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Abstract: Forest canopy cover (FCC) is one of the most important forest inventory parameters and
plays a critical role in evaluating forest functions. This study examines the potential of integrating
Sentinel-1 (S-1) and Sentinel-2 (S-2) data to map FCC in the heterogeneous Mediterranean oak forests
of western Iran in different data densities (one-year datasets vs. three-year datasets). This study used
very high-resolution satellite images from Google Earth, gridded points, and field inventory plots to
generate a reference dataset. Based on it, four FCC classes were defined, namely non-forest, sparse
forest (FCC = 1–30%), medium-density forest (FCC = 31–60%), and dense forest (FCC > 60%). In this
study, three machine learning (ML) models, including Random Forest (RF), Support Vector Machine
(SVM), and Classification and Regression Tree (CART), were used in the Google Earth Engine and
their performance was compared for classification. Results showed that the SVM produced the
highest accuracy on FCC mapping. The three-year time series increased the ability of all ML models
to classify FCC classes, in particular the sparse forest class, which was not distinguished well by the
one-year dataset. Class-level accuracy assessment results showed a remarkable increase in F-1 scores
for sparse forest classification by integrating S-1 and S-2 (10.4% to 18.2% increased for the CART and
SVM ML models, respectively). In conclusion, the synergetic use of S-1 and S-2 spectral temporal
metrics improved the classification accuracy compared to that obtained using only S-2. The study
relied on open data and freely available tools and can be integrated into national monitoring systems
of FCC in Mediterranean oak forests of Iran and neighboring countries with similar forest attributes.

Keywords: forest canopy cover; Google Earth Engine; machine learning; random forest; support
vector machine; classification and regression tree; Sentinel time series; Quercus brantii; Iran

1. Introduction

Effective forest monitoring systems require novel and well-organized methods and
tools to provide up-to-date, reliable data on forests [1,2]. The development of remote-
sensing and image-processing techniques has enabled the automatic, cost-effective, high-
quality, spatially continuous, and resource-saving mapping of forest attributes [3–5] across
various spatial scales [6].
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Forest canopy cover (FCC) is one of the most important forest inventory parameters
and plays a critical role in evaluating forest functions [7,8]. For example, FCC is frequently
used as an explanatory variable in water cycling [9–11], the assessment of soil erosion [12,13],
wildlife habitat [14,15], forest regeneration and tree and forest survival [16,17], forest
structure [18,19], wildfire risk assessment [20,21], and air purification [22,23]. This is because
FCC reduces soil erosion by diminishing the impact of raindrops on barren surfaces [10].
Further, decreasing FCC increases understory light availability for forest regeneration [19].
Various remote-sensing techniques and data have been used for FCC mapping ever since
such technologies became available [24–26]. Overall, FCC mapping using earth observation
datasets (reference datasets) is complex due to low inter-class separability and similar spec-
tral signatures. Moreover, large-scale FCC mapping requires sufficient numbers of training
and validation samples. In previous studies, this sample was usually collected during the
field inventories, which is very time-consuming and costly [27–29]. Therefore, enhancing
FCC mapping has remained a topic of high interest for remote sensing and forestry over
recent decades. Anchang et al. [30] used forest inventory plots, VHR Google Earth satellite
images, and Sentinel-1 and -2 time series and reported that their methodology was able
to map wood canopy cover (WCC) into 10 classes at low errors (RMSE = 8%). Arumae
and Lang [31] used airborne laser scanning (ALS) data and hemispherical photography to
produce an ALS-based FCC model. They also examined the influence of varying height
thresholds and scan angles on FCC estimation. Based on their results, the best model was
produced using all echoes and a 1.3 m height break (R2 = 0.81; RMSE = 11.8%). Though
previous studies have attempted to develop effective methods of using remotely sensed
data, many challenges still remain regarding large-scale FCC mapping. For example, most
previous studies were conducted across small sites (local scale) [32,33], and some have
shown that the time series and multi-sensor image processing techniques enabled FCC
mapping at higher accuracy compared to mono-date images [34,35]. However, most of
them used mono-date or mono-source satellite images because they faced several limita-
tions, such as low data storage capacity and computing power [36,37]. Further, previous
FCC mapping studies were performed with cloud-free or near-cloud-free satellite imagery.
They often faced low-density datasets, especially in areas with a lot of clouds.

