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Abstract: An assessment of site suitability for wind and solar plants is a strategic step toward ensuring
a low-cost, high-performing, and sustainable project. However, these issues are often handled on a
local scale using traditional decision-making approaches that involve biased and non-generalizable
weightings. This study presents a global wind and solar mapping approach based on eXplainable
Artificial Intelligence (XAI). To the best of the author’s knowledge, the current study is the first attempt
to create global maps for siting onshore wind and solar power systems and formulate novel weights
for decision criteria. A total of 13 conditioning factors (independent variables) defined through a
comprehensive literature review and multicollinearity analysis were assessed. Real-world renewable
energy experiences (more than 55,000 on-site wind and solar plants worldwide) are exploited to
train three machine learning (ML) algorithms, namely Random Forest (RF), Support Vector Machine
(SVM), and Multi-layer Perceptron (MLP). Then, the output of ML models was explained using
SHapley Additive exPlanations (SHAP). RF outperformed SVM and MLP in both wind and solar
modeling with an overall accuracy of 90% and 89%, kappa coefficient of 0.79 and 0.78, and area under
the curve of 0.96 and 0.95, respectively. The high and very high suitability categories accounted
for 23.2% (~26.84 million km2) of the site suitability map for wind power plants. In addition, they
covered more encouraging areas (24.0% and 19.4%, respectively, equivalent to ~50.31 million km2) on
the global map for hosting solar energy farms. SHAP interpretations were consistent with the Gini
index indicating the dominance of the weights of technical and economic factors over the spatial
assessment under consideration. This study provides support to decision-makers toward sustainable
power planning worldwide.

Keywords: wind plants; solar plants; site suitability; XAI; GIS

1. Introduction

Nowadays, the world faces challenges in meeting the increasing energy demand
associated with population explosion and trying to reduce greenhouse gas emissions
accompanying these activities [1]. Fortunately, the development of renewable energy (RE)
as an essential element of a strategy to mitigate climate change is widely agreed upon [2].
RE’s share in global power generation is projected to increase from the current estimate
of 26% to reach 86% by 2050 [3]. Interestingly, wind and solar power are the most mature
and popular green energy sources being explored globally owing to their cleanliness
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degree, availability, capacity factor, and construction cost compared with other clean energy
sources [4]. However, extensive lands with special specifications are required to ensure the
success of large-scale solar photovoltaic (PV) farms [5]. Similarly, the development of wind
plants necessitates careful exploration of sites to meet standard operating conditions [6].
Therefore, a site suitability assessment that considers many aspects is critical in the life
cycle of wind and solar systems for a low carbon future.

Traditionally, site suitability for wind and solar plants is assessed using multi-criteria
decision-making (MCDM) techniques, such as Analytical Hierarchical Process (AHP) [7–9],
Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [1,10] and
fuzzy logic [11,12]. In MCDM-based assessment, criteria are often weighted subjectively
or objectively [13]. On the one hand, subjective weighting includes bias, particularly in
regions that lack sufficient knowledge maturity of real-world RE experiences to enable
local experts to make informed judgments. Objective weighting, on the other hand, is
characterized by its inability to generalize, as it can only be applied to pre-determined
alternatives. Moreover, the weights change when an alternative is added or deleted [14].
Accordingly, different approaches that provide reliable and generalizable solutions should
be adopted.

Recently, machine learning (ML) and geographic information systems (GIS) tech-
niques, along with remote sensing (RS) data, are emerging as among the most appropriate
approaches for mapping spatial suitability and hazard susceptibility. ML models have
been successfully implemented in many fields to solve location issues, such as predicting
suitable sites for dams [15], hospitals [16], solid waste landfills [17], agricultural reclama-
tion [18], and habitats [19]. Meanwhile, interesting attempts have been found to employ ML
techniques in selecting optimal sites for RE farms and predicting their renewable resources.
For example, a combined approach of AHP weights and suitability classification of the
Multi-layer Perceptron (MLP) algorithm was used to locate wind/solar power plants in
East Azerbaijan, Iran [20]. The study reported that, by using this procedure, adding a
new candidate would not affect the suitability scores of other alternatives. Jani et al. [21]
proposed a unique ML-based methodology to select the effective sites for solar and wind
simultaneity. In another work covering the USA, the performance of five ML algorithms,
namely K-Nearest Neighbors (k-NN), Support Vector Machine (SVM), Decision Tree (DT),
Random Forest (RF), and MLP, was analyzed to find the optimal sites against three types of
clean energy (wind, solar, and geothermal) [22]. The analysis showed that the RF algorithm
performs best with an overall accuracy of 92%. Despite the recommendations of previous
work to adopt ML as a viable alternative to MCDM methods, the availability of ground
truth samples is a key factor for the smart models to be trained successfully. Thus, the
application of these novel techniques for siting wind and solar plants is often not possible
in developing countries that have just started planning to rely on green energy sources.
Another barrier to the reliable use of ML models in real-world decision-making is the lack
of transparency and explainability of the models’ outputs as these are perceived to be black
box models [23].

