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Abstract: Traffic flows (e.g., the traffic of vehicles, passengers, and bikes) aim to reveal traffic flow
phenomena generated by traffic participants in traffic activities. Various studies of traffic flows
rely heavily on high-quality traffic data. The taxi GPS trajectory data are location data that include
latitude, longitude, and time. These data are critical for traffic flow analysis, planning, infrastructure
layout, and recommendations for urban residents. A city map can be divided into multiple grids
according to the latitude and longitude coordinates, and traffic passenger flows data derived from
taxi trajectory data can be extracted. However, random missing data occur due to weather and
equipment failure. Therefore, the effective imputation of missing traffic flow data is a hot topic.
This study proposes the spatio-temporal generative adversarial imputation net (ST-GAIN) model
to solve the traffic passenger flows imputation. An adversarial game with multiple generators and
one discriminator is established. The generator observes some components of the time-domain
and regional traffic data vector extracted from the grid. It effectively imputes the missing values of
the spatio-temporal traffic passenger flow data. The experimental data are accurate Kunming taxi
trajectory data, and experimental results show that the proposed method outperforms five baseline
methods regarding the imputation accuracy. It is significant and suggests the possibility of effectively
applying the model to predict the passenger flows in some areas where traffic data cannot be collected
for some reason or traffic data are randomly missing.

Keywords: urban traffic grid; data imputation; tensor unfolding; deep learning; generative adversarial
network; traffic flow restoration

1. Introduction

Due to the rapid development of intelligent transportation, large amounts of valuable
spatio-temporal traffic flow data are generated, including GPS trajectory data for taxis,
buses, and shared motorbikes [1]. Several researchers have analyzed massive trajectory data
to evaluate various traffic flows and real-time road conditions in a specific area or period.
The travel patterns of urban residents have been investigated to guide urban transportation
planning, infrastructure construction, and consumption [2]. However, trajectory data
may have missing values due to weather conditions, failures of the positioning system,
and building occlusion, resulting in incomplete collected data, which may mislead traffic
analysis and management.

The generation of missingness in traffic data is a common phenomenon. Researchers
typically refer to variables without missing values as complete variables and with missing
values as incomplete variables. Three types of missing data problems have been identi-
fied [3]: (1) missing completely at random (MCAR) means that the reason for the missing
data is not related to the data (incomplete and complete variables); (2) missing at random
(MAR) indicates that the absence of data is not entirely random and depends on other
complete variables; and (3) missing not at random (MNAR) implies that the missing data
in the incomplete variable depend on the incomplete variable. Changes in the traffic flow
data in adjacent areas can affect each other. For example, the traffic flow in an area adjacent

ISPRS Int. J. Geo-Inf. 2023, 12, 13. https://doi.org/10.3390/ijgi12010013 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi12010013
https://doi.org/10.3390/ijgi12010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0002-8298-0449
https://orcid.org/0000-0002-8080-2657
https://doi.org/10.3390/ijgi12010013
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi12010013?type=check_update&version=2


ISPRS Int. J. Geo-Inf. 2023, 12, 13 2 of 18

to a missing data area is affected. As shown in Figure 1a, the missing flow value of road
segment s3 in period t4 is correlated with the flow value of the adjacent road segment s2 and
s3 in period t4. The traffic flow in the previous time domain in a specific area affects the next
time domain in the area. As shown in Figure 1b, the lack of flow in the continuous periods
t4 and t5 in the road segment s1 is related to the flow in periods t1 to t3. Therefore, the traffic
flow data are MAR in most cases. It is crucial to use an effective data imputation method
and correlation analysis of missing traffic flow data to achieve intelligent transportation in
urban areas.

(a) (b)

Figure 1. Missing characteristics of regional traffic flow data. (Black squares indicate missing data.)
(a) The flow is missing randomly within the area; (b) missing flow in the continuous time domain
within the area.

