fit the models require
seasonal differencing and estimates unit root tests, while minimizing the AICc and MLE, to
select parameters in a step-wise manner. As a result, instead of examining every potential
combination of p and q, the “auto.arima” function yields substantially greater efficiency.

Structural Time Series Models (STS), developed by [63] are expressed explicitly in
terms of non-obvious components, such as trends, cycles, and seasonals, which have a
natural interpretation and represent the key elements of the series under study. The primary
concept behind structural time series models is that they are built up as regression models
with time-dependent explanatory variables and coefficients that change over time [64].
Equation (6) gives a generalized expression for the decomposition of a time series, such that

yt = µt + ψt + γt + εt, t = 1, . . . , T (6)

where µt is the trend, ψ is the cycle, γt is the seasonal, and εt is white noise.
Here, as in [65], STS models are automatically implemented in R by maximum likeli-

hood through the function “StructTS” in the “stats” package. Further information on the
automatically estimation and forecasting with STS models in R can be retrieved from [55].

2.2.3. Neural Network Autoregression Model (NNAR)

Artificial neural networks (ANNs) have been shown to be able to mimic complicated
real-world systems whilst effectively allowing for nonlinearities [66] (Pasini, 2015). The
nodes, the network architecture reflecting the connections between nodes, and the training
algorithm used to determine values of the network parameters for executing a certain task
are the basic elements that describe an ANN [67]. Furthermore, an ANN is known as a
multi-layered feed-forward network or multilayer perceptron (MLP) when each layer of
nodes receives input from the preceding layer.

The models are called feed-forward because there are no feedback connections, and
hence the model’s forecasts (i.e., outputs) are not subsequently fed back into itself [68].
When working with time series data, lagged values of the time series are frequently
employed as inputs to an ANN structure, resulting in neural network autoregression
(NNAR) [69]. NNAR models for seasonal data are written as NNAR (p,P,k)m, where m
is the seasonal period, p are nonseasonal lagged inputs for the linear AR process, P are
seasonal lags for the AR process, and k is the number of hidden layer nodes.

The equation form of the NNAR model is given by:

Y = f (H) = f (W ∗ X + B), X = [y(t− 1), y(t− 2), . . . , y(t− p)] (7)

where Y is the output vector, X is the vector of inputs comprising the observed data’s lagged
values, H is the vector of nodes in the hidden layer, f is the activation function applied
at H that is a transformation of a linear combination of the X (such as a sigmoid/logistic
function), W is the weight matrix between X and H, and B is a bias vector [45].
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The R forecast package’s “nnetar” function, which is a network training function that
changes weights and bias values during training, is used to train the feed-forward neural
network. Through this algorithm, the nine univariate GHG emissions series are forecast by
feed-forward neural networks (FFNN) with a single hidden layer and lagged inputs using
the logit activation function to map the input value into the hidden node’s value [70], as
depicted in Figure 7.
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Thus, the NNAR model uses p-lagged values of the GHG time series as inputs to a
neural network with k-hidden nodes, for forecasting the output y(t) that contains a single
node representing the predicted GHG emissions value. The function automatically makes
25 repetitions (i.e., trains 25 networks with random starting values) and selects the NNAR
parameters (i.e., p and P) through minimizing the AIC, whereas the number of hidden
notes is set as k = (p + P + 1)/2 (rounded to the nearest integer).

2.2.4. Forecasting Accuracy Metrics

The forecasting accuracy of the alternative predictive models for each of the nine GHG
emissions series is assessed by estimating the Root Mean Squared Error (RMSE). RMSE
is a scale-dependent Goodness-of-Fit (GoF) metric that, due to its benefits, emerged as
one of the most popular [71]. Most importantly, RMSE carries the valuable advantage of
direct interpretability in terms of measurement units. Although RMSE is less suitable when
analyzing multiple time series of different measurement units [72], this is not the case in
this research.

Thus, given its suitability and benefits relative to other GoF metrics, RMSE is the
forecasting accuracy metric employed in the empirical investigation conducted in this
study (similar approaches are found in [37,41,43]. RMSE equals the square root of the mean
square error (MSE), and its estimation requires taking the differences between each point
forecast and its corresponding value observed over the forecasting horizon, which is further
squared and averaged as in Equation (8):

RMSE =

√
1
N

N

∑
i=1

(yi − ŷi)
2 (8)

2.2.5. Robustness Checks: The KSPA Predictive Accuracy Test

We scientifically reason that relying on the RMSE alone for identifying the best per-
forming predictive model does not suffice to assure statistical robustness. We thus go one
step further and check the statistical significance of point forecasts produced by the over-
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performing forecasting model Mi, i = 1, . . . , 9 by estimating the Kolmogorov–Smirnov (KS)
Predictive Accuracy test (KSPA). The KSPA test was developed by [73] as a complement
statistical test to the Diebold–Mariano (DM) test [74,75] in order to verify the existence of
significant differences between forecasts produced by two competing models.