In the last few years, the black box of ML models has been broken by passing on
eXplainable Artificial Intelligence (XAI) algorithms, such as SHapley Additive exPlanations
(SHAP). XAI refers to AI algorithms in which humans can logically interpret the output at an
acceptable level [24]. Explainability facilitates understanding the influence and contribution
of each input feature on the AI models’ outputs [25]. Furthermore, XAI has the ability to
detect bias in the training dataset, thereby ensuring impartiality in decision-making [26].
XAI has been increasingly applied in the field of spatial prediction of droughts [27,28]
and landslides [29], mapping of earthquake-induced building damage [25], and urban
vegetation mapping [30]. Most of these studies concluded that XAI can not only provide
insight into the output of intelligent models but also change our understanding of using ML-
based models to make informed decisions [28]. Considering the aforementioned challenges
and opportunities, this paper aims to conduct a GIS-based global assessment using ML
and XAI techniques to recognize suitable regions for the development of onshore wind
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and solar stations. With the holistic vision, the on-site RE experiences worldwide can
contribute to mapping spatial appropriateness across the planet, including in developing
countries. Such experiences can also generate unbiased weights for decision criteria that
can be applied worldwide. To the authors’ knowledge, this study is the first to investigate
on a global scale the issue of site suitability for solar and wind energy systems. The specific
objectives were to (i) establish a hybrid XAI-GIS framework to select the most suitable
locations for RE facilities, considering various geo-technical, economic, and environmental
conditioning factors; (ii) perform the suggested framework to generate global maps of site
suitability for wind and solar installations; and (iii) discover factor weights influencing the
optimal location.

2. Materials and Methods

The methodology developed to assess site suitability for wind and solar plants consists
of three main stages, as illustrated in Figure 1. First, efforts are devoted to locating the
real-world RE samples and generating thematic layers of conditioning criteria down to
extracting a training dataset. The second stage focuses on data preprocessing, which
involves refining and optimizing the dataset and dividing it into a train set, validation set
and a test set. Finally, the performance of three ML algorithms, namely, RF, MLP, and SVM,
is evaluated. The model with high precision metrics is considered for mapping the spatial
suitability of wind and solar farms. Moreover, XAI techniques are utilized to interpret
the results and derive the global weights for adopted factors. The following subsections
discuss the methodology in detail.
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Figure 1. Methodology flowchart of ML and XAI-based spatial assessment for RE farms.

2.1. Data Acquisition and Preparation

Two types of data were collected and prepared: an inventory map of the existing
solar and wind power plants globally and thematic layers of the conditioning factors. The
objective is to train a spatial prediction model for RE farms.



ISPRS Int. J. Geo-Inf. 2022, 11, 422 4 of 26

2.1.1. Sample Inventory

The availability of training samples based on real-world experiences is crucial to
ensure the success of any ML model [31]. Accordingly, on-site solar and wind instal-
lations worldwide are considered samples for training an ML-based spatial assessment
model. To this end, spatial data published and publicly available on Figshare entitled
“global_wind_solar_2020” are used to inventory the targeted places [32]. These datasets are
available in the geopackages and shapefiles format to present the geographic locations of
wind turbines and solar panels individually or as groups. Sites’ description, whether urban
or next to/on a water body, is included in the metadata of this database. According to the
scope of this study, places that are described as urban or on a water body are excluded. All
locations above 60◦ N or below 60◦ S latitude are also omitted. The total number of wind
and solar energy locations considered in this study are 31,571 and 24,048, respectively, as
illustrated in Figure 2.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 4 of 27 
 

 

2.1. Data Acquisition and Preparation 
Two types of data were collected and prepared: an inventory map of the existing 

solar and wind power plants globally and thematic layers of the conditioning factors. The 
objective is to train a spatial prediction model for RE farms. 

2.1.1. Sample Inventory 
The availability of training samples based on real-world experiences is crucial to en-

sure the success of any ML model [31]. Accordingly, on-site solar and wind installations 
worldwide are considered samples for training an ML-based spatial assessment model. 
To this end, spatial data published and publicly available on Figshare entitled 
“global_wind_solar_2020” are used to inventory  the targeted places [32]. These datasets 
are available in the geopackages and shapefiles format to present the geographic locations 
of wind turbines and solar panels individually or as groups. Sites’ description, whether 
urban or next to/on a water body, is included in the metadata of this database. According 
to the scope of this study, places that are described as urban or on a water body are ex-
cluded. All locations above 60° N or below 60° S latitude are also omitted. The total num-
ber of wind and solar energy locations considered in this study are 31,571 and 24,048, 
respectively, as illustrated in Figure 2. 

 
Figure 2. Locations of wind and solar power plants globally. 

2.1.2. Conditioning Factors 
Natural resource criteria, such as wind speed (WS) and solar radiation (SR), are key 

factors when choosing wind and solar farm locations [33]. However, other environmental 
and economic parameters are equally significant in the placement decision of RE systems 
[34]. Therefore, the most common factors that mimic the global scope of this study have 
been captured based on an extensive review of publications that addressed the site suita-
bility assessment of wind and solar stations for different regions worldwide [1,5–
7,12,20,35–59]. Accordingly, WS and Wind Density (WD) were considered technical fac-
tors for siting wind stations. However, they were replaced by SR, Air Temperature (AT) 
and Cloud Index (CI) when assessing the site suitability of solar farms. Moreover, eight 
other indicators participated in evaluating both types of energy, namely, Slope (S), Eleva-
tion (E), Landcover (LC), Proximity to Road (PR), Proximity to Grid (PG), Proximity to 
City (PC), Natural Disasters (ND) and Population Density (PD), which covered economic, 
environmental, and social aspects. For more details on the importance of these criteria, 
refer to the literature as they are comprehensively discussed [35,43,46,47,59–61]. 

As we investigate globally, publicly available online spatial databases from reliable 
sources were considered to collect global datasets for the criteria under consideration. WS 

Figure 2. Locations of wind and solar power plants globally.