Thanks to the advent of cloud computing platforms specialized in remote sensing,
such as the Google Earth Engine (GEE), analyzing a large number of satellite images has
become more effective [38,39]. The novel time series image-processing methods made it
easier to integrate all cloud-free reflectance values from all images during a period and to
produce spectral–temporal metrics applicable for mapping and modeling solutions [40].
Freely available satellite images, such as those obtained from the European Space Agency’s
(ESA) Sentinel sensors, have been proved to be cost-effective, timely, and easy for the
integration of data sources, being frequently used for FCC mapping [40,41]. The Sentinel-1
(S-1) system is composed of a constellation of two satellites that provide C-band synthetic
aperture radar (SAR) data in four acquisition modes with a revisit time of 6 days [42].
Sentinel-2 (S-2) optical satellites collect high temporal resolution data, with a revisit time of
5 days, associated with a rich spectral configuration that includes 13 spectral bands [43,44].
Earlier studies reported that integrating S-1and S-2 images improved the classification
accuracy of land use and land cover (LULC) classes compared to the results achieved by
only S-1 or S-2 data [45,46]. The reason is that the radar signal is sensitive to the geometry
(e.g., roughness, texture, and internal structure), and their physiology influences optical
reflectance [47]. However, the effects of S-1 and S-2 time series integration on mapping FCC
classes have not been well-studied, and there is a significant research gap in evaluating
how this integration can provide better results in mapping FCC classes with a high level
of spectral similarities. Although many studies have used Google Earth VHR images
to prepare training and validation samples [48–50], they did not report the accuracy of
extracted samples.
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Classification algorithms are another important component, because they must pro-
duce accurate maps from remotely sensed data. An accurate and robust reference dataset
is the most important component of supervised classifiers, especially machine learning
(ML) models [51,52]. The field collection of reference datasets is a time-consuming and
costly part of all forest monitoring studies because of the large study areas and inaccessible
regions. The reference dataset should provide enough training and validation samples
to represent the diversity of various canopy cover densities (including all classes of FCC)
and be well distributed across the study site. When the number of training samples is not
enough, there is a risk of overfitting the training data, which can lead to poor generalization
capabilities of the classifier [53,54]. Providing this kind of reference dataset is challenging
in large-scale FCC mapping, since training and validation samples in large area mapping
are typically collected by field inventories [55]. This work builds on previous findings
regarding the preparation of reliable reference datasets, novel image processing techniques,
and ML models to provide a more accurate FCC map. As the upscaling artificial intelligence
solutions for large-scale mapping are important, this study therefore had the following
specific objectives:

(1) Presenting a simple but efficient method for preparing an accurate reference dataset,
(2) Evaluating the effects of data density (i.e., one-year datasets vs. three-year datasets)

on FCC mapping accuracy,
(3) Evaluating the effect of various spectral domains on FCC mapping accuracy, and
(4) Comparing the efficiency of different ML models, namely Random Forest (RF), Sup-

port Vector Machine (SVM), and Classification and Regression Tree (CART) on FCC
mapping accuracy.

2. Materials and Methods
2.1. Study Area

The study area was the Zagros Forest of the Gahvare district, which is located in
Kermanshah Province, western Iran (Figure 1). The district has a total area of 940 km2,
a latitudinal extend from 34◦25′20′′ to 34◦63′98′′ N, and a longitudinal extend from 46◦01′09′′

to 46◦53′67′′ E (WGS84 Universal Mercator projection). Elevation ranges from 1220 to
2550 m above sea level. The study area is characterized by a Mediterranean climate, with
an annual mean temperature of 22.7 ◦C and annual precipitation of 550 mm. Zagros forests
are generally composed of sparsely treed open woodlands or shrublands dominated by oak
species (Quercus sp.) [56], which are similar to the forests of other Middle Eastern countries
(e.g., Iraq, Syria, Lebanon, and Turkey). The study area is dominated by coppiced Persian
oak (Q. brantii Lindl.) forests. In recent decades, the region has experienced dramatic forest
losses due to sudden oak death and charcoal disease, first reported in 1998 [57,58], and
more recently due to the oak decline syndrome, which is a combination of climate change,
diseases, and other stressors that was first observed in 2002 (see, for example, [59]).

2.2. Overall Methodology

The research methodology workflow consists of a sequence of tasks, including in situ
measurements of tree crowns, the preparation of training and validation samples, accuracy
assessment of reference datasets, the definition of classification datasets, and classification
and accuracy assessments, as shown in Figure 2.
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2.3. Reference Dataset

To prepare a sufficient number of training and validation samples, very high-resolution
satellite images provided by Google Earth and visual interpretation were used. In this regard,
gridded sampling points were used to measure FCC, as recommended by Anchang et al. [30].
A number of 520 square plots (40 × 40 m) were taken, corresponding to the 4 × 4 Sentinel
pixels. The plot size was determined based on the tree crown attributes (such as crown
perimeter) and the distribution of trees. A regular grid of sample points spaced at 4 m
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intervals was generated, leading to a total of 121 points per plot. The visual interpretation
was used to determine the number of sample points that fell on tree crowns (green point
in Figure 3). In this study, the QGis (Ver. 3.24.2) were used for creating the fishnet grid
and visual interpretation. Based on the number of points overlapped on tree crowns in
each plot and the total number of points located in a plot, we calculated FCC as the ratio
between them.
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2.4. In Situ Measurements

A field inventory to measure FCC over 70 square plots (40 × 40 m) was carried out
in August 2020. The locations of all plot centers were placed using a Global Positioning
System (GPS) unit; since the accuracy of GPS is affected by many factors [60], in this
study, we have used a GPS unit with an accuracy of ±1 m (model: Garmin Map 64S C).
Previous studies [23,61] have stated that if the tree crown followed a circular shape, the
average crown diameter could be calculated by measuring two diameters of the crowns
(the largest and smallest diameters of the tree crown). Therefore, horizontal tree crown
projections for FCC measurement were measured using a TruPulse 360R laser range finder
(Colorado, USA; https://lasertech.com/product/trupulse-360-rangefinder accessed on
1 May 2022). The average crown diameter and crown surface area were calculated based
on these projections. Finally, the FCC of each plot was calculated based on Equation (1):

FCC =
∑n

i=1 CA
PA

× 100 (1)

where CA is the crown surface area, n represents the number of trees, and PA is the area of
each sampling plot (i.e., 1600 m2).

