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Abstract: In indoor low-light environments, the lack of light makes the captured images often suffer
from quality degradation problems, including missing features in dark areas, noise interference, low
brightness, and low contrast. Therefore, the feature extraction algorithms are unable to extract the
feature information contained in the images accurately, thereby hindering the subsequent target
search task in this environment and making it difficult to determine the location information of the
target. Aiming at this problem, a joint local and high-level semantic information (JLHS) target search
method is proposed based on joint bilateral filtering and camera response model (JBCRM) image
preprocessing enhancement. The JBCRM method improves the image quality by highlighting the
dark region features and removing the noise interference in order to solve the problem of the difficult
extraction of feature points in low-light images, thus providing better visual data for subsequent
target search tasks. The JLHS method increases the feature matching accuracy between the target
image and the offline database image by combining local and high-level semantic information to
characterize the image content, thereby boosting the accuracy of the target search. Experiments show
that, compared with the existing image-enhancement methods, the PSNR of the JBCRM method is
increased by 34.24% at the highest and 2.61% at the lowest. The SSIM increased by 63.64% at most
and increased by 12.50% at least. The Laplacian operator increased by 54.47% at most and 3.49%
at least. When the mainstream feature extraction techniques, SIFT, ORB, AKAZE, and BRISK, are
utilized, the number of feature points in the JBCRM-enhanced images are improved by a minimum of
20.51% and a maximum of 303.44% over the original low-light images. Compared with other target
search methods, the average search error of the JLHS method is only 9.8 cm, which is 91.90% lower
than the histogram-based search method. Meanwhile, the average search error is reduced by 18.33%
compared to the VGG16-based target search method. As a result, the method proposed in this paper
significantly improves the accuracy of the target search in low-light environments, thus broadening
the application scenarios of target search in indoor environments, and providing an effective solution
for accurately determining the location of the target in geospatial space.

Keywords: indoor low-light environments; location information; high-level semantic information;
missing features in dark regions; noise interference; image preprocessing enhancement; target search;
geospatial space

1. Introduction

With the emergence of new technologies, including computer networks and multi-
media information processing, digital images have become the main way of obtaining
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information from people’s daily lives, work, and studies because of their wide range of con-
tents. Therefore, efficiently searching for the location information of the target image from
visually information-rich images has been a focus of attention. However, images acquired
in indoor low-light environments often suffer from quality degradation problems, such as
missing features in dark areas and noise interference. These issues limit the effectiveness of
feature extraction and matching algorithms, preventing them from providing application
value in following target search tasks. As a result, how to improve the quality of low-light
images in order to complete the subsequent target search task and then determine the
target’s location information is particularly critical.

In order to solve the quality degradation problem of low-light images, researchers
have explored histogram equalization (HE)-based methods [1], Retinex-based methods [2],
and deep-learning-based methods [3]. Although histogram equalization approaches can
improve the contrast of low-light images, the enhanced images still have varying degrees
of blurring, causing the number of extracted feature points to fall short of the requirements
of the subsequent target search task.

In contrast to histogram equalization, methods based on Retinex theory divide the
image into illumination and reflection components by a priori regularization or specific
regularization, and use the estimated reflection component as the enhancement result,
thereby reducing the loss of detail information in the original image. However, Retinex
theory-based methods often ignore the treatment of noise during the enhancement process,
which leads to a decrease in the accuracy of feature matching, thus reducing the accuracy
of subsequent target searches.

Compared to the above two methods, the deep-learning-based method has made
great progress in terms of accuracy, speed, and enhancement in low-light enhancement
tasks. However, most deep-learning methods are still unable to balance noise control and
luminance accuracy in the enhancement process, which makes the accuracy of feature
extraction and matching degrade, thus reducing the accuracy of the target search. Aiming
at the problem that the degradation of low-light image quality leads to the inability of
the subsequent target search task, a joint local and high-level semantic information (JLHS)
target search method is proposed based on joint bilateral filtering and camera response
model (JBCRM) image preprocessing enhancement, as shown in Figure 1.

In the image preprocessing enhancement stage, the JBCRM image-enhancement
method is composed of three parts: strengthening local features, denoising, and sharpening,
in order to solve the problem of difficult feature extraction, thus providing better visual
data for the subsequent target search task. Firstly, the indoor low-light images captured by
a monocular vision camera (DJI Pocket 2, Shenzhen, China) are divided into an illumination
component and a reflection component using the LECARM method. Secondly, the decom-
posed illuminance and reflection components are processed using the camera response
model, thus obtaining the lighting-enhanced illuminance and reflection components, and
these two components are fused to obtain the LECARM-processed image. Then, the OPJB
filter is constructed by approximating the optimal parameters σd and σr through multiple
experiments, thus rejecting the noise interference contained in the LECARM-processed
image. Finally, the optimal parameter µ is chosen through several experiments to establish
the OPUSM sharpening method, thereby accentuating the texture features of the denoised
image. In the target search stage, the JLHS target search method consists of two parts:
coarse search and fine search. Firstly, the target image and the offline database image are
feature extracted using the rough search based on local feature SIFT (RLFS), respectively,
and the corresponding feature vectors are generated and stored as corresponding npy
files. Secondly, the BBF method is used to match the feature vectors in the offline database
with the feature vectors of the target image, and the Euclidean distance is used to sort the
matching results in descending order, so as to obtain the top six matching database images
as the coarse search images. Then, the last layer of semantic information of each coarse
search image and target image are extracted using the VGG16 fine search based on Keras
(VFSK), respectively, and the corresponding feature vectors are generated and stored as
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h5 files. Finally, the KD-Tree method is used to match the h5 feature vector corresponding
to each coarse search image and the h5 feature vector corresponding to the target image,
and the cosine similarity is used to sort the matching results in descending order, thereby
obtaining the coarse search image that is most similar to the target image. The position
information of this coarse search image is the position information of the target image.
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The main contributions of this paper are as follows:

(1) To address the issue of the difficulty in extracting feature information from low-
light images, an image-enhancement method based on JBCRM is constructed. This
method improves the image quality by strengthening the features of the dark re-
gion and reducing noise interference, so as to solve the problem of difficult feature
information extraction.