2.1.2. Conditioning Factors

Natural resource criteria, such as wind speed (WS) and solar radiation (SR), are key fac-
tors when choosing wind and solar farm locations [33]. However, other environmental and
economic parameters are equally significant in the placement decision of RE systems [34].
Therefore, the most common factors that mimic the global scope of this study have been
captured based on an extensive review of publications that addressed the site suitability
assessment of wind and solar stations for different regions worldwide [1,5–7,12,20,35–59].
Accordingly, WS and Wind Density (WD) were considered technical factors for siting wind
stations. However, they were replaced by SR, Air Temperature (AT) and Cloud Index
(CI) when assessing the site suitability of solar farms. Moreover, eight other indicators
participated in evaluating both types of energy, namely, Slope (S), Elevation (E), Landcover
(LC), Proximity to Road (PR), Proximity to Grid (PG), Proximity to City (PC), Natural
Disasters (ND) and Population Density (PD), which covered economic, environmental, and
social aspects. For more details on the importance of these criteria, refer to the literature as
they are comprehensively discussed [35,43,46,47,59–61].

As we investigate globally, publicly available online spatial databases from reliable
sources were considered to collect global datasets for the criteria under consideration. WS
and WD data at an altitude of 100 m were downloaded from the database of Global Wind
Atlas v3.1 to meet the technical requirements of a modern wind turbine. For solar PV
technologies, Global Solar Atlas v2.6 was used to gather the spatial datasets of AT and
Global Horizontal Irradiation (GHI), which is the overall SR received at the horizontal
surface on the ground [46]. Notably, the data of Global Wind Atlas and Global Solar Atlas,
based on re-analyzed climate data, are widely used in formulating technical factors for
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siting RE plants [5,6,35]. In addition, CI factor data were acquired from the EarthEnv
project database, which is based on 15 years of cloud observations derived from twice-
daily MODIS satellite imagery [62]. Additionally, the digital elevation model products of
SRTM 90m v4.1 available on the EarthEnv platform are certified to represent the E and S
factors [63]. Meanwhile, vector data for the locations of cities, road networks, and electricity
grids worldwide were gathered from a published dataset. Their quality is verified through
comparison with high-resolution satellite images [64]. In a later step, the vector data are
employed to formulate the PC, PR, and PG indicators. Table 1 presents LC, ND, and PD
data sources and more details on the characteristics of the considered datasets.

Table 1. Characteristics of the conditioning factor datasets for this study.

Category Factor Dataset Name Source Format Spatial
Resolution Updated to Access Link Access Date

Technical

WS wind speed Global Wind
Atlas 3.1 Raster 1 km Apr-21 https:

//globalwindatlas.info/
15 December

2021

WD wind density Global Wind
Atlas 3.1 Raster 1 km Apr-21 https:

//globalwindatlas.info/
15 December

2021

SR solar radiation
atlas/GHI

Global Solar
Atlas v2.6 Raster 1 km Jul-21 https://globalsolaratlas.

info/map
16 December

2021

AT air temperature Global Solar
Atlas v2.6 Raster 1 km Jul-21 https://globalsolaratlas.

info/map
16 December

2021

CI cloud cover
index

EarthEnv
project Raster 1 km Jan-16 https://www.earthenv.

org/cloud
2 January

2022

Economical

E elevation EarthEnv
project Raster 1 km May-18 https://www.earthenv.

org/topography
5 January

2022

S slope EarthEnv
project Raster 1 km May-18 https://www.earthenv.

org/topography
6 January

2022

PC world cities and
towns

NASA,
NGIA, and

USGS
CSV X Jul-21 https://simplemaps.

com/data/world-cities
1 February

2022

PR world roads ArcGIS Hub,
Esri Vector X Jun-20

https://hub.arcgis.com/
maps/Story::
world-roads

9 February
2022

PG global energy
infrastructure

Published
article Vector X Jan-20 https://gridfinder.org/ 11 February

2022

Environ-
mental

LC Esri 10-Meter
Land Cover Esri Raster 10 m Jul-21 https://livingatlas.

arcgis.com/landcover/
18 January

2022

ND natural disas-
ters/multihazard UNISDR Raster 10 km Jan-15 https:

//preview.grid.unep.ch/
14 February

2022

Social PD population
density, v4.11

SEDAC,
NASA Raster 1 km Jan-20

https://sedac.ciesin.
columbia.edu/data/set/

gpw-v4-population-
density-rev11

26 February
2022

The collected datasets are standardized in terms of geo-referencing, resampling, and
workspace (onshore between latitude 60◦ N to 60◦ S). The vector datasets are converted to
raster layers using the Euclidean distance tool. Finally, thematic layers for the conditioning
factors are generated with an appropriate symbology, as shown in Figure 3.

https://globalwindatlas.info/
https://globalwindatlas.info/
https://globalwindatlas.info/
https://globalwindatlas.info/
https://globalsolaratlas.info/map
https://globalsolaratlas.info/map
https://globalsolaratlas.info/map
https://globalsolaratlas.info/map
https://www.earthenv.org/cloud
https://www.earthenv.org/cloud
https://www.earthenv.org/topography
https://www.earthenv.org/topography
https://www.earthenv.org/topography
https://www.earthenv.org/topography
https://simplemaps.com/data/world-cities
https://simplemaps.com/data/world-cities
https://hub.arcgis.com/maps/Story::world-roads
https://hub.arcgis.com/maps/Story::world-roads
https://hub.arcgis.com/maps/Story::world-roads
https://gridfinder.org/
https://livingatlas.arcgis.com/landcover/
https://livingatlas.arcgis.com/landcover/
https://preview.grid.unep.ch/
https://preview.grid.unep.ch/
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11
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2.1.3. Training Dataset Extraction

Based on the sample inventory (locations of wind and solar plants) and thematic layers
of the criteria under consideration, two training datasets were generated. The first dataset
was allocated for siting onshore wind farms, with 10 evaluation factors/independent
variables: WS, WD, S, E, LC, PR, PG, PC, ND, and PD. On the contrary, the second dataset is
employed to assess site suitability for solar farms against 11 influential factors/independent
variables (i.e., RR, AT, CI, S, E, LC, PR, PG, PC, ND, and PD). As for dependent variables,
solar samples were assigned as non-wind in the first dataset, whereas wind samples were
designated as non-solar in the second dataset.
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2.2. Dataset Pre-Processing

Ordinarily, real-world data can be incomplete (includes missing values), inaccurate
(contains outlier and extreme values), and inconsistent [65]. Thus, preprocessing is an
inevitable stage to clean, organize, and format the raw datasets, making them workable for
ML models. In the present work, the two datasets mentioned earlier were preprocessed
using the following successive steps:

1. Handling missing values: All missing values, whether for nominal or numeric at-
tributes, are replaced by means and modes of the training data.