Data imputation is a way to deal with missing values in a dataset, usually using the
correlation of known elements in the dataset to infer and fill in the missing values and
improve the dataset’s quality to obtain better and more accurate results of data analysis [4].
Many techniques have been proposed for solving various missing traffic flow data. Most
traffic data imputation methods utilize spatial, temporal, or spatio-temporal correlation
between the data. Several statistical methods [5–13] and models have been proposed.
Commonly used statistics used for imputation include the mean, weighted mean, or me-
dian for numerical data and the value of the largest category for categorical data. Some
prediction models [14–18] predict the missing value utilizing information from existing
values. Regression models [19–23] are used for the imputation of numerical variables,
and classification models [24,25] are utilized for categorical variables. Researchers have
exploited the spatio-temporal correlation of traffic data to construct a third-order flow
tensor imputation model. The tensor with spatial and temporal dimensions has been used
for tensor factorization [26] for the missing value imputation. Most researchers have used
flow tensors to couple the spatio-temporal correlations [27–29] of traffic data and found that
missing data imputation using tensor factorization was superior to most statistical-based
methods. Machine learning techniques, especially deep learning models of the neural net-
work, have been increasingly used in recent years to impute missing traffic data, providing
good results [30]. Yoon et al. [31] first utilized a generative adversarial nets (GAN) [32]
model for data imputation and proposed the generative adversarial imputation nets (GAIN)
model, which achieved high imputation accuracy in missing values in the data vector.

Statistical methods often use the historical records of traffic data to impute missing
values, which cannot deeply explore the traffic data’s spatial and temporal correlations
and therefore have a lower performance. Models methods use tensor decomposition
or deep learning to mine the correlation between traffic data from various dimensions,
which usually achieves better results than statistical methods. The deep-learning-based
model method has achieved better performance than the statistical and tensor model
decomposition methods. Although deep learning performs well compared with other
methods for missing traffic flow data, researchers still face the problem of not fully utilizing
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the correlation feature information between adjacent time and adjacent space of traffic flow
data. In particular, when building the flow tensor, if the values in the tensor produced are
missing randomly, rendering an incomplete tensor,the data similarity in the flow tensor is
not fully utilized to impute the missing values, resulting in poor imputation results.

Aiming at the problem of random missing in the flow tensor, in this paper, we propose
a traffic passenger flows imputation algorithm under the MAR assumption. We extract the
pick-up points in taxi GPS trajectory data to construct a passenger flow tensorN ∈ Ri× j× s

in a continuous period of the uniformly divided area; i ∗ j represents the grid division of the
study region. The data in each grid represent the current time period (time period division,
e.g., 11:00 to 12:00 as a time period), the number of pick-up points in this region is regarded
as traffic passenger flows, and it is also a situation of traffic flow. N describes the flow
change over time in s consecutive time periods in i ∗ j areas. The traffic distribution at the
pick-up and drop-off points in taxi GPS trajectory data is representative of the traffic flow
changes in an area. As shown in Figure 2, we select a representative period of three days
(7, 10, 12, September 2019) in a part of the research area and visualize the distribution of
pick-up and drop-off points on the real geographic grid, which shows that the pick-up and
drop-off points are random, and the drop-off points are more centralized than the pick-up
points. The number of pick-up points in each grid is not only more dispersed, but also the
regional pick-up points flow further, reflecting the distribution of passenger flow demand.
Therefore, selecting the pick-up points flow can more accurately simulate the random
distribution of passenger demand within the region. This random distribution makes most
of the grids that we divide contain a certain number of flow values, avoiding that only a
small part of the grids contains flow values, resulting in a too concentrated distribution of
flow values in the grids, thus making it difficult to mine the spatio-temporal correlation
of passenger flow. We propose the missing traffic passenger flows data imputation model
ST-GAIN based on spatio-temporal characteristics by introducing and improving the data
imputation idea of the GAIN network. The problem of replacing missing data in the flow
tensor is transformed into a data generation problem by minimizing the loss function.
The improvement of this model is as follows:

Figure 2. Distribution of pick-up and drop-off points in parts of the area. (Blue dots are pick-up
points, and red dots are drop-off points).
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(1) The new model observes the spatio-temporal correlation of the flow data vector.
The flow tensor is unfolded into different flow matrices using different modes. Multiple
generators with different weight parameters are used to simulate the vector components in
different flow matrices. The flow matrix is restored to obtain a new flow tensor. The experi-
mental results show that ST-GAIN can replace missing data and generate a result close to
the real spatio-temporal traffic passenger flow distribution.

(2) We add a custom correlation loss to the loss item of the ST-GAIN model as part of
the objective optimization function. The results of the ablation experiments demonstrate
that this correlation loss term improves the model’s imputation performance.

The rest of this paper is organized as follows. Section 2 reviews the related work and
explains the motivation for the study. Section 3 describes the proposed ST-GAIN method.
Section 4 presents the experimental dataset, evaluation method, and experimental results.
Section 5 concludes the paper and suggests topics for further research.

2. Literature Review

At present, the imputation methods of researchers for the missing traffic flow data
in space and time mainly include imputation methods based on statistics, imputation
methods based on tensor factorization models, and imputation methods based on deep
learning models.