(2) Aiming at the problem that current target search methods are unable to balance accu-
racy and search time, a target search method based on JLHS is designed. By combining
local feature scale-invariant feature transform (SIFT) with high-level semantic features
for image description, the method increases the matching accuracy between the target
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image and the offline database image, thereby improving the target search accuracy
and reducing the target search time.

The remaining structure of this paper is as follows: Section 2 introduces the related
work. Section 3 introduces the proposed JBCRM image-enhancement method, and the
corresponding simulation experiments are carried out. Section 4 describes the designed
JLHS target search method. Section 5 shows the simulation and analysis results of the target
search. Section 6 summarizes the conclusions of the proposed method and prospects for
future research directions.

2. Related Work

This section introduces two main parts: enhancement methods for low-light images
and search methods for targets. (1) Current low-light image-enhancement methods are
presented, which solve the problem of difficult feature information extraction by improv-
ing the image quality. (2) Existing target search methods describe the image content in
different ways to improve the accuracy of feature matching, thus raising the accuracy of
the target search.

2.1. Low-Light Image-Enhancement Methods

Currently, the methods to solve the difficulty of feature information extraction by im-
proving the image quality are mainly classified into three categories: histogram equalization-
based methods, Retinex model-based methods, and deep-learning-based methods.

The methods based on histogram equalization improve the brightness and contrast
of low-illumination images by expanding the grayscale range. Reference [4] proposes an
extended method based on histogram equalization called contrast limited dynamic quadri-
histogram equalization (CLDQHE). The method splits the whole histogram into four
sub-histograms and performs adaptive histogram cropping, thus overcoming the defects of
over-enhancement and over-smoothing in traditional histogram equalization methods. Ref-
erence [5] describes an adapted contrast enhancement using modified histogram (ACMHE).
This method divides the histogram of the input image into four sub-histograms based
on the brightness median. Then, independent histogram equalization is performed on
each partition, resulting in natural contrast enhancement and brightness preservation.
Although histogram equalization-based approaches increase the contrast and brightness of
low-light images to varying degrees, they nevertheless suffer from noise interference and
color distortion, which degrade the accuracy of feature extraction and matching, thereby
decreasing the accuracy of the target search.

To further improve the quality of low-light images, researchers have successively
proposed the multi-scale Retinex (MSR) method [6] and the multi-scale Retinex with color
recovery (MSRCR) method [7]. In order to better preserve the structural information
of the original low-light image, reference [8] proposes an image-enhancement method
that combines Zero—DCE and Retinex. This method first utilizes the Retinex model to
decompose the image into an illumination component and a reflection component. Then,
the illumination component is enhanced by using deep light curve estimation, and the
reflection component of the image is kept unchanged, so as to achieve the purpose of
maintaining the structural characteristics of the image. Ref. [9] proposes a global attention-
based Retinex network (GARN) for low-light image enhancement by embedding global
attention modules in different levels of the network. However, Retinex-based methods
produce unnecessary halo artifacts and noise interference, which degrade the accuracy of
feature matching, thereby reducing the accuracy of the target search.

With the immense success of convolutional neural networks in various computer
vision tasks, deep-learning-based methods have been widely used in the field of image
enhancement. Reference [10] proposes a trainable convolutional neural network (CNN)
called LightenNet for enhancing low-light images. The method takes the low-light images
as the input, outputs their illumination components, and then obtains the enhanced image
based on the Retinex model. Retinex-Net [11] improves the image brightness by using an
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end-to-end image decomposition model and a continuous low-light enhancement network.
Reference [12] presents a stacked sparse denoising autoencoder (SSDA) method to enhance
low-light images. This method enhances the image by recognizing signal features in
low-light images and adaptively enhancing the brightness of the image without over-
amplifying the brighter parts of the image. Despite significant progress in low-light image-
enhancement tasks using convolutional neural network-based deep-learning methods,
there are still issues such as a loss of detail information and noise interference that prevent
the number of extracted feature points from being sufficient for subsequent target searches.

To solve these problems, this paper proposes an image-enhancement method based
on a joint bilateral filtering and camera response model (JBCRM). This method enhances
the quality of the image by highlighting details in the dark areas and removing noise
interference, thereby solving the problem of difficult feature extraction and providing better
visual data for subsequent target search tasks.

2.2. Target Search Methods

Existing target search methods can be classified into three main categories based on
their search principles: text-based image retrieval (TBIR), content-based image retrieval
(CBIR), and semantic-based image retrieval (SBIR).

The TBIR approaches mostly employ text annotation to add keywords to images,
thereby completing the target search task. Ref. [13] proposes a target search method based
on embedding and scene text. The first step of this method involves utilizing the maximally
stable extremal region (MSER) algorithm to detect candidate text regions. Then, geometric
features and stroke width transformations are used to eliminate unwanted false-positive
text regions. Simultaneously, keywords are formed using a neural probabilistic language
model, and the detected keywords are used to index and search the text images. Ref. [14]
presents a hybrid text–visual correlation-based learning method. The method mines textual
relevance from image tags, and then combines textual relevance and visual relevance to
accomplish the search task. Although TBIR approaches have increased the target search
accuracy to some level, image annotation is required to complete the search operation,
which increases this method’s manual expenditures.