2. Removal outliers and extreme values: A filter is applied based on interquartile ranges
to detect and remove outliers and extreme values that fall outside of what is expected.

3. Data balancing: For ML algorithms to operate unbiased, the number of samples must
be balanced for each dependent variable [66]. To do so, our datasets were resampled
by applying the Synthetic Minority Oversampling TEchnique (SMOTE), in which the
minority samples are duplicated based on the minority data population.

4. Normalization: As data units of the independent variables vary widely, feature
scaling or normalization is essential for objective functions of ML models to work
correctly [67]. Accordingly, all attribute values under consideration were normalized
on a standardized scale from 0 to 1.

5. Splitting data: An effective technique for understanding the performance of ML
models is to divide the dataset into a training, validation, and testing set. Consistent
with previous work [16,22,31], our dataset is split into 70% train set, 15% validation
set, and 15% test set. In the training process, the training set is resampled to isolate
the validation subset using a 10-fold cross-validation approach. The training and
validation subset contributes to tuning the model parameters, whereas the test set is
dedicated to evaluating the trained model accuracy.

Multicollinearity Analysis

As redundant independent variables are present, the calculations of ML algorithms are
heavier and more time-consuming and even have lower performance [68]. Moreover, the
multicollinearity between the parameters will affect the accuracy of the training results [69].
Therefore, multicollinearity analysis is a vital procedure to address these issues. To this
end, a linear regression analysis was performed in which the square value of the correlation
coefficient (R2) was calculated via SPSS software. Then, the R2 was utilized to compute the
tolerance and variance inflation factor (VIF) for the input variables under consideration
using Equations (1) and (2) [70]:

Ti = 1 − R2
i , (1)

VIF =
1
Ti

. (2)

The analysis indicates a multicollinearity issue between the considered criteria if T
is less than 0.1 and/or VIF is larger than 10 [71]. Thus, the design of the criteria system
should be reconsidered.

2.3. ML-Based Modeling

ML models, which have the ability to learn from large datasets, seek to perform
a specific task efficiently without using explicit instructions [72]. ML uses two types
of techniques: supervised learning to tackle classification and regression issues and un-
supervised learning to solve clustering problems [15]. Supervised learning algorithms
have demonstrated their ability to handle complexity and nonlinearity in many site-
suitability and susceptibility analyses [68]. In this study, three supervised algorithms
(RF, SVM, and MLP) using Python programming language with the Scikit-Learn pack-
age (http://scikit-learn.org, accessed on 15 March 2022) are exploited to classify the site
suitability of wind and solar plants on a global scale. The Python programming code is
provided in the Supplementary Material.

http://scikit-learn.org
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2.3.1. Algorithms Implemented

RF is one of the most widely used models for classification and regression issues
because of its simplicity, accuracy, and flexibility. The RF algorithm, an upgraded version
of the decision tree approach, combines numerous decision trees into a single structure
termed a forest [15,73]. With more trees, the forest becomes robust against noise, overfitting,
and non-correlated attributes [18]. Therefore, the number and depth of trees need to be
carefully specified to run the RF algorithm efficiently [31].

SVM is a powerful ML algorithm that applies the structural risk reduction concept
and is built on the theoretical basis of statistical learning [74]. The SVM model has the
ability to overcome any complex nonlinear relationship by using kernel functions that
convert input data into high-dimensional feature space [15]. Organized procedures for
defining parameters in the SVM algorithm are critical, as they determine the model’s
performance accuracy [75].

MLP is a class of feed-forward artificial neural networks that uses the backpropagation
algorithm for supervised training [76]. The neural networks of MLP are built up of three
major structures: input, hidden and output layers. One layer of input nodes is assigned
to receive the relevant decision factors, and another one is to output the classified results.
On the contrary, one or more intermediate hidden layers are dedicated as a computational
engine for the MLP algorithm [16,77].

The hyper-parameters of the above-mentioned algorithms (i.e., RF, SVM and MLP) are
fine-tuned to achieve maximum classification accuracy. The best number of trees to run the
RF classifier was 100, with a maximum depth of five along with other default settings of
the Scikit-Learn package [78]. For the SVM model, the Radial Basis Function (RBF) was the
best kernel type with C and gamma values of 0.1 and 0.001, respectively. Finally, the MLP
accuracy has stabilized with 4 hidden layers, 0.1 learning rate, and 10 epochs.

2.3.2. Algorithm Performance Evaluation

Performance appraisal is a crucial part of modeling in which the accuracy of prediction
maps is tested using a real-world dataset that the models have not seen before [79]. In this
study, a confusion matrix is considered to derive classifiers’ performance metrics, namely,
Sensitivity (Se), Specificity (Sp), overall accuracy (Po), kappa coefficient (k∗), and the Area
Under the Curve (AUC). Se and Sp are executed to assess the model’s ability to correctly
recognize the presence and absence of RE farms, respectively [31,75]. Po and k∗ were used to
evaluate the classification accuracy of our models as kappa, in particular, has the capability
to rule out a correct prediction occurring by chance [17]. The aforementioned metrics can
be better described as follows:

Se =
TP

TP + FN
, (3)

Sp =
TN

TN + FP
, (4)

Po =
TP + TN

(TP + FP + TN + FN)
, (5)

Pe =
[(TP + FP)(TP + FN) + (FN + TN)(FP + TN)]

(TP + FP + TN + FN)2 , (6)

k∗ =
Po − Pe

1− Pe
. (7)

where TP is the true positive instances of the predicted positive class; FP is the false positive
instances of the predicted positive class; TN is the true negative instances of the predicted
negative class, and FN is the false negative instances of the predicted negative class [18]. Po
also indicates the observed accuracy, whereas Pe is the expected accuracy.