Thus, whereas the DM approach [76] relies on the mean difference in errors, the KSPA
approach is to evaluate the differences in the distribution of forecasting errors. The KSPA
test brings some important benefits relative to the popular the Diebold–Mariano (DM)
test, including more power, less sensitivity to outliers and increased understanding of the
underlying distributional characteristics [73]. The two-sided KSPA test is automatically
estimated through the “ks.test” function within R’s “stats” package.

3. Results

Table 2 reports the RMSE for out-of-sample forecasting results for the test period, or
2011–2018, thus, corresponding to an out-of-sample horizon of h = 8 steps ahead. Within
the universe of seven competing models, the NNAR outperforms, showing a superior
predictive ability 55% of the time, followed by the HW model (with a 22.22% score). Two
statistical models (i.e., ETS and STS) were each found to over-perform in one out of nine
instances. The other estimated models (i.e., ARIMA, TBATS, and the Naive model) were
not able to produce accurate forecasts for GHG emissions in any of the nine CEE countries
considered in this study.

Table 2. Prediction accuracy (RMSE for out-of-sample forecasting, forecasting horizon h = 8).

NNAR ETS ARIMA STS H-W TBATS Naive

Austria 2370.88 3673.57 4139.54 4442.13 4391.62 3492.11 4139.54

Bulgaria 4604.16 3847.74 4695.38 4207.66 2824.45 4492.23 3278.24

Croatia 2244.37 3160.71 4794.75 3167.93 3037.49 3105.58 3120.77

Czech Republic 8632.42 10,371.08 11,512.86 4985.65 4702.87 11,371.10 10,371.37

Hungary 3268.13 4345.55 9863.11 9168.60 9051.96 7938.42 4210.96

Poland 11,406.20 17,777.23 23,488.53 19,588.15 22,488.72 28,150.18 16,475.80

Romania 8348.96 4934.09 7904.91 18,473.16 18,262.47 8938.72 6668.08

Slovak Republic 3588.75 4003.57 4904.90 2301.25 2408.13 4776.77 4003.72

Slovenia 1856.16 1887.70 1887.73 2750.34 2623.70 1934.43 1888.18

Score * 5 1 0 1 2 0 0

Score (%) ** 55.55% 11.11% 0% 11.11% 22.22% 0% 0%

Rank 1 3–4 5–7 3–4 2 5–7 5–7

* reflects the number of times (out of nine) that the model surpasses the other candidate models; ** is the percentage
of outperformance (within nine iterations, or countries).

Table 3 reports the relative root mean squared error (RRMSE) results for the out-of-
sample forecasts corresponding to the nine GHGs time series, where the NNAR model (i.e.,
the best-performing forecasting model over the lead-time) acts as a benchmark. Hence, the
overall performance of NNAR across the nine series was proven to be 29% superior to the
ARIMA forecast, 26% superior to TBATS, 15% superior to STS, 10% superior to the naive
model, 8% superior to HW, and 7% superior to the ETS model when predicting the trend of
GHG emissions in the nine CEE countries.
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Table 3. The relative root mean squared error (RRMSE) for the forecasting horizon h = 8.

NNAR/ETS NNAR/ARIMA NNAR/STS NNAR/H-W NNAR/TBATS NNAR/Naive

Austria 0.65 0.57 0.53 0.54 0.68 0.57

Bulgaria 1.20 0.98 1.09 1.63 1.02 1.40

Croatia 0.71 0.47 0.71 0.74 0.72 0.72

Czech Republic 0.83 0.75 1.73 1.84 0.76 0.83

Hungary 0.75 0.33 0.36 0.36 0.41 0.78

Poland 0.64 0.49 0.58 0.51 0.41 0.69

Romania 1.69 1.06 0.45 0.46 0.93 1.25

Slovak Republic 0.90 0.73 1.56 1.49 0.75 0.90

Slovenia 0.98 0.98 0.67 0.71 0.96 0.98

Average 0.93 0.71 0.85 0.92 0.74 0.90

Score * 7 8 6 6 8 7

* indicates the number of times (out of a maximum of nine) that NNAR outperforms the alternative
predictive models.