2.5. Accuracy Assessment of Reference Dataset

Due to the importance of sample accuracy in efficiently training ML models, field-
based FCC values were used to evaluate the accuracy of FCC values obtained by Google
Earth VHR satellite images and gridded sample points. In this regard, the Pearson corre-
lation coefficient, the coefficient of determination (R2), Root Mean Square Error (RMSE),

https://lasertech.com/product/trupulse-360-rangefinder
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Nash–Sutcliffe (E), and Mean Absolute Error (MAE) metrics were used to assess the relation
between FCC obtained from field inventory plots and the FCC measurements based on
Google Earth VHR images.

2.6. Training and Validating Samples

Four FCC classes were defined as follows: non-forest (NF), sparse forest (SF;
FCC = 1–30%), medium-density forest (MDF; FCC = 31–60%), and dense forest (DF;
FCC > 60%) [25,29]. Data from all 520 plots were randomly divided into training (60%)
and validating (40%) subsets (Table 1). The distribution of all sample plots is represented
in Figure 4.

Table 1. Number of samples and pixels selected for training and validating datasets.

Forest Canopy Cover (FCC) Classes
Training Samples Validating Samples

No. Samples No. Pixels No. Samples No. Pixels

Non-Forest (NF) 102 1632 68 1088
Sparse Forest (SF; FCC = 1–30%) 69 1104 46 736

Medium-Density Forest (MDF; FCC = 31–60%) 75 1200 50 800
Dense Forest (DF; FCC > 61%) 66 1056 44 704
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2.7. Satellite Image Time Series and Preprocessing

Analysis of the satellite images was carried out in the GEE cloud computing plat-
form. All S-1 synthetic aperture radar (SAR) and S-2 images were used between 1 July
to 30 September 2020 ± 1 (i.e., data density = 2019, 2020, and 2021) over the study site.
Data density represents the number of satellite images during a period (Table 2). Our
study site is covered by three different Sentinel tiles, including T38SND, T38SPD, and
T38SPC. This limited and shortened time scale was defined to consider the stability of tree
crowns. Regarding the S-2 images, all surface reflectance products with a cloud cover of
less than 30% were used. The S-2 cloudless algorithm was applied for pixel-wise cloud and
cloud shadow masking from the S2 image collection [62]. In terms of the S-1 time series,
Ground Range Detected (GRD) dual-polarization (VV and VH) datasets in Interferometric
Wide (IW) swath mode were used [63]. The efficient use of S-1 products requires some
preprocessing, including applying the orbit file, thermal noise removal, terrain, radiometric
correction, and speckle filtering [64]. These preprocessing operations were applied to all
stored S-1 images in GEE. In this research, only the Lee filter [65] on the GEE platform
with a 7×7 window was applied to reduce speckle effects, as presented in the S-1 toolbox
provided in the Sentinel Application Platform (SNAP).

Table 2. Sentinel datasets used for forest canopy cover (FCC) mapping: number of images and
data density.

Sensor Time Scale (Year) Number of Images

S-1
2020 63

2020 ± 1 188

S-2
2020 56

2020 ± 1 163

2.8. Auxiliary Features

In addition to S-1 and S-2 spectral bands, several vegetation indices based on S-2
visible, NIR, and red edge bands (Table 3) were calculated, including the MSAVI (Modi-
fied Soil Adjusted Vegetation Index) [66], DVI (Difference vegetation index) [67], NDVI
(Normalized Difference Vegetation Index) [68], GNDVI (Green Normalized Difference
Vegetation Index) [69], and NDI45 (normalized difference index based on B5 and B4) [70].

Table 3. Vegetation indices used in forest canopy cover (FCC) mapping.

Vegetation Index Sentinel-2 Equation

MSAVI 2×B8+1−
√
(2×B8+1)2−8(B8−B4)

2
DVI B8− B4

NDVI B 8−B4
B 8+B4

GNDVI B 8−B3
B 8+B3

NDI45 B 5−B4
B 5+B4

Further, the Shuttle Radar Topography Mission (SRTM) digital elevation dataset was
used to extract the elevation and slope layers [71].