Ultimately, the AUC, denoting the area under the Receiver Operating Characteristic
(ROC) curve, is considered owing to its ability to distinguish binary classifications [75]. The
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ROC curve is plotted on a biaxial graphic. The x-axis indicates the false positive rate, and
the y-axis denotes the true positive rate. The area under the ROC curve ranges from 0.5 to
1, with the highest AUC stating the most effective model [68,79].

2.3.3. Model Calibration

Calibration is vital in training ML models that aim to convert model predictions
into posterior class probabilities [80]. In other words, calibration works to approximate
the predicted probabilities to the actual probabilities and thus obtain predictions that are
more compatible with the real world [81]. The creation of a calibration plot (also known
as a reliability plot) is the most common way to test the models’ calibration. Such a
plot reveals any differences between the model’s predicted probability (x-axis) and the
empirical probability in the data (y-axis) [82]. The closer the drawing curve is to the
diagonal line, the better the calibration. As a popular method for calibrating models,
isotonic regression is applied in this study. It is a non-parametric calibration method
for binary classifiers in which the calibrated predictions are generated using an isotonic
mapping transformation [81]. For more detail on the isotonic regression approach, the
readers are referred to Leathart [83].

2.3.4. Explainable AI

XAI is a set of algorithms and plots that help humans understand and interpret the
output of ML models [84]. XAI reveals the information that the actions are based on,
thereby improving the performance of smart models. As the most popular XAI approach,
the SHAP algorithm is performed in this work.

The SHAP algorithm was first developed by Shapley [85] to identify the contri-
bution of individual players to the outcome of a cooperative team game [27]. Then,
Lundberg et al. [86] recently introduced this concept to measure the participation and
influence of parameters in formulating the outputs of ML models. The SHAP values esti-
mate the magnitude and direction of each parameter contributing to the model’s output
and present them in different kinds of interpretable plots [27]. The Shapley value is com-
puted by taking the average of the marginal contribution across all conceivable parameter
combinations, as described below [25]:

∅i = ∑
S⊆N{i}

|S|!(n− |S| − 1)!
n!

[v(SU{i})− v(S)], (8)

where ∅i is the contribution of parameter i; N is the set of all the parameters; n is the
number of parameters in N; S is the subset of N which does not contain parameter i, and
v (N) is the base value indicating the predicted result for each parameter in N without
knowing the parameter values [28].

The SHAP index is usually estimated in various ways, such as Tree SHAP, Deep
SHAP, and Kernel SHAP. This study employs Tree SHAP, a form of SHAP designed for
tree-based ML models (e.g., decision trees, RF, XGBoost, and CatBoost) [87]. The Tree
SHAP considers tree-based models to generate SHAP values in a matrix of equal size to
the input dataset [88]. The SHAP values can determine whether the contribution of each
input parameter is positive or negative. In this scenario, the SHAP analysis facilitates the
understanding and identification of features most influential in predicting optimal sites for
RE installations.

In this study, the Shapley explainer was adopted to obtain global and local interpreta-
tions of the ML model. The global explanation aims to estimate the general contribution of
each conditioning factor in mapping the spatial suitability of wind and solar farms. The
influence of factors is calculated as the mean of the absolute SHAP values throughout the
entire dataset [29]. The local explanation, from another aspect, highlights the factors that
made a significant contribution to the prediction by enabling us to identify the effect of
each factor on classifying the individual pixels in the suitability map [25,29]. This capabil-
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ity gives us a deeper understanding of the model and the dataset. The global and local
importance of the factors can be represented using the SHAP summary plot and the SHAP
force plot, respectively.

3. Results
3.1. Collinearity of Conditioning Factors

A multicollinearity analysis was performed to achieve high predictive reliability and
not overburden the trained models with extra parameters. The analysis results revealed
that all criteria used in both datasets of this study yielded VIF values below 10 and T values
exceeding 0.1, as presented in Table 2. The collinearity outcomes indicate that no strong
correlation exists among the factors. Thus, the conditioning factors (independent variables)
were all fed to the algorithms under consideration to derive their global weights and map
the site’s suitability for wind and solar plants.

Table 2. Multicollinearity statistics within the conditioning factors.

Factor
Wind Dataset Solar Dataset

T VIF T VIF

WS 0.823 1.215
WD 0.113 8.876
SR 0.109 9.174
AT 0.214 4.680
CI 0.229 4.365
LC 0.919 1.088 0.854 1.170
S 0.811 1.233 0.787 1.271
E 0.114 8.760 0.343 2.912

PG 0.760 1.316 0.741 1.349
PR 0.759 1.318 0.761 1.313
PC 0.905 1.105 0.924 1.082
ND 0.861 1.161 0.895 1.117
PD 0.937 1.067 0.908 1.101