Robustness Check: Predictive Accuracy Test

The Kolmogorov–Smirnov (KS) Predictive Accuracy test (KSPA) proposed by [73]
additionally challenges NNAR’s over-performance and contributes to ensuring the results’
reliability. The KSPA test results are presented in Table 4 for each pair of competing models
and each country, with NNAR as acting as a reference. In each instance where NNAR
emerged as the top-performing model, the test identified significant disparities between
the predictions issued by NNAR and the second-best performing model.

Table 4. The results of the Kolmogorov–Smirnov Predictive Accuracy (KSPA) test (p-values).

Country KSPA (p-Value)

Austria 0.01865 ***

Bulgaria 0.1871

Croatia 0.01865 **

Czech Republic 0.002486 *

Hungary 0.07937 ***

Poland 0.00235 **

Romania 0.002486 *

Slovak Republic 0.9801

Slovenia 0.08702 ***
Note: * Based on the two-sided KSPA test at a 1% significance level, there is a statistically significant difference
between the distribution of forecast errors from the best and second best performing models. ** indicates statistical
significance at 5%. *** indicates statistical significance at 10%.

When NNAR did not outperform the best predictive model, the KSPA test was used to
determine the differences between NNAR forecasts and the best predictive model. We can
reject the null hypothesis and accept the alternate hypothesis when the two-sided KSPA
test statistic is significant at 1%, demonstrating that the forecast errors from NNAR and the
alternative model do not have the same distribution.

The KSPA test demonstrates that the NNAR forecasting technique outperforms its
opponent for all countries (i.e., Austria, Croatia, Hungary, Poland, and Slovenia). The
test, on the other hand, does not generally indicate the superiority of the rival model
when NNAR is not shown to be the best model in terms of forecasting accuracy, with the
exception of the Czech Republic and Romania.
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In the last stage of the current research, the over-performing predictive model for each
GHG emissions series is fitted to the entire dataset Ni, i = 1, . . . , 9 and used to generate point
estimates for GHGs in the nine countries, underlining the predicted levels for two relevant
forecasting horizons, 2030 and 2050, respectively. As such, the entire forecasting horizon is
set to h = 32, thus, reaching the 2050 benchmark. The in-sample fit is first confirmed by
calculating the Ljung–Box test, which indicates that all models were properly specified (i.e.,
the residuals were checked for any signs of non-zero correlations at lags 1–20).

Table 5 reflects the percentage change relative to the 1990 level, as specified by the
European Green Deal. The results indicate that, on average, the current decreasing trend
in total GHGs in eastern European countries will continue over the next decades with a
26.48% decrease until 2030 and an overall 30.02% decrease across the nine countries until
2050. However, the estimation results indicate that two CEE countries (i.e., Austria and
Slovenia) will register increases in total GHG emissions of 1.05% and 5.15%, respectively,
by 2030 relative to their 1990 levels and similar levels of growth until 2050. Only a couple
of countries are expected to reduce harmful emissions significantly and to meet the set
pledges for 2030, i.e., Bulgaria (−56.11%) and Romania (−54.80%), although the GHG
levels remain too high at the 2050 horizon.

Table 5. Forecasts for GHG emissions in nine CEE countries over 2019–2030 and 2019–2050.

Country Point Forecast
2030 % (1990–2030) Point Forecast

2050 % (1990–2050)

Austria 77,063.01 1.05 77,069.90 1.06

Bulgaria 43,162.67 −56.11 26,217.12 −73.34

Croatia 26,813.51 −6.54 25,091.39 −12.54

Czech Republic 110,686.81 −39.30 90,431.48 −50.41

Hungary 58,278.45 −34.61 58,273.77 −34.61

Poland 379,509.0 −14.20 379,508.6 −14.20

Romania 110,835.6 −54.80 110,968.8 −54.75

Slovak Republic 40,879.49 −38.98 42,461.97 −36.61

Slovenia 18,674.94 5.15 18,693.73 5.26

Average %
change of total
GHG emissions

−26.48% −30.02%

Furthermore, we proceed to explore the preliminary performance of the over-performing
models by assessing their forecasting accuracy for the two years subsequent to the dataset
spanning period for which estimations of realized GHGs can be realized (i.e., 2019 and
2020). Thus, although official statistics for total GHG emissions are not yet available, data
on CO2 emissions for 2019 and 2020 are available for most of the countries included in our
data sample.