The CBIR-based target search methods accomplish the search task mainly based on
the features of the image content, thus avoiding the process of manually labeling the
images. CBIR methods are mainly based on two types of visual features: local features
and global features. The former captures underlying features from key points or salient
blocks of an image. The latter considers the whole image as a salient region and convolves
it, mainly including color [15], texture [16], and shape [17]. Compared to a local feature-
based target search, the global feature-based target search method is relatively simple and
computationally fast, but it is ambiguous, which means the semantic meanings expressed
by images with similar features may be different, thus leading to a lower accuracy of
the target search. The common method based on local features is the scale-invariant
feature transform (SIFT) method [18], which generates 128-dimensional feature vectors
for each key point. Meanwhile, the SIFT feature vectors are invariant to image scaling
and rotation, with robustness to affine transformations, noise interference, and luminance
transformations. [19] proposes a target search framework based on the VLAD model and
speeded-up robust feature (SURF) descriptors. This framework converts 64-dimensional
SURF descriptors into 8-dimensional SURF descriptors, and then constructs a codebook
using a two-step clustering algorithm. After that, it uses an expandable overlapping
segmentation method and a feature-fusion strategy to accomplish target search tasks.
Although CBIR-based target search methods improve the accuracy of the target search to a
great extent, they also face the problem of a semantic gap between low-level visual features
such as color, texture, and shape and high-level abstract attributes such as emotion, filling,
and expression in the human mind.

To improve the performance and accuracy of content-based target search methods,
semantic gaps need to be reduced. With the advancement of machine learning and deep
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learning in recent years, numerous SBIR-based target search approaches have been pre-
sented. These methods can reduce the semantic gap between the low-level features of
the image and the high-level concepts in the human mind, and improve the accuracy of
the target search. Ref. [20] designs a color attention function to describe the importance
of different image blocks and combines color with texture to construct candidate regions.
Meanwhile, it is input into the deep neural network (DNN) for feature extraction, and a
similarity function is designed to calculate the distance between different images, where
the top-ranked image is used as the searched image. Ref. [21] proposes a target search
method that combines deep-learning semantic feature extraction and regularized Soft-
max. The method first constructs the convolution depth Boltzmann machine (C-DBM) by
combining the deep Boltzmann machine (DBM) and the convolutional neural network
(CNN). Then, the Dropout regularized Softmax classifier is used to classify the image
features, and the image is searched based on the sorted output. Ref. [22] presents a se-
mantic target search method that fuses the visual saliency model with the bag-of-words
model. This method uses a visual saliency-based segmentation method to segment the
image into background regions and foreground targets. Then, multiple features, including
SIFT features, are extracted and fused from the background region and foreground target,
respectively. Meanwhile, the fusion z-score normalized chi-squared distance is used as the
similarity measure to complete the target search. Although this method has a better target
search performance, the computational complexity of segmentation is still large, and the
performance of segmentation has a significant impact on the search performance. Allani
et al. [23] propose a target search system that fuses semantic and visual features. The system
automatically builds a modular ontology for semantic information and organizes visual
features in a graph-based model. These two elements are then combined in a component
called “pattern” for subsequent target retrieval. Chen et al. [24] present a method based
on deep image search called deep semantic hashing (DSH). This method considers the
visual and semantic features of the image based on deep learning and uses the semantic
information to generate the hash function of the hash code, thus improving the accuracy of
the subsequent target search. Although the target search accuracy is greatly increased by
SBIR-based methods, they are still challenging owing to the limitations of present artificial
intelligence and related technology. In order to improve the target search accuracy and
shorten the search time, this paper constructs a joint local and high-level semantic informa-
tion (JLHS) target search method. By combining the local feature SIFT with the high-level
semantic feature, this method increases the feature matching accuracy of the target image
and offline database images, thereby improving the precision and decreasing the search
time for the target search.

3. JBCRM Image-Preprocessing-Enhancement Method

This section introduces two main parts: (1) Introducing the proposed image-
preprocessing-enhancement method, JBCRM, in this paper. (2) Demonstrating the
simulation and analysis of each mainstream image-enhancement method and the
JBCRM method.

3.1. Construction of JBCRM Image-Enhancement Method

Under low-light conditions, the lack of light makes the captured images often suffer
from quality degradation problems such as missing dark areas, low brightness, low contrast,
noise interference, and color distortion. These problems make it difficult for the feature
extraction algorithms to extract feature information from the image, thus failing to meet the
number of feature points required for subsequent target searches. To address these issues,
this paper improves LECARM [25] by introducing a new denoising model, known as a
denoising model based on joint bilateral filtering and unsharp masking (JBUSM), in order
to build a low-light image-enhancement method based on a joint bilateral filtering and
camera response model (JBCRM). The specific steps of the JBCRM image-preprocessing-
enhancement method are as follows.
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According to the Retinex model, the illuminance arriving at the camera is first divided
into the illuminance component and the reflection component.

G = Z× F, (1)

where Z and F are the illuminance and reflection components, respectively. G is the amount
of illumination reaching the camera, which is also known as scene irradiance.

Next, the camera’s nonlinear process is described using the camera response function
(CRF), which explains the link between image irradiance G and low-light image L, as shown
in Equation (2):

L = f (G), (2)

where f represents the nonlinear function CRF.
According to Equation (2), Equation (1) can be written in the following form:

L = f (Z× F), (3)

The irradiance G of an image produces a nonlinear transformation in many cases
due to the nonlinear processing of the camera. Therefore, the mapping function between
different exposure images can also be a nonlinear function, which is called the brightness
transform function (BTF). The BTF describes the relationship between the L0 and L1 of two
images taken under different exposures in the same scene, as shown in Equation (4):

L1 = g(L0, k), (4)

where g represents the BTF function and k denotes the exposure rate.
The CRF and BTF are the fundamental components of the camera response model,

which describe the basic properties of image processing in the camera. Based on the defini-
tions of CRF and BTF, the relationship between two images taken at different exposures of
the same scene is represented by Equation (5):

f (k× G) = g( f (G), k), (5)

The equation is known as a parametric equation, which describes the relationship
between f and g and can be used to convert between the two functions.

As a result, Equation (6) can be used to calculate the enhanced image Le of a low-
illuminance image L captured by the same camera in the same scene:

Le = f (F× 1), (6)

where 1 denotes a matrix whose all elements are 1 [26]. Based on Equations (1) and (5), the
relationship between L and Le can be derived as shown in Equation (7):

Le = f (F) = f (G× (1� Z)) = g( f (G), (1� Z)), (7)

where � stands for the division of elements. Equation (7) adjusts the exposure of the input
image L to produce the illumination-enhanced image Le. As a result, the output image Le

can be written as follows:

Le = g( f (G), (1� Z)) = g( f (G), k0), (8)

where exposure k0 is a matrix representing the required exposure per pixel.
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Then, Equation (9) is used to remove the noise from the illumination-enhanced image
Le to obtain the denoised image Le

j . The pixel value of any point p in image Le after the
filtering process is Le

j [p].