3.2. Evaluation and Calibration Results

Performance evaluation results using the 30% testing dataset demonstrated that the
three algorithms have promising capabilities for predicting the spatial suitability to host
wind and solar plants. Table 3 presents the appraisal of RF, SVM and MLP against Se,
Sp, Po, k∗ and AUC metrics. Comparatively, the RF model was the most sensitive and
specific in classifying the geospatial dataset of wind farms followed by the MLP and SVM,
where the Se and Sp values were (0.88, 0.91), (0.79, 0.81), and (0.70, 0.75), respectively.
A similar ordering was recorded within the solar dataset, revealing the ability of the RF
model to correctly detect the presence and absence of wind and solar power plants. The
highest overall accuracy in predicting suitable locations for wind and solar plants was
when using the RF classifier (90% and 89%, respectively), followed by the MLP classifier
(80% and 73%, respectively). By contrast, the SVM classifier provided the lowest Po (74%
and 72%, respectively). Statistically, k∗ indices for the wind and solar modeling using the
RF algorithm (0.79 and 0.78, respectively) were high compared with those using other
algorithms under consideration. This result indicates substantial agreements between
the model output and the ground truth. In addition, RF performance in wind and solar
modeling had the best accuracy across the AUC metric (0.96 and 0.95, respectively), tracked
by MLP and SVM. This finding implies no sign of overfitting in the RF model. Figure 4
displays the AUC plot of the RF model in which the ROC curves approach the upper left
corner of the plot. This case is interpreted to mean that the AUC is closer to 1, and the
overall accuracy is higher [16].
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Table 3. Performance metrics results for the algorithms considered.

Metric
Wind Modeling Solar Modeling

RF SVM MLP RF SVM MLP

Se 0.88 0.70 0.79 0.91 0.74 0.77
Sp 0.91 0.75 0.81 0.88 0.70 0.70
Po 0.90 0.74 0.80 0.89 0.72 0.73
k∗ 0.79 0.46 0.59 0.78 0.42 0.45

AUC 0.96 0.73 0.89 0.95 0.71 0.72
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Figure 4. AUC test of RF-based spatial prediction of wind (a) and solar (b) energy plants.

According to the aforementioned comparisons, the RF classifier achieved the highest
accuracy within all performance metrics considered. Its merits include the ability to
handle nonlinear relationships and low bias [18,89]. Therefore, the RF algorithm can be
recommended as the best algorithm to predict the site’s suitability for wind and solar
energy installations.

RF models were calibrated to obtain predictions compatible with real-world events.
Figure 5a,b presents calibration plots for modeling the spatial suitability of wind and solar
plants, respectively. The test calibration curve (the blue line) has an S-curve shape that
is parallel to the perfect calibration line (diagonal gray line) in the wind and solar model
of the RF classifier. However, the calibration of the models using the isotonic regression
method (red line) significantly improved the predictive performance.
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3.3. Global Suitability Mapping

RF was selected for further processing to generate spatial suitability maps to identify
potential locations worldwide for the deployment of wind and solar energy equipment. The
suitability maps were generated with a spatial resolution of 10 km. In each map, the degree
of suitability is categorized into five classes using the equal interval classification method:
very low (0.0–0.2), low (0.2–0.4), moderate (0.4–0.6), high (0.6–0.8), and very high (0.8–1.0).
Figure 6 shows the results of the site suitability maps for wind and solar power plants.
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The quantitative analysis in Table 4 shows that, for the wind map, the high and very
high suitability categories cover 23.2% (~26.84 million km2) of the land, concentrated in
regions above 30◦ in the Northern Hemisphere and below 30◦ in the Southern Hemisphere.
America, Argentina, Russia, Kazakhstan and China are among the countries that have
revealed significant areas of red and orange suitability indexes. Meanwhile, the moderate
class (17.3%) is scattered across the site suitability map of wind energy, whereas 60% of
the world’s considered area is low to very low for wind turbine deployment. As for
the global map for hosting solar power plants, the high and very high suitability scores
(24.0% and 19.4%, respectively) were more encouraging, covering a vast area of land,
~50.31 million km2. Territories on both sides of the equator, such as Africa, northern Latin
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America, northern Australia and parts of the Middle East and southern Asia, are considered
the most suitable for the cultivation of solar PV panels. In addition, the very low class
recorded a relatively small percentage of the area at 13.8%, followed by the low class with
18.9%, which constitutes a total of ~37.84 million km2 of land to be excluded from the
planning of solar projects.

Table 4. Area and percentage of suitability degrees.

Suitability Degree
Wind Suitability Map Solar Suitability Map

km2 % km2 %

Very Low 38,667,400 33.4 15,933,000 13.8
Low 30,189,100 26.1 21,911,900 18.9

Moderate 20,057,400 17.3 27,601,900 23.8
High 15,027,100 13.0 27,798,800 24.0

Very High 11,814,800 10.2 22,510,200 19.4
Total 115,755,800 100 115,755,800 100

Overall, an opposite behavior is observed for the distribution of the suitability cate-
gories across the wind and solar energy maps. This discrepancy is because of the different
spatial patterns of natural resource factors considered in this study, such as WS and SR.
However, noteworthy regions of the planet can be found with promising suitability for
both types of energy, as discussed in the next section.

3.4. Predictive Model Explanation

The SHAP technique was applied to better understand the contribution of factors
and their dependencies in formulating the prediction output. Shapley’s explanations are
presented graphically in this section, globally and locally.

Globally, the impact of factors on the prediction output was investigated using the
Shapley summary plot, as shown in Figure 7. The x-axis presents the SHAP value. A posi-
tive value implies an impact on the forward direction, whereas a negative one implies an
impact on the backward direction toward attaining prediction outcomes. The y-axis ranks
the factors in the order of significance. Each dot represents an observation from the original
dataset. The value of each observation is displayed on the color scale ranging from low to
high. Figure 7a shows that WS and PC have the greatest impact on the classification of the
spatial suitability map for onshore wind systems. Taking an in-depth look, the concentra-
tion of red dots to the right of the baseline denotes that the high observation values of these
factors increase the site’s potential to host wind turbines. In other words, the most suitable
locations for siting wind plants are those with high WSs and a great distance from cities.
From another aspect, PC and AT ranked first and second, respectively, in interpreting the
influence of parameters involved in mapping site suitability for solar systems, as shown
in Figure 7b. The blue color for PC and the bluish-green color for AT to the right of the
baseline explain that places near cities and those with moderate temperatures are most
likely to invest in solar PV energy. By contrast, PG, LC and ND had the least effect on
the output of wind and solar models. Overall, the high impact of technical and economic
factors can be recorded at the expense of other environmental and social factors.