2.1. Data Imputation Based on Statistical Methods

Mazumder et al. [5] proposed a matrix-complete method, which used a convex al-
gorithm to minimize the reconstruction error on the kernel norm to realize the missing
values in the matrix completion. Royston and White [6] proposed a multiple imputation by
chained equation (MICE), which used linear regression to perform multiple imputation on
incomplete data. Stekhoven et al. [7] proposed an iterative imputation method (missForest)
based on a random forest. Shi et al. [8] proposed a combined Bayesian principal component
analysis and local least squares method to estimate missing values. Sha et al. [9] proposed a
hybrid method for missing traffic data imputation based on the fuzzy C-means (FCM) [10],
which is optimized by combining with other completion methods. The influence of multiple
modes of traffic flow data is considered. Hong et al. [11] used the exponential smoothing
method and the adjacent lane data weighting method to repair the missing problem in the
traffic flow data. Song et al. [12] used an adaptive learning approach to learn a probabilistic
regression model for each data tuple, and each tuple used the corresponding regression
model to predict missing values. Tang et al. [13] proposed a hybrid model that combined
adaptive network-based fuzzy inference system and fuzzy rough set to impute missing
traffic data.

The traffic flow missing imputation based on statistical methods uses historical data
to impute the current missing values. The performance of these methods depends on a
priori estimation of the data distribution in the dataset. However, in many cases, the true
distribution of traffic flow data is unknown, which leads to poor imputation performance.

2.2. Data Imputation Based on Tensor Factorization Models

Tan et al. [19] proposed a tensor-based traffic data imputation method for the first time.
Based on the idea of coupled tensors, Zhou et al. [27] proposed an improved imputation
method based on coupled matrix and tensor factorization (CMTF) to recover missing
traffic data. Wu et al. [33] proposed an improved CP (CANDECOMP/PARAFAC) tensor
factorization framework, which greatly improved the imputation performance of high
missing rate data. Li et al. [28] used the tensor completion model to impute in the missing
traffic data that indirectly improved the traffic flow prediction model. Cai et al. [29]
used urban hotspots to introduce relevant information to impute in the missing areas
based on CMTF. Yan et al. [20] proposed an imputation algorithm based on residual
tensor factorization, which combined linear regression and CP factorization, and greatly
improved the imputation accuracy. Chen et al. [21] proposed a low-rank autoregressive
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tensor model that uses the construction of a time-varying third-order tensor to capture
the global consistency of traffic data, and experimentally demonstrated its effectiveness in
diverse missing scenarios.

The traffic flow imputation model based on tensor factorization generally mines the
internal characteristics of traffic data and analyzes the similarity and distribution pattern
of the data. However, the existing methods require unfolding the original tensor into a
matrix in the process of restoring the tensor, which leads to the loss of the correlation of
some patterns in the constructed traffic tensor, thus reducing the imputation accuracy.

2.3. Data Imputation Based on Deep Learning Models

Che et al. [24] added gated recurrent units on the basis of the recurrent neural network
(RNN) [34] to impute in time series data. Cao et al. [25] proposed a bidirectional long
short-term memory (LSTM) to capture the data information before and after the current
time point and improved the performance of data imputation. Li et al. [14] decomposed
the input vector and combined LSTM and support vector machine to impute time series
data through a multi-view method. Luo et al. [15] proposed to use the GAN network to
perform missing value imputation for multivariate time series with a large number of
missing values. Wang et al. [16] proposed a GAN-based road network traffic flow data
imputation method. Zhang et al. [22] used LSTM to build a sequence-to-sequence model,
and used the encoder–decoder structure for data imputation of time series. Luo et al. [17]
combined a GAN and RNN variant gated recurrent unit network to build an end-to-end
GAN network, and added the location information matrix of data missing points to impute
time series data. Chen et al. [35] proposed a method that used parallel data and GAN
to enhance traffic data imputation. Wang et al. [23] considered the temporal and spatial
characteristics of traffic volume, and proposed a multilayer perceptron-multivariate im-
putation of chain equation (MLP-MICE) regression imputation method which combined
multilayer perceptron and MICE, and further improved the use of MICE alone for impu-
tation. Wang et al. [36] proposed a novel multi-view bidirectional spatio-temporal graph
network, which comprehensively described traffic conditions from different temporal cor-
relation views, and improved the loss function by considering the interactions between
temporal correlation views, proving that the proposed method is suitable for traffic flow
imputation with complex missing patterns. Yang et al. [18] proposed a spatio-temporal
learnable bidirectional attention generative adversarial networks for missing traffic data
imputation to improve imputation performance. Wang et al. [37] used a specific time-series
analysis to mine periodic patterns and proposed a novel matrix decomposition method
to describe the trend of the traffic flow data. Finally, the model built by fusing a novel
dendritic neural network method greatly improved the imputation accuracy.