Le
j [p] =

∑y∈Ω Fσd(‖ p− q ‖)× Gσr

(
‖ Dp − Dq ‖

)
× Le

q

∑y∈Ω Fσd(‖ p− q ‖)× Gσr

(
‖ Dp − Dq ‖

) , (9)

among them,
Fσd(‖ p− q ‖) = exp

(
−
[
(x− u)2 + (y− v)2

]
/2σ2

d

)
, (10)

Gσr

(
‖ Dp − Dq ‖

)
= exp

(
−
[(

Dp − Dq
)2
]
/2σ2

r

)
, (11)

where Le is the input image and Ω is the set of neighborhoods of the center pixel p. The
coordinates of point p are (x, y) and the coordinates of point q are (u, v). Dp and Dq are the
pixel values corresponding to the guide image position (x, y) and location (u, v), respectively.
F and G represent the spatial domain filter centered on (x, y) and the value domain filter
centered on (x, y), respectively. σd is the standard deviation of the spatial domain, which is
used to adjust the weight values of pixels with larger spatial distances. σr is the standard
deviation of the similarity factor controlling the gray range, which is used to adjust the
weight values of pixels with larger pixel differences.

Finally, the denoised image Le
j is sharpened by using Equation (12), thus resulting in

the JBCRM-enhanced image Ljbl .

Ljbl(x, y) = Le
j (x, y) + µ×

[
Le

j (x, y)−Q(x, y)
]
, (12)

where µ is the enhancement factor. Q(x, y) is the low-pass template with the expression:

Q(x, y) =
1

M× N ∑x+(M−1)/2
i=x−(M−1)/2 ∑y+(N−1)/2

j=x−(M−1)/2 Le
j (x, y), (13)

where M × N is the size of the template and M = N.

3.2. Design of JBUSM Denoising Model

In order to better remove the noise interference and retain more structural infor-
mation of the original image, the JBUSM denoising model consists of two parts: the
optimal parameter-based joint bilateral filter (OPJB) and the optimal parameter-based
USM-sharpening method (OPUSM). The specific contents of the JBUSM denoising model
are as follows.

3.2.1. Construction of the OPJB Filter

As can be observed from Equation (9), the denoising effect of the joint bilateral filter
depends on the parameters σd and σr. The larger the parameter σd, the better the noise
reduction effect. The smaller the parameter σr, the better the noise reduction effect. To select
the optimal parameters σd and σr for processing low-illumination images, this paper uses
multiple experiments to approximate the optimal parameters σd and σr, thus building the
OPJB filter. The details are as follows: firstly, two images are selected from the mainstream
low-light datasets (LIME [27], LOL [28], MEF [29], SICE [30], GladNet [31], and actual
scene images), including global low-light images and local low-light images. At the same
time, the selected images are combined into a new low-light dataset (NLLD) containing
different scenes, as shown in Table 1. Then, LECARM is employed to process the images in
the NLLD. Finally, multiple experiments are used to approximate the optimal parameters
σd and σr.
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Table 1. Composition of the NLLD.

Image
Dataset LIME LOL MEF SICE GladNet Actual

Scene

Global
Low-light
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different 𝜎  treatments is as follows: the value of the Laplace operator tends to increase 
between 10 and 30, which means that the clarity of the image is increasing. Between 30 
and 100, the value of the Laplacian operator shows a downward trend, indicating that the 
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As can be seen from Figure 2, the trend of the corresponding evaluation indexes after 
different 𝜎  treatments is as follows: the value of the Laplace operator tends to increase 
between 10 and 30, which means that the clarity of the image is increasing. Between 30 
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As can be seen from Figure 2, the trend of the corresponding evaluation indexes after 
different 𝜎  treatments is as follows: the value of the Laplace operator tends to increase 
between 10 and 30, which means that the clarity of the image is increasing. Between 30 
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As can be seen from Figure 2, the trend of the corresponding evaluation indexes after 
different 𝜎  treatments is as follows: the value of the Laplace operator tends to increase 
between 10 and 30, which means that the clarity of the image is increasing. Between 30 
and 100, the value of the Laplacian operator shows a downward trend, indicating that the 

The steps for determining the optimal parameter σd are shown below: firstly, σr
is kept constant. Then, σd is taken in the range of 10–100 at intervals of 10, and the
corresponding joint bilateral filters are formed. Finally, these filters are utilized to process
the LECARM-enhanced image. Meanwhile, the peak signal-to-noise ratio (PSNR) and
Laplace operator are introduced as evaluation metrics. For the images processed by
different σd, the corresponding evaluation indicators are shown in Figure 2.
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As can be seen from Figure 2, the trend of the corresponding evaluation indexes after
different σd treatments is as follows: the value of the Laplace operator tends to increase
between 10 and 30, which means that the clarity of the image is increasing. Between 30
and 100, the value of the Laplacian operator shows a downward trend, indicating that the
clarity of the image continues to decline. Through the analysis, the PSNR value shows an
increasing trend in the range of 10~100, which indicates that the noise interference in the
image is continuously decreasing. Considering these results, this paper selects σd = 30 as
the optimal parameter to maintain the high definition of the image.

Similarly, the optimal parameter σr is determined as follows: firstly, fix σd = 30. Then,
σr is taken at intervals of 10 in the range of 5–50 to form the corresponding filters. Finally,
these filters are utilized to process the LECARM-enhanced image. Meanwhile, the PSNR
and Laplace operators are utilized as evaluation metrics. The comparison results of each
evaluation metric are shown in Figure 3.