Locally, a force plot was used to interpret the influence of factors on classifying certain
pixels (Figure 8). The explanation shows how multiple factors interact to push the model’s
output from the base value to the probability value of the initial prediction. As shown, the
RF model can correctly classify pixels (a) and (c) with a 97% and 99% probability of being
suitable for hosting wind and solar plants, respectively. By contrast, the model predicted
pixels (b) and (d) to be spatially unsuitable for solar and wind systems with a probability
of 1% and 8%, respectively. Each SHAP value is displayed by an arrow in the plot. Factors
that increase the value of a positive classification (spatially suitable) are represented in
red on the left, whereas those that decrease the value of a negative classification (spatially
unsuitable) are indicated in blue on the right. In Figure 8a, for instance, WS, PC and PR
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play a significant role in raising the positive prediction of wind systems, whereas WD
lowers the negative prediction. Furthermore, the values of WS, PC and PD factors were
a determining criterion in assigning pixel un-suitability, as illustrated in Figure 8b. From
another aspect, Figure 8c,d highlights the significant contributions of PC and AT factors in
classifying the suitability of the observations for solar farm development.
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Figure 9 shows the dependence plots for further understanding the factors that have a
significant or dynamic effect on the prediction output. Such plots demonstrate the SHAP
value of the features against the feature value of all instances under consideration. In
Figure 9a,b the interactions between the WS and PC are plotted for the spatially suitable
and unsuitable classes of wind power installations, respectively. The actual values of
the first factor (WS) are represented on the x-axis, whereas the left y-axis displays the
SHAP value associated with the factor. Positive values indicate that the factors contribute
positively to the classification and vice versa. The colors denote the SHAP values given to
the second factor (PC). Figure 9a shows that SHAP values get larger with increasing WS
and PC leading to a positive prediction of site suitability for wind systems. The dependency
between these factors takes an opposite pattern in classifying the unsuitable classes, as
shown in Figure 9b. As the most influential factors in classifying the spatial suitability of
solar stations, the interaction between AT and PC was represented using the same graphical
approach mentioned above. Figure 9c,d shows dependence plots to predict suitable and
unsuitable pixels for PV solar panel deployment. These plots revealed that AT values
between 10 ◦C and 20 ◦C with a smaller distance to cities control the SHAP values, thereby
formulating the prediction results.

ISPRS Int. J. Geo-Inf. 2022, 11, x FOR PEER REVIEW 19 of 27 
 

 

tions, the interaction between AT and PC was represented using the same graphical ap-
proach mentioned above. Figure 9c,d shows dependence plots to predict suitable and un-
suitable pixels for PV solar panel deployment. These plots revealed that AT values be-
tween 10 °C and 20 °C with a smaller distance to cities control the SHAP values, thereby 
formulating the prediction results. 

  
(a) (b) 

 

 

 

 
(c) (d) 

Figure 9. SHAP dependence plots to interpret the interaction between WS and PC for the suitable 
(a) and unsuitable (b) classes of wind power installations and the interaction between AT and PC 
for the suitable (c) and unsuitable (d) classes of solar farms. 

3.5. Weight of Conditioning Factors 
The relative weight of each conditioning factor within the RF algorithm-based mod-

eling is calculated according to the mean decrease in impurity (MDI), sometimes called 
“gini importance” [90]. Figure 10 depicts the weights and contributions of each factor used 
in modeling and predicting land suitability for wind and solar power plants. Accordingly, 
the most influential parameter in the wind spatial modeling was WS (0.373), followed by 
PC (0.149). The E, WD and PD ranked the third, fourth and fifth with weights of 0.111, 
0.086 and 0.077, respectively. Meanwhile, PR and S factors yielded an equal weight score 
of 0.061. Additionally, ND seemed to have no clear contribution to wind farm suitability 
mapping and was ranked 10th (0.017). In terms of the global suitability map of solar power 
plants, the weighting analysis for the dedicated factors exhibited the following ranking: 
PC (0.180), AT (0.149), PD (0.129), SR (0.101), E (0.097), CI (0.090), PR (0.082), S (0.074), PG 
(0.049), LC (0.027) and ND (0.027). 

Figure 9. SHAP dependence plots to interpret the interaction between WS and PC for the suitable
(a) and unsuitable (b) classes of wind power installations and the interaction between AT and PC for
the suitable (c) and unsuitable (d) classes of solar farms.

3.5. Weight of Conditioning Factors

The relative weight of each conditioning factor within the RF algorithm-based model-
ing is calculated according to the mean decrease in impurity (MDI), sometimes called “gini
importance” [90]. Figure 10 depicts the weights and contributions of each factor used in
modeling and predicting land suitability for wind and solar power plants. Accordingly, the
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most influential parameter in the wind spatial modeling was WS (0.373), followed by PC
(0.149). The E, WD and PD ranked the third, fourth and fifth with weights of 0.111, 0.086
and 0.077, respectively. Meanwhile, PR and S factors yielded an equal weight score of 0.061.
Additionally, ND seemed to have no clear contribution to wind farm suitability mapping
and was ranked 10th (0.017). In terms of the global suitability map of solar power plants,
the weighting analysis for the dedicated factors exhibited the following ranking: PC (0.180),
AT (0.149), PD (0.129), SR (0.101), E (0.097), CI (0.090), PR (0.082), S (0.074), PG (0.049), LC
(0.027) and ND (0.027).
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4. Discussion