2.9. Sentinel Spectral–Temporal Metrics and Classification Datasets

Spectral–temporal metrics (STMs) are band-wise descriptive statistics that summarize
reflectance (or an index derived thereof, such as vegetation indices) for a defined time
period [72]. The S-1 and S-2 time series and auxiliary features were used to calculate STMs.
For both the S-1 and S-2 time series, the same methods were used. Statistic features of the
S-1 STMs, including minimum, maximum, mean, standard deviation, and 5th, 25th, 50th,
75th, and 95th percentiles for both VV and VH polarizations were calculated. For the S-2
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image collection, the same statistics were calculated for all bands and vegetation indices
(Table 4). Hence, a number of 155 STMs and S-1 and S-2 spectral–temporal metrics during
the peak growing season (1 July–31 September) over different time scales (2020 ± 1 and
2020) were calculated to assess the influence of data density on FCC mapping.

Table 4. The Sentinel bands and spectral–temporal metrics (STMs) used for forest canopy cover
(FCC) mapping.

Source Bands No. Bands Statistical Metrics No. STMs

S-1 VV and VH 2 Minimum, maximum, mean,
standard deviation, 5th, 25th,

50th, 75th, and 95th

18

S-2 Spectral bands (B2-B8A, B11, B12) + vegetation
indices (MSAVI, DVI, NDVI, GNDVI and NDI45) 15 135

Finally, the impact of data density and spectral domains on the FCC mapping accu-
racy was evaluated. For this purpose, three datasets (Table 5) with different feature set
configurations were defined. The results of the analysis of the full dataset (all S-1 and S-2
images between 1 July–30 September in 2020±1) and the 1-year dataset (all S-1 and S-2
images between 1 July–30 September in 2020) were compared to evaluate the impact of
data density on FCC mapping. Further, regarding the influence of spectral domains and
the integration of S-1 and S-2 STMs, the results of the full datasets and the S-2 dataset (only
S-2 images between 1 July–30 September in 2020 ± 1) were compared.

Table 5. Datasets used for forest canopy cover (FCC) mapping.

Dataset Time Scale Sensors STMs

Full 2020 ± 1 S-1 and S-2 Minimum, maximum, mean, standard deviation, 5th, 25th, 50th, 75th, and 95th
of all S-1 and S-2 bands + vegetation indices + elevation + slope= 155 STMs

1-year 2020 S-1 and S-2 Minimum, maximum, mean, standard deviation, 5th, 25th, 50th, 75th, and 95th
of all S-1 and S-2 bands + vegetation indices + elevation + slope = 155 STMs

S2 2020 ± 1 S-2 Minimum, maximum, mean, standard deviation, 5th, 25th, 50th, 75th, and 95th
of all S-2 bands + vegetation indices + elevation + slope = 137 STMs

2.10. Machine Learning Classification Models and Accuracy Assessment

Three ML models, including Random Forest (RF), Support Vector Machine (SVM),
and Classification and Regression Tree (CART) were used in GEE and their performance
was compared in FCC mapping. The accuracy of each classifier was tested with different
combinations of parameters with a trial-and-error approach, reporting and comparing the
results (Table A1).

The RF is a popular classifier that was developed based on decision trees. Its ad-
vantages are that it does not make distributional assumptions regarding the predictors,
measures the importance of variables, and is less sensitive to noise or over-fitting [73].
In GEE, to maximize classification accuracy, the random forest classifier can be tuned
based on several parameters, including (1) the number of decision trees, (2) the num-
ber of features per split, (3) the minimum leaf population, (4) the bag fraction, (5) the
maximum number of nodes, and (6) seed randomization. In this study, we only tuned
the number of decision trees and the number of predictors [5,25,74] and used the rest of
the default values (https://developers.google.com/earth-engine/apidocs/ee-classifier-
smilerandomforest accessed on 1 May 2022).

SVM is a kernel-based ML model that is widely used in supervised satellite image
classification studies. GEE allows for setting several parameters of the model, such as
(https://developers.google.com/earth-engine/apidocs/ee-classifier-libsvm accessed on
1 May 2022): the decision procedure (voting or margin), the SVM type (we used the default:
C_SVC), the kernel type (linear, polynomial, sigmoid, or radial basis function), and the cost

https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest
https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest
https://developers.google.com/earth-engine/apidocs/ee-classifier-libsvm
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parameter (C) (how many samples within the margin contribute to the overall error) [75,76].
C is included in SVMs to estimate the associated penalty for misclassification errors [77].

The CART is a single-tree decision classifier, similar to RF [78]. At each tree node,
the attribute that defines the split divides the data into subsets based on the normalized
information gain. Final decisions are made based on the attribute with the highest nor-
malized information gain [78,79]. For the CART algorithm (https://developers.google.
com/earth-engine/apidocs/ee-classifier-libsvm accessed on 1 May 2022), GEE allows only
two parameters to be modified: the minimum leaf population and the maximum number
of nodes [80].

This study used the GEE-based hyperparameter optimizer to determine the best pa-
rameter combination that increases the learning process and further classification accuracy.
In this regard, in the RF model, a number of trees were tuned. In SVM, the radial basis
function (RBF) kernel type for all models was used and we only tuned the cost (C) parame-
ter. Regarding the CART model, max nodes (the maximum number of leaf nodes in each
tree) and min leaf population (minimum number of training samples in each leaf node)
were tuned.