Thus, in order to provide an estimation for the realized GHG levels in 2019 and 2020,
the following approach was implemented: first, the growth rate in CO2 emissions for
the years 2019 and 2020 was extracted from CO2 data, and then the same growth rate
was applied to the GHG 2018 level. Thus, estimations of total GHGs for 2019 and 2020
were produced by assuming that the total GHGs will register a similar evolution to CO2
emissions. Albeit imperfect, we scientifically reason that this approach is able to provide a
sufficiently accurate approximation of the realized GHGs values and can capture the trend
particularly well. In a few instances where national reports or other national sources that
provide information for actual GHG data were found, the data extracted from those sources
were employed.
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Table 6 summarizes these findings and indicates all specific sources. The results
show high accuracy of the forecasting models in predicting GHG emissions values for
the year 2019, albeit, as expected, they overestimated GHG values for the year 2020,
when the pandemic was a black-swan event that significantly affected the global GHG
levels in 2020. As a result, the confidence level decreased from 98.5% for 2019 to 90%
for the year 2020, registering an average value of approximately 95% over the two years.
Considering the unseen effects of the COVID-19 pandemic, it can be extracted that the
over-performing models are able to provide accurate forecasts for emission trends during
“normal” conditions and thus can assist the policymaking process at the EU level.

Table 6. Preliminary assessment of the forecasting performance for aggregated GHGs at the national
level (2019 and 2020).

Actual Value (A) Forecasted
Value (F) Error (A–F) |Error|/A

Austria 2019 79,800 1 77,845.6 1954.4 0.024

Austria 2020 73,600 1 76,331.2 −2731.2 −0.037

Bulgaria 57,200 2 55,829.01 1371 0.024

50,724 3,* 57,318 −6594 −0.13

Croatia 22,652 3,* 23,172 −520 −0.023

21,633 3,* 24,039 −2406 −0.111

Czech Republic 107,194.07 3,* 123,123 −15,928.9 −0.149

101,036.45 3,* 125,088 −24,051.5 −0.238

Hungary 60,800 4,* 60,344 456 0.008

58,368 4,* 59,402 −1034 −0.018

Poland 394,000 4,* 384,761 9239 0.023

373,680 5 381,685 −8005 −0.021

Romania 105,997.16 3,* 109,402 −3404.84 −0.032

101,888 3,* 109,715 −7827 −0.077

Slovak Republic 41,900 6 40,909 991 0.024

35,537.7 4,* 39,716 −4178.3 −0.118

Slovenia 16,601 3,* 17,145 −544 −0.033

14,883 3,* 17,191 −2308 −0.155

MAPE (total) 0.058 (94.2%
confidence level)

MAPE 2019 0.015 (98.5%
confidence level)

MAPE 2020 0.10 (90.0%
confidence level)

* Estimated value from CO2 emissions trends. 1 Source: Umweltbundesamt. 2 Source: https://www.europarl.
europa.eu/RegData/etudes/BRIE/2021/689330/EPRS_BRI(2021)689330_EN.pdf (accessed on 11 February 2022).
3 Source: Our World in Data. 4 Source: Statista. 5 Source: http://seo.org.pl/en/w-2020-r-emisja-gazow-
cieplarnianych-w-polsce-spadla-do-37368-tys-kt-ekw-co2/ (accessed on 11 February 2022). 6 Source: https:
//www.europarl.europa.eu/RegData/etudes/BRIE/2021/698767/EPRS_BRI(2021)698767_EN.pdf (accessed on
11 February 2022).

Figure 8 reflects the GHG forecasts over the 2019–2050 period and also highlights the
EU Green Deal 2030 individual targets in terms of the total GHG emissions levels to be
achieved by 2030. The countries that are farthest from meeting the targets (in absolute
terms) are Austria and Poland, whereas the Czech Republic will continue on the path
toward pollution mitigation; albeit, the set targets are not projected to be met.

https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689330/EPRS_BRI(2021)689330_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/689330/EPRS_BRI(2021)689330_EN.pdf
http://seo.org.pl/en/w-2020-r-emisja-gazow-cieplarnianych-w-polsce-spadla-do-37368-tys-kt-ekw-co2/
http://seo.org.pl/en/w-2020-r-emisja-gazow-cieplarnianych-w-polsce-spadla-do-37368-tys-kt-ekw-co2/
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698767/EPRS_BRI(2021)698767_EN.pdf
https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698767/EPRS_BRI(2021)698767_EN.pdf
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On the other hand, the Slovak Republic is set to reverse its progress toward emissions
mitigation, whereas Austria, Croatia, Hungary, Poland, and Slovenia show a future constant
evolution in the total GHG emissions. Romania and Bulgaria are the only countries in the
CEE area that are expected to meet their 2030 emission mitigation targets.