As can be seen from Figure 3, between 5 and 15, the value of the PSNR decreases as
σr increases, indicating a decrease in the denoising performance of the image. Between
15 and 50, as σr increases, the PSNR value remains constant, indicating that the denoising
performance reaches a stable state. Between 5 and 10, as σr increases, the value of the
Laplacian operator continuously increases, indicating an improvement in the clarity of
the image. However, between 10 and 50, the Laplace transform tends to become unstable
as σr increases. Combining the results of the above analysis, σr = 5 is selected as the
optimal parameter in this paper for the better removal of noise interference from the image.
Concurrently, the OPJB filter is constituted by combining σd = 30, as mentioned above.
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In order to evaluate the denoising effect of the OPJB filter, the PSNR and structural
similarity index metric (SSIM) are introduced as evaluation indexes in this paper. For the
NLLD, the average values of the PSNR and SSIM in the images before and after denoising
using the OPJB filter are shown in Table 2.

Table 2. Average value of each evaluation index before and after denoising of NLLD.

Images before and after
Denoising LECARM-Processed Images OPJB-Denoised Images

PSNR 11.56 11.80
SSIM 0.34 0.37

From the comparison results in Table 2, the corresponding PSNR and SSIM values
of the LECARM-enhanced images after OPJB denoising are significantly improved by
2.08% and 8.82%, respectively. These evaluation indicators show that the OPJB filter also
eliminates the noise interference contained in the LECARM-enhanced image to a certain
extent while maintaining the integrity of the original image structure information.

3.2.2. Construction of OPUSM-Sharpening Method

Since the OPJB filter inevitably removes the texture details in the image when removing
noise, it is necessary to sharpen the denoised image to highlight the edge and texture details
of the image. To address this problem, this paper proposes the OPUSM-sharpening method
by highlighting the details of the image, thus further improving the visual effect of the
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image. As can be seen from Equation (12), the sharpening effect of the USM method
depends on the size of parameter µ. The larger the µ, the better the sharpening effect
and the richer the details. In order to select the optimal parameter µ for constituting the
OPUSM-sharpening method, this paper uses several experiments to approximate µ. The
specific construction process of the OPUSM method is as follows.

Firstly, LECARM is used to process the images in the NLLD to obtain the illumination-
enhanced images. Secondly, the illumination-enhanced images are denoised using the
OPJB filter. Then, µ is taken at intervals of 10 in the range of 10–50, thus constituting the
corresponding USM-sharpening methods. Finally, the OPJB-denoised images are processed
separately using these USM-sharpening methods. Meanwhile, the PSNR and Laplace
operators are introduced as evaluation metrics. The comparison results of each evaluation
index are shown in Figure 4.
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As can be seen from Figure 4, with the increase in µ, the PSNR value of the image
decreases and the Laplace operator value increases, indicating that the noise interference
of the image increases and the detail information increases. Therefore, the µ should not
be too large when sharpening the image so that the noise is not amplified. Based on the
above analysis results, this paper takes the value between 1 and 9 at the interval of 1
near µ = 10, thus forming the corresponding USM-sharpening method to approximate the
optimal parameter µ. Then, these USM methods are used to sharpen the image after OPJB
denoising. At the same time, the PSNR and Laplace operators are introduced as evaluation
indexes. The comparison results of each evaluation index are shown in Figure 5.
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As can be seen from Figure 5, between 1 and 9, the PSNR value of the image stabilizes
around 11.80. The corresponding PSNR value is 11.80 for both µ = 6 and µ = 7. However,
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µ = 6 corresponds to a larger Laplace operator as compared to µ = 7. Therefore, µ = 6 is
selected as the optimal parameter in this paper, thus constituting the OPUSM-sharpening
method. Meanwhile, it is constructed as a JBUSM denoising model together with the OPJB
filter mentioned above.

In order to evaluate the clarity of denoised images after sharpening by the OPUSM
method, the Laplace operator is introduced as an evaluation index in this paper. For the
NLLD, the average values of the Laplace operator in the images before and after sharpening
by the OPUSM method are shown in Table 3.

Table 3. Average values of the Laplace operator before and after image sharpening in NLLD.

Images before and after
Sharpening OPJB-Denoised Images OPUSM-Sharpened Images

Laplacian operator 1481.22 2078.82

As shown in Table 3, the average Laplacian value of the OPJB-denoised images
increases dramatically after sharpening by the OPUSM method, increasing by 40.35%. This
shows that the OPUSM-sharpening method has significantly improved the clarity and
contrast of the OPJB-denoised images.

3.3. Simulation and Analysis of JBCRM Image-Enhancement Method

To scientifically analyze the JBCRM image-enhancement method suggested in this
paper, the images in the NLLD are processed using MF [32], NPE [33], LIME [34], Al-
Ameen [35], Dong [36], and the JBCRM method, respectively. Meanwhile, the PSNR,
SSIM, Laplace operator, universal quality index (UQI), and mean square error (MSE) are
introduced as evaluation metrics. The image-enhancement effect of each algorithm is
shown in Table 4, and the comparison result of each evaluation index is shown in Table 5.

Table 4 shows that the images processed by MF and Al-Ameen exhibit blurred edge
information. The images processed by NPE and Dong exhibit a slight halo and noise
interference. LIME-processed images have more noise and less detail. The JBCRM image-
enhancement approach suggested in this paper produces images with richer features,
clearer texture structures, and more “realistic” colors when compared to existing image-
enhancement methods.

For the four metrics, PSNR, SSIM, Laplace operator, and UQI, the larger the value, the
less image noise, the more similar to the original image structure information, the higher the
clarity, and the better the quality. For the MSE evaluation index, the smaller its value, the
higher the image contrast. As shown in Table 5, compared with other image-enhancement
methods, the PSNR of images processed by the JBCRM increased by 34.24% at the highest
and 2.61% at the lowest. The SSIM has increased by 63.64% at most and 12.50% at least.
The Laplace operator improved by a maximum of 54.47% and a minimum of 3.49%. The
UQI has increased by 43.75% at most and 4.55% at least. The MSE has decreased by 46.66%
at most and 0.91% at least. Combining the results of the aforementioned analyses, the
JBCRM-enhanced low-light images have a higher quality, higher clarity, less noise, and
structural information that is more akin to the original image. When compared to previous
image-enhancement techniques, the JBCRM method presented in this paper takes the least
amount of time. As a result, the JBCRM image-enhancement method proposed in this paper
can significantly improve the quality of low-light images while also shortening the time
required for image enhancement, thus providing better visual information and reducing
the time required for image preprocessing for subsequent target search tasks.