Conventional assessments of site suitability for RE plants often involve challenges
represented in designing a decision-making criteria system, identifying the criteria weights
and mapping the relevant suitability. However, the availability of real-world spatial data
for wind and solar power systems along with RS datasets for critical conditioning factors
has led to the formulation of more mature and less-biased ML-based solutions. The
performance appraisal metrics considered in this study provide scientific evidence of the
robustness of the RF, SVM and MLP algorithms in predicting optimal sites for hosting wind
and solar farms. Although the three models achieved an overall accuracy of over 70%, the
RF performed satisfactorily in the wind and solar modeling with Po values of 90% and 89%,
respectively. The best k∗ and AUC result was found using the RF classifier, followed by
MLP and SVM. Evidently, the RF algorithm is the most proper and stable algorithm for
predicting land suitability classes for deploying green energy equipment. This result is
consistent with the findings of previous work that demonstrated the efficient performance
of the RF algorithm [15,18,22]. Meanwhile, the parameter importance analysis by the RF
method revealed significant weight ratios for WS (37%), PC (15%), E (11%), and WD (9%)
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in mapping site suitability for wind farms. On the contrary, the parameters PC (18%), AT
(15%), PD (13%), and SR (10%) had the greatest influence on the optimum site selection for
wind stations. These weights indicate that technical and economic factors dominate the
choice of location and are in line with the recommendations of many researchers [91–94].

The percentages of wind and solar plant inventory samples are analyzed based on
individual suitability classes to evaluate the quality of site suitability maps produced by
the RF model, as shown in Figure 11. Accordingly, more than 80% of the inventory samples
fall under “high” and “very high” zones, indicating the validity of our suitability maps.
Overall, 23.2% of the lands worldwide were mainly found within “high” and “very high”
favorability for building wind power plants, whereas the proportion doubled to 43.4% for
setting up solar energy farms. This result highlights the abundant technical and economic
potential of our planet to invest in solar power compared with wind power. However,
large-scale solar PV farms are the main cause of land degradation and habitat loss, among
other clean energies [95].
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For our results to be comparable with those of previous works, a standardized map
of site suitability for wind, solar, and wind–solar plants is generated, as illustrated in
Figure 12. In the overall map, regions with spatial suitability degrees for wind systems,
between 0.5 and 1, are represented in cyan, making up 22.35% of the world’s land area.
Similarly, the orange color indicates the available areas for investment in solar energy
(47.48% of the world’s land) with a suitability score of more than 0.5. Places that fulfilled
both conditions above are painted in red, covering 8.53% of the land, and are suitable
for wind, solar and wind–solar hybrid plants. Our map also revealed that 21.64% of the
studied land was unsuitable for any energy systems under consideration.
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The current map (Figure 12) is in line with the results of previous studies that covered
individual countries or regions, as highlighted in Figure 13. For example, the southeastern
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and southwestern regions of the United States showed their suitability for hosting solar
farms, supporting the report of Shahab et al. [22]. In addition, western China have revealed
promising areas for investment in solar energy. This result is consistent with the maps of
related study conducted in this country [96]. Meanwhile, our findings are harmonic with
the report of a recent study investigating the site suitability for wind and solar plants in the
entire African continent [97]. We both stated that the whole continent has moderate to very
high suitability for solar plants, whereas the northern countries were the most likely to
deploy wind turbines alongside solar PV panels. Moreover, in the Middle East, the results
were comparable with the recommendations of Jahangiri et al. [98].
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These trends highlight the spatial policies of wind and solar energy development under
various technical, economic, and environmental constraints. As the cost of investing in
RE continues to drop, policymakers and stakeholders must carefully consider appropriate
spatial opportunities to host wind-solar hybrid systems for stable energy supplies, reduced
land consumption and climate change mitigation. In addition to mapping the spatial
suitability of wind and solar plants globally, the current research work presents a set of
potential practical applications. Micro investigations of wind and solar systems can be
carried out with high spatial resolution (e.g., 1 km) for specific continents or countries using
the proposed ML-based framework. In addition, the reported global weightings assist
decision-makers, particularly in developing countries that lack real-world experiences of
RE farms, in generating bias-free MCDM-based solutions with less time and effort.

5. Conclusions

In this study, three ML algorithms (i.e., RF, SVM, and MLP) were tested to perform a
global site suitability assessment for wind and solar plants using 55,619 real-world samples
and 13 conditioning factors. The investigation results indicated the superiority of the RF
algorithm in all the performance metrics (Se = 0.88/0.91, Sp = 0.91/0.88, Po = 0.90/0.89,
k∗ = 0.79/0.78, and AUC = 0.96/0.95); thus, this algorithm can be suggested as a sensible
model for mapping land suitability of wind and solar installations. The XAI-based im-
portance analysis revealed a high influence of technical and economic criteria on spatial
decision-making with the highest weights for locating wind farms (WS = 0.373, PC = 0.149,
E = 0.111 and WD = 0.086) and solar farms (PC = 0.180, AT = 0.149, PD = 0.129 and
SR = 0.101). The global maps of site suitability developed in this work highlight 22.35%
and 47.48% of the world’s land as advisable for hosting onshore wind and solar power
plants, respectively. Both types of energy can be deployed side by side on 8.53% of the
studied planet area.

As a useful worldwide assessment, the study findings are a starting point for scholars
to conduct more detailed investigations of the new opportunities announced. Furthermore,
the current results could potentially stimulate stakeholders to create new cross-border
investments in the RE sector. The present paper has limitations. The study focuses on ex-
ploring suitable regions for onshore wind and solar PV farms against only a set of common
evaluation factors. For future screening, spatial suitability maps can be sifted based on the
more restricted zone. Global spatial assessment of offshore wind and concentrated solar
energy is another potential avenue for future research.
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