4. Discussion

Our research findings confirm that the neural network autoregressive model (NNAR)
exhibited the best out-of-sample predictive ability within the universe of statistical and
deep-learning models employed in this study, being able to achieve the lowest forecast
error for the nine GHG emissions series 55% of the time. This is in line with [77], who
concluded on the efficiency of artificial neural networks (ANN) in time series modeling
when a variable’s previous values were employed as inputs to describe the future values.
Our results also support the conclusion of [43–45], which also identify NNAR as over-
performing in forecasting polluting (CO2 and/or GHG) emissions.

Next, we report the total GHG emissions values forecasted with the best predictive
model identified for each country. Overall, the estimation results indicate that future
emission forecast levels are insufficient to meet the 2050 targets at the CEE level (i.e., carbon
neutrality). Our findings thus back the findings of [22] and indicate that the EU climate
goals are overly optimistic. A preliminary assessment of the forecasting ability over the
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first two time indices in the forecasting horizon (i.e., the years 2019–2020) indicates the
high accuracy of the forecasting models in predicting emission values for the year 2019;
albeit, as expected, they could not predict the black-swan event that significantly affected
the global GHG levels in 2020.

However, it should be mentioned that, to reach carbon neutrality, countries can use
carbon credits or offsets from projects that reduce, avoid, or temporarily capture GHGs [78].
Further, net-zero emissions are achieved when all produced GHG emissions are offset
by removing GHGs from the atmosphere in a process known as carbon removal. Thus,
although carbon neutrality does not imply absolute net-zero emissions, it does, however,
require the mitigation of GHGs to as close to zero as possible [79]. Moreover, the most
cost-efficient way to address GHG concentrations is by avoiding emissions [80].

One of the main reasons for the previous reduction in GHG emissions within the EU
is the increased reliance on renewable energy sources. However, the technical complexities
of integrating green sources increase with their share in power generation, and transport,
heating, industry, and agriculture are more difficult to decarbonize than the electricity
sector, which has been mainly accomplished thus far [81]. Consequently, this might explain
why the CEE countries analyzed in this study are projected to miss the ambitious emission
targets set through the European Green Deal.

This further confirms that the overwhelming dependency on fossil fuels of CEE
economies remains a considerable roadblock to the region’s decarbonization goals [82]. In
addition, the findings indicate that the 2030 EU-set 55% emissions reduction targets relative
to 1990 levels will only be met by Bulgaria and Romania, whereas other countries are
expected to continue the decreasing trend without meeting the goal, or even see increasing
emissions levels over the next decade.

Our results are thus in line with [83] and confirm that Romania and Bulgaria are com-
mitted to mitigating pollution and pursuing low-carbon development [84]. Furthermore, it
should be noted that Romania has already met its 2020 renewables target of 24 percent of
the final energy consumption from renewables well before the deadline and is also on the
right track to reach its 2030 renewables target of 30.7% [85], which helps to explain both the
past decreasing GHG emissions trend and its projected evolution.

A similar situation is encountered in Bulgaria, as the country has reached its renewable
energy legally binding target for 2020 (16%) since 2013 [86]. Additionally, it was demon-
strated that a power system with a substantially higher deployment of renewable energy
sources is feasible [87], indicating that more impactful measures can be implemented to
accelerate the emissions mitigation trend.

As such, we agree with [88] that an important economic goal is to expedite the transi-
tion to renewable energy. This is also in line with previous studies (among others, [89–94]
that reported that renewable energy and polluting emissions have a negative association.

Moreover, it should also be mentioned that both Romania and Bulgaria have suffered
significant decreases in their population number over the past decades, mostly due to low
birth rates and a chronic migration problem (i.e., Romania has the largest negative net
migration stocks with the rest of the EU [95]). The demographic decline is also expected
to continue until 2050, further explaining the GHG emissions mitigation projected for the
countries [96].