On the one hand, the performance of ML models for accurate FCC mapping was com-
pared. On the other hand, the influence of data density on the classification performance of
three ML models was assessed. Finally, the impact of combining radar (S-1) and optical (S-2)
STMs was evaluated. Accuracy assessment was evaluated based on the validating samples
by developing confusion matrices and exporting performance metrics, namely the overall
accuracy, kappa coefficient, the Consumer’s (CA) and Producer’s (PA) accuracy, and the F-1
score. Class-level accuracy assessment metrics were calculated for a deeper analysis and
better comparability between datasets. McNemar’s test was used for a better comparison
of different datasets and to identify significant differences between them [81]. This test is
based on a pairwise comparison of confusion matrices and expresses the chi-square (χ2)
statistic as follows:

χ2 =
( f12 − f21)

2

f12 + f21
(2)

where f12 represents the number of samples that are correctly classified by dataset-1 but
wrongly classified by dataset-2, and f21 represents the number of samples that are correctly
classified by dataset-2 but wrongly classified by dataset-1. If the χ2 is equal to or larger
than 1.6 and 3.2, the differences between the two compared datasets are significant at the
95% and 99% confidence levels, respectively.

3. Results
3.1. Accuracy Assessment of Reference Dataset

Table 6 shows the statistics of the FCC measured in the field and those estimated
using VHR Google Earth images. Moreover, linear regression (Figure 5a and Table 6) and
model performance metrics exhibited a strong relationship between the estimated FCC
from Google Earth VHR images and the actual values measured in the field. The residuals
showed that the differences between Google Earth FCC and field measurements range
from 4.72% to 3.13% (Figure 5b). Residual plots indicated a few differences between field
and Google Earth measurements of FCC.

https://developers.google.com/earth-engine/apidocs/ee-classifier-libsvm
https://developers.google.com/earth-engine/apidocs/ee-classifier-libsvm
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Figure 5. (a) Scatter plots and (b) residuals of measured and estimated forest canopy cover (FCC).

Table 6. Statistics of the forest canopy cover (FCC) measurement in the field and Google Earth.

Statistics/Metrics Field Measurement Google Earth
Measurement

Descriptive statistics

Min (%) 7.18 6.56
Max (%) 93.59 95.94

Mean (%) 35.29 33.49
Median (%) 40.28 38.29

Model performance
metrics

R2 (unitless) 0.9934
RMSE (%) 2.38
MAE (%) 2.13

E (unitless) 0.991

3.2. Classification Results

The accuracy assessment results of FCC mapping are given in Table 7, which is
based on S-1 and S-2 STMs (full dataset) calculated during the peak growing season
(1 July–31 September) over three years (2021 ± 1). Based on the results, the SVM model
produced the highest accuracy (OA = 91.37% and Kappa = 0.86), and the CART model
generated the lowest accuracy (OA = 87.22% and Kappa = 0.79). Further, CA, PA, and
F-1 scores were higher at the class level in all classes with SVM. The lowest CA, PA, and
F-1 values were produced by CART (except for CA of DF and PA of MDF). As observed
in Table 7, the CA, PA, and F-1 score values for all classes (except SF) were relatively
close and there were no contrasting differences between ML models. The NF class ob-
tained the highest class level accuracy with all ML models, and CA ranged from 95.28 to
96.80%, PA ranged between 92.44 and 97.38%, and F-1 varied from 93.84 to 97.08%. The
second-highest accuracy was achieved for DF (CA = 91.93–94.41%, PA = 89.85–94.62%, and
F-1 score = 91.64–94.51%). For MDF class, all ML models produced a remarkable accuracy
(CA = 74.39–78.89%, PA = 78.02–81.68, and F-1 = 77.45–79.49%). The lowest class level accu-
racy was observed for the SF, with the F-1 score ranging between 53.11 and 72.93%. These
results showed that the CART model was the poorest performing model for identifying SF,
whereas it performed well in classifying other FCC classes.
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Table 7. Accuracy assessment results.

Classifier Forest Canopy Cover Classes CA (%) * PA (%) * F-1 Score (%) OA (%) * Kappa (Unitless)

SVM

Non-Forest (NF) 96.80 97.38 97.089

91.37 0.861
Sparse forest (SF) 85.20 63.74 72.924

Medium-density forest (MDF) 78.89 78.02 78.453
Dense forest (DF) 94.41 94.62 94.515

RF

Non-Forest (NF) 95.28 96.95 96.108

89.92 0.834
Sparse forest (SF) 81.47 58.38 68.019

Medium-density forest (MDF) 78.28 80.75 79.496
Dense forest (DF) 91.93 91.68 91.805

CART

Non-Forest (NF) 95.29 92.44 93.844

87.22 0.794
Sparse forest (SF) 56.17 50.38 53.1188

Medium-density forest (MDF) 74.39 81.68 77.865
Dense forest (DF) 93.61 89.85 91.692

* Note: CA (Consumer’s Accuracy); PA (Producer’s Accuracy); OA (Overall Accuracy).