To assess the impact of the JBCRM method proposed in this paper on feature ex-
traction, four feature extraction algorithms commonly used for target search are used to
extract features from the original image and the JBCRM-enhanced low-light image, respec-
tively. These feature extraction algorithms are SIFT, oriented fast and rotated BRIEF (ORB),
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accelerated-KAZE (AKAZE), and binary robust invariant scalable key points (BRISK). The
number of feature points for each feature extraction algorithm are shown in Table 6.

Table 4. Visualization effect of the NLLD after enhancement by each algorithm.

Image-Enhancement
Algorithm

Original
Image MF NPE LIME Al-Ameen Dong JBCRM

LIME

Global
low-light
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Table 6. Number of feature points in the original and JBCRM-enhanced images.

Feature Extraction Method SIFT ORB AKAZE BRISK

Original images 116.42 152.83 48.83 160.67
JBCRM-enhanced images 331.00 184.17 197.00 573.42

Growth rate of feature points 184.32% 20.51% 303.44% 256.89%

From Table 6, compared to the original images, the number of feature points in the
JBCRM-enhanced images increases at the most by 303.44% and at the least by 20.51%. As
a result, the low-light images enhanced by the JBCRM have a substantial increase in the
number of feature points during feature extraction using the feature extraction algorithm,
thus providing a sufficient number of feature points for the subsequent target search.

4. Construction of Target Search Method Based on JLHS

This section presents two main parts: (1) Introducing the process of constructing the
JLHS target search method. (2) Simulation and analysis of the existing target search method
and JLHS method in the real scenario. The details are as follows.

Currently, global features and local features are the main methods for characterizing
image content in CBIR-based target search methods. Compared with the former, the latter
can more appropriately characterize the feature information contained in images. The most
widely used local features are SIFT local features, which produce 128-dimensional feature
vectors for each key point. Compared with speeded-up robust features (SURF) and ORB
local features, SIFT feature vectors are resistant to affine transformations, noise interference,
and luminance transformations, and are unaffected by image scaling and rotation. As a
result, SIFT local features are widely used in the field of target search. However, SIFT
feature-based target search methods have a low accuracy and must be combined with other
methods to increase target search precision. The success of deep-learning-based methods
has provided an effective solution for this. Although deep-learning-based target search
methods have a better search accuracy, they take a lot of time and computer resources.
To improve the search accuracy and shorten the search time, a joint local and high-level
semantic information (JLHS) target search method is proposed in this paper. This method
consists of two parts: a rough search based on local feature SIFT (RLFS) and a VGG16 fine
search based on Keras (VFSK). The specific construction process of the JLHS search method
is shown in Figure 6.
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In indoor low-light environments, the JBCRM image-enhancement method is used to
preprocess the acquired image, and then, the JLHS method is used to search the image. The
specific steps are as follows:

(1) In the offline feature database generation stage, firstly, a monocular vision camera
(DJI Pocket 2) is used to collect low-light images of the selected experimental site, and
the corresponding position coordinates of the images are recorded to form a low-light
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image database. Then, the images in the low-light database are preprocessed using
the JBCRM image-enhancement method, thus obtaining the JBCRM-enhanced image
database. Finally, the images in the JBCRM-enhanced image database are feature
extracted using the feature extraction algorithm SIFT to form SIFT feature vectors,
thus constructing an offline feature database.

(2) In the query stage, the target image is first taken using the monocular vision camera
(DJI Pocket 2) at the same experimental site. Then, the JBCRM image-enhancement
method is used to preprocess the target image. Finally, the feature extraction algorithm
SIFT is used to extract the features of the JBCRM-enhanced image to form the SIFT
feature vector, and the SIFT feature vector is stored.

(3) For the target search, the offline feature database’s SIFT feature vectors and the
JBCRM-enhanced images’ SIFT feature vectors are first matched using the RLFS coarse
search method, thus yielding the coarse search images with the top six numbers of
matched points. Then, the last layer of convolutional features of the coarse search
images and the last layer of convolutional features of the JBCRM-enhanced images
are compared using the VFSK fine search technique. By arranging the results in
descending order based on the cosine similarity, the most similar database image to
the target image is obtained. This database image’s position coordinate is the target
image’s position coordinate.

4.1. Construction of Offline Feature Database

In order to scientifically evaluate the effectiveness and feasibility of the JLHS target
search method, this paper selected indoor corridors during morning and evening hours as
the experimental site. In Figure 7, the center of Figure a is taken as the origin of the world
coordinates, its horizontal direction is taken as the x-axis of the world coordinate system,
and its vertical direction is taken as the y-axis of the world coordinate system. Meanwhile,
five acquisition points are selected in the x-axis direction, and fifteen acquisition points are
selected in the y-axis direction. Each acquisition point acquires images at 90◦ intervals in
the clockwise direction, and a total of 300 images are acquired. The corresponding position
coordinates of each image are recorded, thus forming a low-light image database. Then,
the JBCRM image-enhancement method is used to preprocess the low-light database, thus
obtaining the JBCRM-enhanced image database. Finally, the feature extraction algorithm
SIFT is used to extract the SIFT features of the images in the JBCRM-enhanced image
database. Meanwhile, SIFT features are generated into SIFT feature vectors and stored in
the form of npy files, thereby completing the construction of the offline feature database.
The process of building the offline feature database is shown in Figure 7.
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4.2. Constructing RLFS-Based Coarse Search Technology