However, it should also be acknowledged that, unlike the majority of their former
Soviet bloc counterparts, Bulgaria and Romania have not been able to successfully reap
the benefits of their industries collapsing with the demise of communism after 1989, which
supplied them with millions of tons of excess rights known as Assigned Amount Units
(AAUs) [97]. This, in turn, might also explain their more intensive reduction in total GHGs
after 1990 relative to other CEE countries.

Nonetheless, the required reduction in greenhouse gas emissions that CEE countries
must accomplish comes with important economic costs, which are non-trivial for the more
vulnerable EU members [98,99]. Particularly, Poland and the Czech Republic—which
are, with Germany, Europe’s top three coal-burning countries [100]—will face significant
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challenges. Although it can be argued that health benefits can outweigh the costs [101], we
take a similar view with [102] and suggest that financial aid and technology transfers are
required to support efforts toward carbon neutrality.

The European Union economic recovery package addressing the COVID-19 pan-
demic’s economic and social consequences, i.e., the Next Generation EU (NGEU)
fund ([103–105]) should be directed toward implementing targeted climate change and
green transition measures and be aimed at achieving a synchronized EU recovery.

To this end, effective measures can emerge from further research based on the current
findings and using geo-spatial GHG data for countries that are projected to significantly
miss policy targets under the status quo hypothesis. This supports the claims of [106],
showing that it is frequently required to collect data not only on the level at which a
policy is implemented but also below this level. This would further permit addressing the
heterogeneous nature of EU regions and their distinct characteristics and sensitivities to
specific policies.

Finally, this research fully agrees with [107] and highlights that increasing ongoing
efforts to integrate statistics and geo-spatial data and thus to provide disaggregation at the
highest possible level of detail would be conducive to more integrated research endeavors
capable of providing reliable and relevant information for effective and efficient decision
making, and ultimately support the worldwide goal of sustainable development.

For an exemplification of the aforementioned conclusion, we take a closer look at the
country that is most expected to miss the EU-set targets, i.e., Poland. Coincidentally, Poland
constitutes a rare case where governmental geospatial data (i.e., a relevant network of air
pollution sensors) is publicly available, thus, providing a unique opportunity to identify
pollution-related vulnerable areas. Consequently, we sourced pollution data from three
government stations located in the three most important Polish urban areas, i.e., Warsaw,
Krakow, and Lodz, respectively.

The data includes hourly observations and spans 8 February 2022 to 9 March 2022, for
a total of 720 records (i.e., 24 × 30) for each of the following air pollutants: PM10, PM2.5,
NO2, C6H6, and CO. The dataset employed for the geo-spatial analysis thus comprises a
total of 3600 hourly records. Appendix A Figure A1a–c zooms in at the city level to highlight
the exact geo-location of the governmental sensor for which air quality measurement data
were extracted. Table 7 centralizes the statistics for all measured parameters by the official
government sensors located in the three reference stations over the most recent month.

The statistics in Table 7 demonstrate that the distribution of pollutant data in the three
polish urban areas from February to March 2022 was heterogenic, highlighting that Poland’s
main air quality problem is located in Krakow. The current EU standards that members
should meet are, respectively, 40 µg/m3 (1-year averaging period) for PM10 concentrations,
20 µg/m3 (1-year averaging period) for PM2.5 concentrations, 40 µg/m3 (1-year averaging
period) for NO2 concentrations, 10 mg/m3 (maximum daily 8-hour mean) for CO, and
5 µg/m3 (1-year averaging period) for benzene (C6H6) [109].

As a result, Krakow is the only area in Poland (among the three sampled here) that
currently fails to meet the EU air quality standards for PM10, PM2.5, and NO2, with adverse
health effects for its population. This supports [110] and is also in line with a 2016 WHO
report (cited by [111]) that positions Krakow as the eighth worst city in the European Union
(EU) when it comes to surpassing the thresholds for the air concentration of particulate
matter. Figure 9, which offers an overview of pollutant concentration at the country level,
further confirms that Poland’s pollution is mostly concentrated in and around the city
of Krakow.

We next attempt to forecast one of the most dangerous pollutants, i.e., particulate
matter 2.5 (PM2.5) for the selected governmental air sensor in Krakow, and we investigate
how far the air quality in Krakow will remain from the EU standards over the short term.
Particulate matter (PM) refers to suspensions in the air comprising coarse, fine, and ultra-
fine solid and liquid particles, whereas PM2.5 refers to PM with a diameter of less than
2.5 µg/m3 (i.e., standard air quality measurements describe PM concentrations in terms
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of micrograms per cubic meter or µg/m3) that remain suspended in the air for prolonged
periods and can cause a variety of short- and long-term health problems. Long-term
exposure to PM2.5 has been found to cause, among others, chronic respiratory issues, heart
disease, and cancers [39,113]. Overall, it is estimated that particulate matter smaller than
2.5 micrometers (PM2.5) ambient air pollution caused approximately 4.2 million deaths in
2015 ([114,115].