Data imputation methods based on deep learning usually have excellent imputation
performance on spatio-temporal data and can well fit their distribution rules. However,
when the dataset is too large, or the model is too complex, it will lead to a long training
time and an overfitting problem.

3. Traffic Passenger Flows Imputation Model Based on Incomplete Flow Data

We propose the ST-GAIN model for unfolding the third-order flow tensor into different
flow matrices using different modes. Moreover, we use three generators to simulate and
generate the vector components in a flow matrix with different modes. The flow matrices
generated by multiple generators are transformed into a new flow tensor using weight
combinations. This new flow tensor can be regarded as a simulated tensor after learning
the data distribution of the original tensor. The ST-GAIN model can learn the mutual
influence of the traffic passenger flows in different areas and determine the correlation
between traffic passenger flows in different areas and periods. Therefore, this model is a
spatio-temporal correlation model.
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3.1. Correlation Analysis

According to the latitude and longitude coordinates, the study area is divided into
grids with a length and width of 500 m. We compute the number of pick-up points in
each grid on different time periods. Then, we randomly extract some adjacent grids (for
example, we choose the 611th grid and its four adjacent grids on the top, bottom, left,
and right) and determine the traffic passenger flows within 24 h on the same day. Figure 3
shows a strong spatial correlation between the number of pick-up points in the five grids,
and the flow trends of the five adjacent grids in different periods of the day are not only
very similar, but also the flow values are very close at most of the same time periods.
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Figure 3. Traffic passenger flows at different times of the day in adjacent grids.

In addition to a strong spatial correlation, a temporal correlation exists between the
number of pick-up points. Figure 4 shows the number of pick-up points in grid 634 at
different times on five working days. A temporal correlation is observed between the
number of pick-up points on different days. The trends of the curves are similar, and the
flow values at the same time period on different days are also very close in most cases.
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Figure 4. Traffic passenger flows in grid 634 at different times on 5 working days.

3.2. Model Construction

The GAIN model is based on the GAN framework, and both have the same basic
principle. In the GAIN, the task of the generator is to fill in the missing data, and the task
of the discriminator is to distinguish whether the data are filled or real, i.e., it classifies and
evaluates each element in the data matrix. The discriminator minimizes the classification
error rate, and the generator maximizes the classification error rate of the discriminator
since this is an adversarial network. In the GAIN, it is necessary to provide the discriminator
with hint matrix (a hint mechanism) on the data matrix to obtain accurate results and ensure
that the generator generates samples close to the real data distribution. The notations
involved in the ST-GAIN model are described in Table 1.
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Table 1. Notations used in the ST-GAIN model.

Notation Description

N N ∈ Ri× j× s, a third-order tensor representing the traffic passenger flows in period
s in area l ∗ j

D The elements in tensorN generating random missing tensors
R Random noise tensor with the same dimension asN
M The mask tensor l ∗ j ∗ s with a value of 0/1
A Datasets A = {A1, A2, . . . , Al}, Al represents a matrix of dimension j ∗ s
B Datasets B = {B1, B2, . . . , Bj}, Bj represents a matrix of dimension l ∗ s
C Datasets C = {C1, C2, . . . , Cs}, Cs represents a matrix of dimension l ∗ j
D′ Combined l ∗ j ∗ s tensor output obtained from multiple generators

M′ The l ∗ j ∗ s tensor output obtained from the discriminator, each element’s value
represents the probability of predicting the real position inD′

H A tensor of the same dimension asM, the element h inH depends on the
distributionH|M = m

The model consists of three generators and one discriminator. The objective of the
three generators is to observe the vector components in the A, B, and C matrices and
generate new vectors to form matrices (the A, B, and C matrix sets can be regarded as the
matrix set of the third-order flow tensor N unfolded from different modes). To ensure
that the generator observes and learns the vector components in the matrices for different
dimensions in the tensorN , the discriminator receives the combined data from the three
generators for classification and determines whether the generated data are real or filled.
Therefore, the four deep neural networks are trained using an adversarial process.