Aiming at the problem of the long search time of the traditional SIFT target search
methods, this paper uses the best bin first (BBF) search method to match the target image
with the offline database image. At the same time, this paper uses the Euclidean distance as
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the similarity measure of key points in two images to reduce the probability of a mismatch.
The specific steps of the RLFS-based coarse search technique are shown in Figure 8.
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Firstly, the JBCRM image-enhancement method is used to preprocess the image in
the low-light image database and the target image, respectively, thus obtaining the cor-
responding JBCRM-enhanced image database and JBCRM-enhanced image. Secondly,
the SIFT feature extraction algorithm is utilized to extract features from images in the
JBCRM-enhanced image database, thereby acquiring the set of SIFT feature points and
forming the feature vectors, which are saved as npy files. Simultaneously, the SIFT feature
extraction algorithm is used to extract features from the JBCRM-enhanced image, yielding
the corresponding SIFT feature points and constructing the feature vector, which is stored
as an npy file. Thirdly, the SIFT feature vectors of the JBCRM-enhanced image database are
matched with the SIFT feature vector corresponding to the JBCRM image by using the BBF
search method, respectively. Then, the Euclidean distance is used to calculate the similar-
ity between the JBCRM-enhanced image and each image in the JBCRM-enhanced image
database, and the similarity is sorted in descending order. Finally, the top six similarity
images in the JBCRM-enhanced image database are selected as the coarse search images.
Among them, the details of the SIFT feature vector construction process are as follows.

4.2.1. Establishment of Scale Space and Detection of Extreme Points

The whole scale space establishment process of the image is as follows: for an image of
size N × N, the image is convolved with the Gaussian kernel, thereby obtaining Gaussian
spaces of different scales, which are expressed as:

L(x, y, σ) = G(x, y, σ)× ID(x, y), (14)

G(x, y, σ) =
1

2πσ2 e−(x2+y2)/2σ2
, (15)

where G(x, y, σ) is the Gaussian function with variable parameters; σ is the scale space
factor; L(x, y, σ) is the spatial function at a specific scale.

To obtain stable Gaussian scale space extreme points, the original image is convolved
with G with different scale factors. Then, the images of two adjacent Gaussian spaces are
subtracted to obtain the difference of Gaussians (DOG), thus eliminating the unstable edge
points, whose mathematical expression is:

D(x, y, σ) = [G(x, y, kσ)− G(x, y, σ)] × ID(x, y) = L(x, y, kσ)− L(x, y, σ), (16)

To ensure the stability and uniqueness of the SIFT features, each sampling point on
the DOG needs to be compared with 8 neighboring points at the same scale, as well as
18 points corresponding to the neighboring scales above and below, which are 26 points
in total. If the DOG value of this sampling point is greater than or less than the other 26
points, the point is set as a local extreme point.
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4.2.2. Precisely Determine the Location of the Feature Points

In the candidate set of local extremum points of scale space, there are many low-
contrast and unstable edge points, which directly affect the stability and anti-interference
ability of matching. Therefore, these edge points need to be removed to improve the
accuracy of matching. The specific removal principle is as follows: the principal curvature
value is relatively large in the direction of the edge gradient, while the principal curvature
value is small along the edge direction. The principal curvature value of the candidate
feature points is proportional to the eigenvalue of the 2 × 2 Hessian matrix. The expression
of the Hessian matrix is:

H =

[
Dxx Dxy
Dyx Dyy

]
, (17)

Let α and β be the eigenvalues of H, and the value of α is greater than β. At the same
time, let α = rβ, and then, the trace Tr(H) and determinant Det(H) of H are as follows:

Tr(H) = Dxx + Dyy = α + β, (18)

Det(H) = DxxDyy −
(

Dxy
)2, (19)

Ratio =
(Tr(H))2

Det(H)
=

(α + β)2

αβ
=

(r + 1)2

r
, (20)

If Ratio ≤ (r+1)2

r , it is retained as the feature point; otherwise, it is discarded.

4.2.3. Direction Distribution of Feature Points

To ensure the rotational invariance of the feature points, it is necessary to assign a
principal direction for each feature point based on the magnitude and direction of the
gradient. The specific process of determining the main direction of feature points is
as follows: firstly, the direction of each feature point is calculated. Then, the gradient
information of the pixels around the feature point is counted, and the corresponding
gradient histogram is plotted at 45-degree intervals. Finally, the peak of the gradient
histogram is selected as the principal direction of the feature point.

For the scale space image L(x, y, σ), the size and direction of the gradient at each
feature point are as follows:

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2, (21)

θ(x, y) = tan−1
(

L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

)
, (22)

where m(x, y) is the magnitude of the gradient and θ(x, y) is the direction of the gradient.

4.2.4. Generating SIFT Feature Point Descriptors

Through the above three processes, the position, scale, and direction information of the
feature points are obtained successively. In order to improve the probability of the correct
matching of feature points, it is necessary to establish corresponding feature descriptors for
each feature point. The specific steps are as follows: firstly, rotate the coordinate axis to
align with the main direction of the feature points mentioned above. Then, take a 16 × 16
window centered around the feature point within the same scale domain. Next, divide
the window into 4 × 4 sub-block regions (seed points), as shown in Figure 9. Finally,
the gradient histograms of each seed point in eight directions (every 45◦ is a direction)
are counted based on Equations (21) and (22), and each gradient histogram is Gaussian
weighted, so as to weaken the influence of the place far away from the feature points on
the feature points.
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In the left figure, its center position is the position of the feature point, and each cell
represents a pixel in the scale space where the neighborhood of the feature point is located.
The arrow in each small box corresponds to the direction of the gradient at the feature point,
the length of the arrow represents the gradient magnitude, and the circle indicates the
range of Gaussian weights. In the right image, the gradient histogram of eight directions is
drawn in each 4 × 4 box, and the cumulative value of each gradient direction is calculated,
thus forming a seed point. Each feature point consists of 4 × 4 seed points, each with
vector information in eight directions, thereby producing a 16 × 8 128-dimensional SIFT
feature vector.