Based on the McNemar test (Table 8), there were significant differences between SVM
and RF (χ2 = 8.69), SVM and CART (χ2 = 32.57), and RF and CART (χ2 = 13.6) ML models.
Figure 6 shows the FCC maps resulting from the ML models and full dataset.

Table 8. McNemar’s chi-squared (χ2) test with the associated probability value (p): comparison of
machine learning models.

Full Dataset and S-2 Dataset χ2 p-Value

SVM vs. RF 8.69 <0.05
SVM vs. CART 32.57 <0.05
RF vs. CART 13.6 <0.05
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3.3. The Influence of Data Density

Based on the results (Table 9), all ML models produced higher accuracy with higher
data density (full dataset). The OA model performance metric increased by 1.63%, 1.46%,
and 2.04% with SVM, RF, and CART models when full dataset (2020±1) image collection
for STM calculation was used. Among studied ML models, CART showed the highest
sensitivity to data density. The Kappa coefficient and average F-1 score increased by 0.043
and 5.05%, respectively.

Table 9. Comparison of full dataset and 1-year dataset: influence of data density on forest canopy
cover (FCC) mapping accuracy.

Accuracy Metric
SVM RF CART

Full Dataset 1-Year Dataset Full Dataset 1-Year Dataset Full Dataset 1-Year Dataset

OA (%) 91.37 89.74 89.92 88.46 87.22 85.18
Avg. F-1 (%) 86.04 82.24 84.27 79.52 79.22 74.17

Kappa (unitless) 0.8612 0.8308 0.8337 0.8105 0.7942 0.7512

A comparison of FCC maps extracted from full and 1-year datasets showed
a significant difference between them in all ML models (Table 10). The largest and
smallest significant difference between the two datasets was produced with the CART
(CART_Full vs. CART_1-year) and SVM (SVM_ Full vs. SVM_1-year), respectively.

Table 10. McNemar’s chi-squared (χ2) test with the associated probability value (p): influence of data
density on forest canopy cover (FCC) mapping accuracy.

Compression χ2 p-Value

SVM_ Full vs. SVM_1-year 18.49 <0.05
RF_Full vs. RF_ 1-year 32.89 <0.05

CART_Full vs. CART_1-year 40.01 <0.05

A high data density (i.e., full dataset) produced higher F-1 scores for all FCC classes
(Figure 7). It was observed that higher data density did not have a major impact on the
classification of the NF class, since the difference between the two data densities was
small for all ML models. Similar results were also observed when comparing the F-1
scores between two data densities regarding MDF. Further, the results showed that the
identification of SF and DF benefited the most from higher data density. The highest
differences between two data densities (2020 ± 1, 2020) were observed for SF, where the
F-1 score increased by 13.51%, 14.90%, and 15.18% with SVM, RF, and CART ML models,
respectively. In terms of DF classification, the highest difference was observed using the
SVM classifier (8.67%), closely followed by CART (7.11%) (Figure 6). In contrast, higher
data density showed no remarkable increase in RF performance for DF classes (2.11%).
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Figure 7. Class level F-1 score for all machine learning models and the change in accuracy when
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2020 ± 1, 1-year dataset: all S-1 and S-2 images between 1 July–30 September in 2020, NF: non-forest,
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3.4. Influence of Spectral Domains and Integration of S-1 and S-2 STMs

Table 11 shows that the classification accuracies using S-2 STMs were very high, with
OA ranging between 86.83% and 89.07%. The highest accuracy was obtained using the
combination of S-2 and S-1 spectral–temporal metrics (full dataset). As shown in Table 11,
the synergetic use of S-1 and S-2 features showed the highest impact on RF classification
results, where the OA and average F-1 scores increased by 3.67% and 4.77%, respectively. In
contrast, the CART model results showed the smallest positive impact on accuracy metrics
when S-1 and S-2 STMs are integrated.

Table 11. Comparison of full dataset and S-2 dataset: influence of S-1 and S-2 integration on FCC
mapping accuracy.

Accuracy Metric
SVM RF CART

Full Dataset S-2 Dataset Full Dataset S-2 Dataset Full Dataset S-2 Dataset

OA (%) 91.37 89.07 89.92 86.25 87.22 86.83
Avg. F-1 (%) 86.04 85.21 84.27 79.50 79.22 78.16

Kappa (unitless) 0.8612 0.8515 0.8337 0.8054 0.7942 0.7858

When assessing differences between the full dataset and the S-2 dataset, a significant
difference was only observed with the RF ML model based on the McNemar test (Table 12).
The difference between the full dataset and the S-2 dataset was not significant when
applying the SVM and CART ML models.
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Table 12. McNemar’s chi-squared (χ2) test with the associated probability value (p): influence of the
integration of S-1 and S-2 on forest canopy cover (FCC) mapping accuracy.