We use the correlation coefficient to define the partial loss function of the generator to
minimize the error of the data generated by the model. The correlation coefficient measures
the degree of correlation between variables. The values range from −1 to 1. The closer they
are to 1, the stronger the correlation is, and the closer to 0, the weaker the correlation. Three
types of correlation coefficients [38] are typically used: Pearson’s correlation coefficient
(PCC), Spearman’s correlation coefficient, and Kendall’s correlation coefficient. The latter
two are based on the rank of the data. Usually, rank-based estimators are suitable for
small datasets and specific hypothesis tests. The PCC is suitable for continuous variables
with a normal distribution. Usually, traffic flow data within adjacent areas in each period
are continuous in space and time. In order to test whether the traffic data used in the
experiment conform to a normal distribution, we extract representative time periods of
8:00, 12:00, and 18:00 for each of the three days and calculate whether the traffic passenger
flows in the research division area of each time period conform to the normal distribution.
We use the KS test [39] in the empirical distribution test and use the kstest test module in
Python (hypothesis test: normal distribution is met when the return value p is greater than
0.05); the p values are 0.12, 0.22, 0.25, 0.6, 0.24, 0.11, 0.61, 0.76, 0.16, each period is greater
than the threshold 0.05 to meet the normal distribution hypothesis. Therefore, the PCC
is introduced for reconstructing the generator loss function in the GAIN model. Figure 5
depicts the overall architecture, showing that the model architecture consists mainly of
three generators and one discriminator, as well as the process of combining, inputting,
and outputting data.

The data imputation process is divided into four steps: (1) We construct the original
traffic passenger flows tensorN , and the other flow tensors D,R andM, which have
the same dimensions asN . (2) We combine tensorsD,R, andM, then simulate the flow
tensorD∗ = D�M+ (1−M)�R with the missing elements, and unfoldD∗ into
flow matrix sets A, B, and C using different modes. The mask matrix sets corresponding to
the A, B, and C matrix sets are obtained by unfoldingM using different modes. (3) We
combine A, B, and C horizontally with their corresponding mask matrix and break into
vectors one by one to pass to the respective generators to obtain the output vectors of
the generators. We then combine the outputs of the three generators to obtain tensorD′.
(4) Finally, the D′ and H hint tensors (the same principle as the hint matrix in GAIN)
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are combined horizontally in the discriminator, and the final output is the tensor of the
prediction maskM′.

Figure 5. The architecture of ST-GAIN model.

3.3. Model Objective Function

The objective function of the ST-GAIN model consists of a generator loss function and
a discriminator loss function. It ensures that the data with no missing values generated by
the generator are similar to the original data, and the correlation between the two datasets
should also be high. Therefore, a correlation loss term based on the generator loss term in
the original GAIN model is added to the proposed model. It calculates the PCC between
the generated and original data. We define the notation £G as the generator loss function,
and £G consists of three parts named £G1 , £G2 and £G3 , respectively. The notation mi is an
element in tensorM; m′i is the element inM′; y represents the original value; y′i represents
the generated value; x represents the original data; f represents the generated data; r is the
number of elements; xi, fi are the observed values of the i point corresponding to x and f ;
x̂ is the mean of x; f̂ is the mean of f ; and α is a hyperparameter. The loss function of the
generator is defined as

£G = £G1 + £G2 ∗ α + £G3 , (1)

£G1 = − 1
m ∑(1−mi)log(m′i), (2)

£G2 =
1
n

n

∑
i=1

(y− y′i)
2, (3)
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£G3 = 1−
∑r

i=1(xi − x̂)
(

fi − f̂
)

√
∑r

i=1(xi − x̂)2
√

∑r
i=1

(
fi − f̂

)2
, (4)

£G1 evaluates the quality of data imputation. The smaller its value, the higher the
probability that the discriminator evaluates mi = 0 as mi = 1 and vice versa. £G2 represents
the reconstruction error, which is used to evaluate the difference between the output value
of the generator and the original value. The smaller its value, the closer the reconstructed
value is to the real value. £G3 is the correlation loss term, which evaluates the correlation
between the data distribution output by the generator and the original data distribution.
The smaller its value, the stronger the correlation between the two datasets. α ensures that
£G2 has the same order of magnitude as £G1 and £G3 . mi indicates whether the position
element in tensorM is missing for the position element corresponding to tensor D (0
means missing, 1 means not missing), and the m′i is the output value of the discriminator,
indicating the probability that each element generated by the generator is the original data.