Table 7. Geo-spatial data analysis from selected Polish government pollution measurements
(8 February 2022–9 March 2022).

Components PM10 PM2.5 NO2 C6H6 CO

Unit µg/m3 µg/m3 µg/m3 µg/m3 mg/m3

Station: Łodz (ul.
Gdańska 16)

Min 0.5 NA 2.2 0.3 0.2

Max 136.5 NA 82.1 10 2.4

Mean 20.7 NA 21.8 1.6 0.5

Station: Warsaw (al.
Niepodległości)

Min 5.9 2.3 5.4 0.3 0.2

Max 183.2 87.4 101.3 4 1.3

Mean 35.1 16.9 42.7 1.2 0.5

Station: Krakow (al.
Krasińskiego)

Min 3.4 2.2 6.2 0.1 0.2

Max 215.4 117.2 119.8 7.9 2

Mean 52.4 27.6 51.4 1.4 0.7
Source of data: Poland’s Chief Inspectorate for Environmental Protection database (http://powietrze.gios.gov.pl/
pjp/home [108] (accessed on 9 March 2022)).
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Consequently, we collected hourly PM2.5 levels measured by the government set-up
monitoring station over the previous year, thus, constructing a dataset of 8782 hourly
observations over the 8 March 2021 (02:00)–8 March 2022 (03:00) period. Figure 10 shows
the distribution of the pollutant during this timeframe, reflecting that it remains above the
EU-set standards for most of the year, with peaks during the winter months, which in turn
indicates that the burning of low-quality coal in coal-fired stoves is an important cause of
environmental pollution in the city, in line with [116].
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of data: Poland’s Chief Inspectorate For Environmental Protection (http://powietrze.gios.gov.pl/
pjp/home (accessed on 9 March 2022)). Authors’ representation in Datawrapper.

For estimation purposes, the hourly dataset is subsequently divided into a training set
containing the first 7000 observations (i.e., approximately 80% of the data) and a test set of
1782 observations (i.e., 20% of the data) that is employed for assessing the out-of-sample
forecasting accuracy of the seven alternative automated forecasting models. Table 8 reports
the accuracy metrics for the out-of-sample forecasting of PM2.5, indicating that NNAR is
again capable of producing the most accurate out-of-sample forecasts.

Table 8. Prediction accuracy metrics (ME and RMSE) for the out-of-sample forecasting * of PM2.5
in Krakow.

Predictive Model ME RMSE

NNAR 5.09 26.93

TBATS 13.00 28.26

ARIMA 18.92 31.42

Naive 20.59 32.44

STS 22.08 33.40

EXP −54.12 73.95

HW 94.70 106.59
* Forecasting horizon of 1782 h (or approximately 74 days); training period of 7000 h (approximately 292 days).

Lastly, the best performing forecasting algorithm (i.e., NNAR) is fitted to the entire
dataset containing 8782 hourly measurements for PM2.5 in the Krakow area and instructed
to produce forecasted values for PM2.5 over the next 30 days (or 720 hourly observa-
tions). Figure 11 reflects the estimation results, along with the benchmark 1-year average
level of 20 µg/m3 established at the EU level that should be met by all EU members,
including Poland.
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The research results indicate without a doubt that, absent of further policy interven-
tions, the air quality in Krakow will remain low with subsequent negative public health
consequences. Thus, forecasts show an upward trend that is a cause for alarm, given that
the current quality of PM2.5 levels is already significantly higher than the safe limit of
20 µg/m3 prescribed by the EU, which is, in turn, significantly higher than the PM2.5 limit
set by the WHO, which recommends a maximum annual mean of 5 µg/m3 [113].

Consequently, our research highlights that Polish authorities should take targeted
actions to diminish pollution in Krakow. In this respect, we support the conclusion of [111]
and agree that, among other actions, informative campaigns and education could make a
significant impact on pollution mitigation at the city level. In line with [116], we reason
that other measures could focus on restrictions on the use of solid fuel systems, expanding
and modernizing heating networks, eliminating waste incineration, and limiting emissions
from transportation.