4.3. Constructing VFSK-Based Fine Search Technology

VGG16 was proposed by the Visual Geometry Group of the University of Oxford in
2014, and its specific structure is shown in Figure 10. VGG16 consists of five convolutional
blocks and three fully connected layers. The first two convolutional blocks consist of two
convolutional layers and a pooling layer, while the last three convolutional blocks consist
of three convolutional layers and a pooling layer. In this paper, convi is used to denote the
ith convolutional block, convi_j denotes the jth convolutional layer of the ith convolutional
block, and convi_pool denotes the pooling layer of the ith convolutional block. The number
of filters in the 5 convolutional blocks is 64, 128, 256, 512, and 512, respectively. Compared
with the traditional convolutional neural network model, the VGG16 network structure is
very simple, which can enhance the richness and hierarchy of the feature representations,
thus better capturing the visual features. Therefore, the VGG16 is chosen as the base model
for the fine search in this paper.

After using the above RLFS coarse search, there is still the problem of mismatching,
which leads to low accuracy in the target search. As a result, this paper builds the VGG16
fine search based on Keras (VFSK) in the fine search stage, thereby increasing the target
search accuracy even more, as illustrated in Figure 10.

To improve the search accuracy and efficiency, VFSK fine search technology employs
the VGG16 model to extract high-level semantic features from the conv5 layer, thus complet-
ing the accurate search of the target images. The details of the VFSK fine search technology
are as follows: firstly, the convolutional feature mapping is extracted from the conv5 layer of
each coarsely searched image and JBCRM-enhanced image, respectively, using the VGG16
model with a total number of channels of 512, thus constituting the corresponding h5
feature vectors. Then, the cosine similarity is used to calculate the similarity between the
h5 feature vector corresponding with each coarse search image and the h5 feature vector
corresponding with the JBCRM-enhanced image, and the obtained similarity is sorted
using the K—means clustering method, thereby obtaining the coarse search image that
has the highest similarity with the JBCRM-enhanced image. The position coordinates
corresponding to this coarse search image are the position coordinates of the target image.
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Among them, the calculation formula for the cosine similarity between two feature
vectors is as follows:

cos(θ) =
a× b

‖ a ‖ × ‖ b ‖ , (23)

where a and b are two different h5 feature vectors. cos(θ) is the cosine similarity of the two
h5 feature vectors, which ranges from [−1, 1]. The larger the cosine value, the more similar
the two h5 feature vectors are represented.

5. Simulation and Result Analysis of Target Search

In order to evaluate the JLHS target search method proposed in this paper, 178 low-
light images are taken at any position of the selected experimental site as experimental
images for the target search. The specific content of the target search experiment is as
follows: firstly, the 178 experimental images captured are preprocessed using the JBCRM
method, thereby obtaining the corresponding JBCRM-enhanced images. Then, Höschl
IV [37], Yin [38], Chhabra [39], Kopparthi [40], and the JLHS method proposed in this paper
are used to match the JBCRM-enhanced images with the images in the offline database,
respectively, thus obtaining the database image that is most similar to the target image. The
position coordinates corresponding to this database image are the position coordinates of
the target image. The performance comparison results of each target search method are
shown in Table 7.

Table 7. Performance comparison results of each target search method (* represents the process
including image preprocessing and target search).

Search Method Höschl IV Yin Chhabra Kopparthi Ours

Average search error/m 1.21 0.26 0.31 0.12 0.098
Average deviation angle/◦ 3.29 0.90 0.89 0.83 0.52

Average search time/s 1.31 0.98 0.57 0.58 0.36
Average whole process search time */s 1.34 1.01 0.60 0.61 0.39

As can be seen from Table 7, compared with other target search methods, the average
search error of the JLHS method is reduced by 91.90% at most and 18.33% at least. The
average search time is reduced by 72.52% at most and 36.84% at least. As a result, the JLHS
method proposed in this paper significantly increases the target search accuracy while
decreasing the search time.
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In 178 sets of target search experiments, the accuracy rate of each target search method
is shown in Figure 11. Among them, the formula for the search accuracy is as follows:

P =
m
N

, (24)

where P represents the accuracy rate, m represents the number of correctly searched samples,
and N represents the number of searched samples.
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As can be seen from Figure 11, compared to the other four methods, the JLHS method
proposed in this paper has the least number of erroneous search samples and the highest
search accuracy. Meanwhile, compared to the other four approaches, the JLHS method
improves the accuracy by 12.83% at most and 1.16% at least. Therefore, the JLHS method
proposed in this paper effectively overcomes the problem of a difficult target search in
indoor low-light environments.

6. Conclusions

Aiming at the difficulty of target searching in indoor low-light environments, this
paper proposes a JLHS target search method based on JBCRM image preprocessing en-
hancement. The JBCRM approach solves the problem of difficult feature extraction and
gives superior visual data for the succeeding target search task by enhancing the dark
area features and eliminating noise interference during the image preprocessing stage.
Compared to other image-enhancement techniques, the PSNR of the JBCRM-enhanced
images is boosted by 34.24% at most and 2.61% at least. The Laplace operator is increased
by 54.47% at most and 3.49% at least. From the evaluation metrics, the JBCRM-enhanced
images have less noise, higher clarity, and more details. In terms of feature extraction, the
maximum increase in the number of feature points in JBCRM-enhanced images is 303.44%,
and the minimum increase is 20.51% as compared to the original low-light images. In
the target search phase, the JLHS method designed in this paper improves the matching
accuracy between the target image and the offline database image by combining the local
feature SIFT and high-level semantic features to describe the image, thus boosting the target
search accuracy. Compared with other target search methods, the average search error of
the JLHS method is only 9.8 cm, and the average search time is only 360 ms. Experimental
results demonstrate the effectiveness of the proposed method in the task of target searching
in indoor low-light environments, which is able to obtain the position information of the
target more accurately. In our future work, we will reduce the dimension of the local feature
descriptor SIFT by using the effective dimension reduction algorithm, which improves the
efficiency of SIFT feature extraction and further shortens the search time.
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