The purpose of the discriminator is to identify which part of the generated data is
the original data and which part is the filled data. The value represents the probability
that the position of the generated data is the original data or the filled data. Therefore,
a cross-entropy loss function is used. Its loss term is defined as

£D = − 1
m ∑

[
milog(m′i) + (1−mi)log(1−m′i)

]
, (5)

The smaller the value of £D, the closer the discriminator’s output m′i is to the true
value mi and vice versa.

3.4. Algorithm Description

The steps of the algorithm for data imputation using the ST-GAIN model are described
below, and algorithm’s pseudocode is described in Algorithm 1.

Algorithm 1 Pseudo-code of ST-GAIN
Input: N ,M,R
Output: completed dataD′
Initialize: epochs E, other hyper-parameters
1. for e = 1 to E do
2. repeat
3. di ∈ D′, hi ∈H
4. optimization discriminator D
5. M′ ← feed D(di, hi) // Input data di, hi to discriminator D, D returnsM′

6. updated D using Adam // Update the discriminator D using the Adam optimizer
7. A, B, C = splitDimensions (N ,M,R)
8. A′ ← feed Generator1(A)
9. B′ ← feed Generator2(B)
10. C′ ← feed Generator3(C)
11. D′ = convertToTensors(a ∗ A′, b ∗ B′, c ∗ C′)� (1−M) +N �M
12. updated Generator1, Generator2, Generator3 using Adam
13. until running out all
14. end for

Step 1: Extract the traffic data of the taxi pick-up points in a specified area within a
specific time range and construct the tensorN (38 ∗ 35 ∗ 168), where 38 ∗ 35 represents the
longitude and latitude coordinates of the specified rectangular area. The area is evenly
divided into a grid of 38 ∗ 35, and 168 represents 168 consecutive periods (each hour is a
time segment).

Step 2: Randomly set 20% of the points in the tensorN to null (replace with 0 values)
and construct a random missing point tensorD of the same dimension asN . Construct
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a tensorM of the same dimension asN and use 0/1 values to correspond to the values
inM to determine whether the value of each position inN is missing or not. Construct
a random noise tensor R with the same dimension as N ; set the input value D∗ (See
Section 3.3 for further explanations).

Step 3: The discriminator is trained to receive the combined data Gsample generated
from the three generators. The generator and discriminator are fully connected neural
networks. The discriminator uses the cross-entropy loss function to distinguish whether
the data are filled or raw, which is equivalent to the value of m in the prediction mask
tensorM.

Step 4: Train the generator. The three generators receive data vectors of the flow
matrix sets A, B, and C after different modules have unfolded the flow tensorD′ and their
corresponding vectors of mask matrix sets. Use the latest updated discriminator output
value and then combine it with the corresponding mask matrices A, B, and C. Set the
final Gsample = a ∗ G1 + b ∗ G2 + c ∗ G3, (G1, G2, and G3 represent the output values of the
corresponding generator), where a + b + c = 1, a >= 0, b >= 0, c >= 0. The weight values
of a, b, and c are determined by continuous optimization of the defined loss item £G.

Step 5: Continuously optimize the adversarial loss of the three generators (G) and the
discriminator (D) to maximize the probability of correctly predictingM and minimize the
probability of predictingM. Use the optimal ST-GAIN network for training and input the
spatio-temporal tensor with missing values into the network to impute the missing data.

4. Experiment and Results

The performance of the ST-GAIN model was evaluated by an ablation study and
comparison with baseline methods. We construct traffic passenger flows data under MAR
as model input data. By conducting each experiment 10 times and using 5-cross validations.
We report RMSE, MAE, and R2 as the performance metric along with their standard
deviations across the 10 experiments.

4.1. Dataset and Experimental Settings

The dataset used in this experiment is GPS trajectory data (latitude, longitude, and pick-
up point) of 7457 taxis in Kunming (7–13 September 2019). The latitude and longitude
range of the study area is 102◦628′ ∼ 102◦798′ E and 24◦865′∼25◦135′ N. The number of
pick-up points per hour in each grid is used as the passenger flow, establishing a third-
order tensorN of 38 ∗ 35 ∗ 168. All of our experiments were performed on 64 core Intel
i7-9800X CPU@3.80GHz × 16 with 512GB RAM and NVIDIA GeForce RTX 2080Ti GPU.
The operating system and software platforms are Ubutu 18.04, Pytorch r1.8 and Python 3.6.
The hyperparameter α is set to 100. The parameters of the baseline methods are referred to
as the settings in the original papers.