Full Dataset and S-2 Dataset χ2 p-Value

SVM 1.34 0.2470
RF 27.89 <0.05

CART 1.55 0.2131

Based on class level accuracy assessment results (Figure 8), a remarkable increase in
F-1 scores for the SF class was achieved by integrating S-1 and S-2 data. The F-1 score
increased by 13.51%, 18.19%, and 10.44%, with SVM, RF, and CART models, respectively,
when S-1 data was included in the classification. A similar result with a slight improvement
was also observed for other FFC classes. For example, S-1 features improved the ability of
the CART model to distinguish the DF class by 8.62%.
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4. Discussion

In general, combining ML models with freely available data led to satisfactory results,
with the best model producing highly accurate results (OA = 91.37% and Kappa = 0.861).
The first component that helped to reach these results was an accurate and robust reference
dataset for FCC mapping. In this regard, VHR satellite images from Google Earth and
gridded points were used to prepare 520 FCC samples, allowing us to efficiently train ML
models and high-quality accuracy assessment. The accuracy of these samples was assessed
based on field inventory plots, which represent the precision of the reference dataset used.
In addition, a high level of correlation was observed between measured and estimated
FCC values. Therefore, the present study showed that VHR satellite images provided by
GEE and gridded sampling points are now a practical alternative for collecting required
FCC samples fast, at a low cost. The limitations of ground-based inventories have led
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researchers to use various remote sensing products and methods for FCC estimation to
obtain reference datasets. For example, Korhonen et al. [28] used airborne LiDAR data
with a pulse density of 1/m2 to estimate FCC and the resulting values as training and
validating samples. Although the efficiency of using LiDAR data for providing precise
forest inventory parameters has been proven in various earlier studies [82–84], using
such data has become very costly for researchers and is constrained by technological
and logistical limitations, especially in applications aiming to cover large areas, or those
that require frequent applications [85–87]. In another study, Huang et al. [29] utilized
VHR satellite images available on Google Earth to measure FCC. They defined and used
a complex image processing workflow, which included taking screenshots of Google Earth
images, black and white discarding, brightness and contrast adjustment, and measuring
FCC using a density slice tool. They did not provide the accuracy of their measurements,
and it is not possible to make a statistical comparison. Still, such complex methods require
more time and more image processing experience. Hence, it was concluded that using
georeferenced VHR images obtained from Google Earth for measuring FCC does not
require much image processing experience and can provide a high level of accuracy.

Regarding ML classifiers, the SVM produced the highest accuracy compared to RF
and CART, irrespective of data density and integration. Further, based on McNemar’s test,
SVM significantly outperformed RF and CART. These results are consistent with previous
studies, which demonstrated that the SVM was the most efficient algorithm for LULC
mapping [88,89]. The highest class level accuracy (CA, UA, and F-1 score) was produced
using SVM, indicating that SVM reduces both commission and omission errors. The lowest
classification accuracy was obtained using CART for all forest-covered classes. For example,
the lowest F-1 scores were produced by CART for mapping sparse forest, which indicates
less suitability of this algorithm for classifying features with similar spectral similarities.
In the case of such similar spectral signatures, the higher ability of SVM to distinguish
these classes may have been caused by its design aiming to find decision boundaries that
maximize the margin [90]. In contrast, all the ML models showed similar performance
for classifying other FCC classes, especially non-forest and dense forests. These results
indicate that all ML models performed well when the classes were relatively pure in
terms of spectral signatures, which supports previous findings. For example, based on
Adugna et al. [91], RF and SVM showed similar performance for classifying pure classes
with distinct spectral characteristics such as water bodies and sparse vegetation. In this
study, the higher accuracy of the SVM algorithm compared to RF and CART may be related
to the training sample size. Based on Shetty et al. [92], the SVM is less sensitive to the
number of training samples and yields higher accuracy with a high number of features and
small training samples compared to other models. Similar results were observed in other
studies as well. For example, Sabat-Tomala et al. [93] compared the performance of RF and
SVM algorithms in mapping three invasive species using 430 hyperspectral bands. They
also evaluated the influence of training sample size on classification accuracies, for which
they used different sizes of training samples (30, 50, 100, 200, and 300 samples per class).
They found that SVM was more sensitive to the number of training samples than RF when
many features were involved in the classification workflow. In other words, the features
used for RF classification may not optimally distinguish the spectral differences between
classes. Raczko and Zagajewski [94] reported that an incorrect selection of features might
also affect the RF classification results. However, in some studies, RF has performed better
than SVM. For example, Li et al. [95] reported that RF produced the highest OA model
performance metric compared to SVM, especially for mapping complex classes such as
surface-mined lands. In short, considering previous studies, RF and SVM typically showed
similar abilities and often outperformed other algorithms such as CART [96], Artificial
Neural Network (ANN) [97], and Maximum Likelihood Classification (MLC) [98], placing
them among the best options for classification solutions.
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Moreover, in this study, the impact of data density on FCC classification accuracies
was assessed. For example, Adams et al. [99] used all Landsat-8 OLI satellite images from
2013 to 2017, including 330 clear observations (i.e., after the cloud masking), and produced
a dense time series for forest composition mapping. Azzari and Lobell [100] created
a series involving all satellite images from the Landsat-7 TM, Landsat 7 ETM+, and Landsat
8 OLI sensors between 2012 and 2015 to achieve high data density and produce reliable
observations for land cover monitoring in Zambia. However, in contrast to previous
studies, in the current study, both one-year- and multi-year-based STMs were used to
determine how high data density influenced classification results. This study observed
highly significant differences associated with higher data density in all ML models. Based
on the results, the OA increased by 1.63%, 1.46%, and 2.04%, respectively, with SVM, RF,
and CART. The three-year time series helped all ML models and increased their ability
to classify FCC classes, particularly the sparse forest class that was not distinguished
well by the one-year dataset. These results are supported by Pflugmacher et al. [101],
who found that the classification results increased when spectral and temporal metrics
were calculated using a three-year time series instead of single-year data. Using a multi-
year satellite time series is a practical and effective method for more reliably calculating
STMs [102], because involving more observations can provide more information from land
surface characteristics.