The current research findings further show that failure to implement efficient pollution-
reduction actions would result in Poland missing the 2030 and 2050 EU targets with
significant negative consequences. Similarly, the availability of granular data for other
countries that are also expected to struggle to meet the mandatory pollution-mitigation
targets given the status quo (i.e., especially Austria and Slovenia) would prove of great
value, as a similar geospatial analysis would pinpoint specific geo-locations where targeted
interventions are needed and thus would significantly mitigate the risk of incurring non-
compliance-related sanctions.

5. Conclusions

The European Union is dedicated to leading the worldwide battle against climate
change. Already a lesser contributor to world pollution than the world average, the EU
recognized the need to go even further with its climate ambitions to transform Europe
into a highly energy-efficient, low-carbon economy. In December 2020, EU leaders agreed
to a binding EU goal of a net domestic reduction in greenhouse gas emissions of at least
55 percent by 2030 compared to 1990 and to reach carbon neutrality by 2050. However,
reaching these ambitious goals poses significant challenges for the more vulnerable, fossil-
fuel-dependent CEE economies, whereas the failure to reach the set pledges might trigger
infringement procedures, legal challenges, and ultimately financial penalties.

In this context, accurate predictions of GHG emissions in CEE countries are cru-
cial, which motivated this study. Estimations show that, by 2030, the nine CEE coun-
tries would register, on average, a 20% reduction in GHG emissions compared with the
1990 base-year emissions, albeit these reductions remain insufficient compared to the 2030
55% mitigation target.
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The only two CEE countries that are expected to meet their emission mitigation goals
for 2030 are Romania and Bulgaria, while none of the CEE countries included in the analysis
are expected to reach a net-zero target by 2050 by mitigating total GHG emissions to close
to zero values in absolute terms. Austria and Slovenia are the farthest from attaining the
2030 objective, while Poland (in absolute terms) and Slovenia (in relative terms) are the
least likely to achieve the climate policy aims set for 2050.

Hence, our research findings indicate that achieving carbon neutrality will only be
possible through heavy reliance on carbon credits. However, it should be mentioned that
forecasting models run under the status quo hypothesis, and thus any future develop-
ments are not considered when producing estimates. Consequently, we acknowledge
that, given the long forecasting horizon employed in this study, all estimated models
should be reviewed and updated regularly to ensure that they remain appropriate for the
dynamic circumstances.

Particularly, updating the time series with the inclusion of observations corresponding
to the COVID-19 pandemic should lead to more accurate estimations of GHG trends. This
study brings evidence based on existing conditions that the current pollution mitigation
measures implemented in the selected countries are insufficient, and reaching 2030 targets
will require additional efforts that go beyond the status quo.

Nonetheless, a successful EU transition toward carbon neutrality should consider
the diverse power systems and starting points in the decarbonization process across CEE
member states and should be complemented by adequate social protection programs.
Furthermore, as the transition of Central and Eastern European countries to mature and
socially just market economies is still underway, the EU’s post-pandemic recovery plan
should be efficiently used to successfully achieve this transition.

In this respect, this study serves as the foundation for future research aimed at uncov-
ering specific areas that require intervention through research on finer scale geospatial GHG
data, particularly for countries projected to significantly miss the EU net-zero policy targets.
Currently, this study accomplished monitoring and evaluation of the EU low-carbon policy
implementation and identified the requirements for policy response at a national level.

We also performed geospatial analysis for Poland and found that the distribution
of the main air pollutants within three major urban areas was highly heterogenic, as a
significantly high concentration of pollution was encountered in and around the city of
Krakow. Projections of PM2.5 in the city of Krakow showed that the air quality in Krakow
will remain too low relative to EU and WHO standards and that immediate pollution-
reduction measures are paramount to protect population health and avoid the negative
consequences of failing to meet the 2030 and 2050 EU binding targets. For other at-risk CEE
countries according to the current findings, further research is needed to fill in the missing
pieces once specific geo-spatial data becomes available.

Consequently, we reason that statistical and geo-spatial views complement one an-
other and that additional efforts should be directed toward accelerating their integration.
Similarly, research on aggregated statistical data and on (geo) spatial data complement and
enhance each other. Thus, the integration of data would, in turn, accommodate integrated
research capable of identifying specific issues that require policy responses and thus better
assist an effective and efficient decision-making process.

Ultimately, the integrated framework can support the worldwide goal of
sustainable development.
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