4.2. Evaluation Metrics

We randomly remove 10∼60% of the numerical terms from the third-order tensorN to
simulate missing values. The root mean square error (RMSE), mean absolute error (MAE),
and coefficient of determination (R2) are used to evaluate the imputation performance. They
are calculated using Equations (6)–(8). The smaller the RMSE and RAE values, the smaller
the difference between the filled and real values is. The closer the R2 value is to 1, the better
the model’s performance:

RMSE =

√
1
n

n

∑
i=1

(x(i) − y(i))2, (6)

MAE =
1
n

n

∑
i=1
| x(i) − y(i) |, (7)
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R2 = 1−
∑n

i=1

(
x(i) − y(i)

)2

∑n
i=1
(
ŷ− y(i)

)2 , (8)

where x(i) represents the predicted value, y(i) represents the real value, ŷ represents the
average value, and n represents the number of predicted values.

4.3. Results of Ablation Study

The ST-GAIN model uses three generators and a correlation loss term £G3 to determine
the partial loss of the generator, and uses the hint matrix [31]. The £G3 item, one generator,
two generators, and hint (hint matrix) are removed sequentially to verify the importance of
the complete ST-GAIN structure. The tensorN with 20% missing values is used.

Table 2 lists the results of the ablation study. The ST-GAIN model has the optimal
imputation performance. Its RMSE (MAE) value is 6% (15%) lower than that of ST-GAIN-
£G3 , 8% (10%) lower than that of ST-GAIN-G, and 11% (19%) lower than that of ST-GAIN-2G.
Moreover, the R2 value of the ST-GAIN has the largest R2 value, although it is not much
higher than that of the other three models above. Although hint has achieved a significant
performance improvement in the GAIN [31] model architecture, Table 2 shows that the
ST-GAIN-hint model is almost the same in performance compared to the complete ST-GAIN
model. Their RMSE, MAE, and R2 values are approximately similar. Due to the reference
to the GAIN model architecture, our ST-GAIN model still uses the hint mechanism for the
model’s integrity. However, the hint has limited performance improvement for our model.

Table 2. Results of ablation study.

Method/Indicator RMSE MAE R2

ST-GAIN 3.041 ± 0.0464 1.191 ± 0.0435 0.953 ± 0.0018
ST-GAIN-hint 3.065 ± 0.0467 1.198 ± 0.0441 0.951 ± 0.0018
ST-GAIN-£G3 3.235 ± 0.0695 1.396 ± 0.0445 0.945 ± 0.0019
ST-GAIN-G 3.304 ± 0.1046 1.329 ± 0.0479 0.931 ± 0.0033
ST-GAIN-2G 3.405 ± 0.2912 1.472 ± 0.1356 0.917 ± 0.0181

Figures 6 and 7 show the evaluation metrics for the three generators with different
weights (a, b, and c respectively represent the output weights of generators G1, G2, and G3).
The optimal RMSE, MAE, and R2 values are obtained when a = 0.2, b = 0.5, and c = 0.3
(i.e., G1 weight is 0.2, G2 weight is 0.5, and G3 weight is 0.3), the weight ratio of G2 is
higher than that G1 and G3. The weight of b is increased to determine if this improves
the imputation performance. However, the imputation performance does not increase but
decreases when b = 0.7. Thus, increasing the weight ratio of the G2 generator does not
improve the model’s performance. In other words, the three generators that receive the
vector in flow matrices of the same flow tensor are unfolded in different modes as the input
data. Since the internal elements of the different matrix sets after unfolding have different
degrees of correlation, each generator is used for each flow matrix. Setting an appropriate
weight optimizes the imputation performance.
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We conduct extensive experiments by adjusting different values of the respective
weights of the three generators to test the imputation performance changes. Figure 8 shows
the value changes of RMSE when the weight changes of ternary variables a, b, and c. When
a, b, and c are respectively close to the optimal weight value, the RMSE will reach the
optimal value.
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Figure 8. RMSE under different values of ternary variables.



ISPRS Int. J. Geo-Inf. 2023, 12, 13 13 of 18

4.4. Comparison of Different Models

Table 3 lists the imputation performances of the ST-GAIN model and five baseline
algorithms: CP [33], GAIN [31], Matrix-Complete [5], MICE [6], and missForest [7]. The in-
put data to the GAIN, Matrix-Complete, MICE, and missForest algorithms are the matrix
obtained from the horizontal combination of the hourly flow matrix in the study area
(equivalent to the matrix unfolded from mode-s of the tensor N ). As can be seen from
Table 3, the ST-GAIN model has the lowest RMSE and MAE and the highest R2 value
among all models, indicating that the proposed method outperforms the baseline methods
for imputation of the traffic dataset with 20% missing values.