Regarding data integration based on results, the synergetic use of S-1 SAR and S-2
optical STMs improved the classification accuracies compared to those obtained using
only S-2. The integration of S-1 STM increased the OA by 2.3%, 3.67%, and 0.39%, with
SVM, RF, and CART algorithms, respectively. The integration had the highest impact on
the classification of the sparse forest, which indicates that this class has similar spectral
characteristics to those found in other classes, mainly non-forest and medium-density
forests, and could therefore not be effectively classified by optical features. Some studies
have focused on integrating optical and radar data, concluding that using them together
provided better results than using them separately [103,104]. For example, Borges et al. [105]
defined various feature set configurations based on S-1, S-2, and S-1 and S-2 features and
stated that the synergetic use of S-1 and S-2 increased the accuracy for most land cover
types. Thus, these two spectral domains provide complementary information [106].

As a first limitation, we could not conduct our study on a much larger scale due
to the lack of training and validation samples. Future studies could compare the results
of other popular classifiers for FCC mapping, such as ANNs and deep learning, since
classification accuracy may be affected by the type of ML model used (second limitation).
For instance, ANNs might work better on other classes of signals [7,107]. It was also
challenging to measure the diameter of tree crowns in some sample plots due to the
mountainous environment of the Zagros forests (third limitation). As a replacement option,
the high-resolution images can be used to estimate the FCC for those plots located in steep
areas. Further, to understand the generalizability of our approach, we would propose to
test this approach such that training and testing samples would be collected from different
areas, which can demonstrate the transferability of results to other regions.

At the moment, there is no official report on the FCC in the Zagros vegetation zone.
Therefore, the FCC map generated using the SVM algorithm in this study could be used as
a baseline for decision makers in the Forest, Rangeland, and Watershed Organization of
Iran to monitor FCC changes in the region, whether they be the result of human activities
or natural events, and to establish a forest management plan.
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5. Conclusions

This research aimed at using all available capabilities, including VHR satellite images,
field inventory plots, the Sentinel time series, GEE cloud computing, and ML algorithms to
identify FCC classes in heterogeneous Mediterranean oak forests. Regarding the method-
ology used and the results, the following may be concluded: (i) VHR satellite images
and gridded sampling points can be combined to prepare a sufficient number of training
and validation samples for a fast, precise, and cost-effective approach; (ii) Sentinel optical
and radar time series provide useful information for accurate FCC mapping. Their com-
bination was the best option for identifying all FCC classes; (iii) using a three-year time
series increased the ability of all ML models to classify FCC classes, mainly sparse forest
that was not distinguished well using the one-year dataset. Highly significant differences
associated with higher data density were observed for all ML models; (iv) the synergetic
use of S-1 SAR and S-2 optical STMs improved the classification accuracies compared to
those obtained using only S-2. This result emphasizes the importance of using multi-sensor
datasets and different kinds of predictors in FCC mapping; (v) different ML models were
examined regarding their training performance and classification accuracies based on
remotely sensed datasets. Based on the results, SVM was the most efficient algorithm
for FCC mapping. However, the RF also showed reasonable results. We conclude that
the most popular ML models, including SVM and RF, which are provided in GEE, are
sufficient for accurate FCC mapping solutions. In addition, the methodology used gives
optimal and up-to-date information regarding FCC mapping and can be extended as a
powerful and well-organized approach, especially in Mediterranean forests. More studies
are recommended to investigate the potential of other earth observation datasets and their
integration, such as Landsat and ALOS time series. Further, the performance of deep
learning classifiers should be evaluated.
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Appendix A

Table A1. Optimal values for the hyperparameters of the machine learning (ML) algorithms.

Dataset ML Model Tuning Parameter

Full

RF ntree = 1000
SVM C = 5

CART max nodes = 10
min leaf population = 5

1-year

RF ntree = 600
SVM C = 6

CART max nodes = 10
min leaf population = 4

S2

RF ntree = 500
SVM C = 5

CART max nodes = 10
min leaf population = 4
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