Table 3. Imputation performance of different algorithms.

Method/Indicator RMSE MAE R2

Matrix-Complete 5.867 ± 0.2204 2.505 ± 0.0469 0.682 ± 0.0183
MICE 5.006 ± 0.1959 1.992 ± 0.0403 0.731 ± 0.0156

CP 4.741 ± 0.2405 2.025 ± 0.0936 0.724 ± 0.0060
missForest 3.763 ± 0.1013 1.759 ± 0.0222 0.882 ± 0.0030

GAIN 3.429 ± 0.1138 1.353 ± 0.0865 0.913 ± 0.0052
ST-GAIN 3.041 ± 0.0464 1.191 ± 0.0435 0.953 ± 0.0018

Figures 9–11 show the changes of the evaluation metrics (RMSE, MAE, and R2) for
the five baseline methods and the ST-GAIN network for different miss rates (10%, 20%,
30%, 40%, 50%, and 60%). The performances of all algorithms decrease as the miss rate
increases. ST-GAIN consistently outperforms the other baseline methods in the entire
miss rate range, indicating the proposed model’s high robustness and relatively stable
imputation performance, especially at a higher miss rate.
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Figure 9. MAE for different miss rates.



ISPRS Int. J. Geo-Inf. 2023, 12, 13 14 of 18

0 10 20 30 40 50 60
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

RM
SE

Missing rate (%)

 ST-GAIN
 GAIN
 MICE
 missForest
 CP
 Matrix-Complete

Figure 10. RMSE for different miss rates.

0 10 20 30 40 50 60
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R2

Missing rate (%)

 ST-GAIN      GAIN    
 MICE            missForest     
 CP                 Matrix-Complete

Figure 11. R2 for different miss rates.

To better understand ST-GAIN, we conduct the following experiments in which we
vary the number of temporal dimensions. Figures 12–14 show the changes in the evaluation
metrics when the temporal dimensions s of our input flow tensorN is different, which
indicates that the constructed tensorN has different time dimensions (continuous 24, 48,
72, 96, 120, 144, 168 time periods). The figures show that ST-GAIN is also robust to the
number of temporal dimensions by comparing to the two most competitive benchmarks
(GAIN and missForest). With the increase in the set temporal dimensions in the experiment,
the improvement of ST-GAIN is significantly higher than the other two benchmarks.
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5. Discussion and Conclusions

This paper proposed the novel ST-GAIN model based on the GAIN network to im-
pute missing elements in spatio-temporal traffic passenger flows data, which typically
has random missing values. The method transforms the traffic passenger flows data into
a third-order flow tensor and unfolds it into three flow matrices using different modes.
Three generators are used to observe and learn the vector components in different matrices,
and each generates new vectors to form a flow matrix. The output weight of each generator
is determined separately to obtain the generated data after combining the three generators
to improve the correlation of the traffic passenger flows data in the spatio-temporal dimen-
sions. We used PCC to define a correlation loss term as part of the generator loss to ensure
that the data obtained from the generator are similar to the real data. The experimental
results verified that the ST-GAIN model outperformed five baseline imputation methods
for filling in missing values using the flow tensor.

In some real scenes, by extracting the three attributes of time, longitude, and latitude of
traffic data, and dividing the real geography into grids, the traffic flow matrix information
of each time domain in the region can be constructed. The traffic flow information of each
time period in a specific range can be obtained without the real traffic network structure
information, and it is easier to know the traffic situation of each sub-region in the real
geographical region. Moreover, when the traffic data in some partitions cannot be obtained
or the data are missing due to the failure of collectors in some partitions, the model ST-
GAIN can effectively impute the missing data so that the traffic data with improved quality
can be used for the next analysis and utilization.

In future research, we can improve and verify the model’s imputation performance
in various ways. Firstly, the traffic flow data exhibit spatio-temporal correlation and were
closely related to the quantity and type of points of interest in the city. Future studies
can focus on improving the imputation performance of the proposed model by fusing the
urban point of interest data with the traffic flow data in the grid and extracting the features.
Secondly, this paper only considered the imputation performance of traffic flow data under
random missing scenarios. However, in real scenarios, there are various missing patterns in
the data. The general adaptability of the ST-GAIN model to various missing data scenarios
can be explored and improved in the future. Lastly, the grid size can be changed to verify
the performance change of the ST-GIAN model and how to convert the traffic flows under
the underlying road network for spatial correlation as input to verify the model.
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