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Abstract: The development and functional perfection of urban areas have led to increasingly severe
fire risks in recent decades. Previous urban fire risk assessment methods relied on subjective judg-
ment, rough data collection, simple linear statistical methods, etc. These drawbacks can lead to low
robustness of evaluation and inadequate generalization ability. To resolve these problems, this paper
selects the indicator and regression models based on the high-resolution data of the spatial distribu-
tion characteristics of Longquanyi distinct in Chengdu, China. and proposes an integrated machine
learning algorithm for fire risk assessment. Firstly, the kernel density analysis is used to map the four-
teen urban characteristics related to fire risks. The contributions of these indicators (characteristics) to
fire risk and its corresponding index are determined by Random Forest (RF), Gradient Boosting Deci-
sion Tree (GBDT), and eXtreme Gradient Boosting (XGBoost). Then, the spatial correlation of fire risks
is determined through Moran’s I, and the spatial distribution pattern of indicator weights is clarified
through the raster coefficient space analysis. Finally, with these selected indicators, we test the regres-
sion performance with a backpropagation neural network (BPNN) algorithm and a geographically
weighted regression (GWR) model. The results indicate that numerical variables are more suitable
than dummy variables for estimating micro-scale fire risks. The main factors with a high contribution
are all numerical variables, including roads, gas pipelines, GDP, hazardous chemical enterprises,
petrol and charging stations, cultural heritage protection units, assembly occupancies, and high-rise
buildings. The machine learning algorithm integrating RF and BPNN shows the best performance
(R2 = 0.97), followed by the RF-GWR integrated algorithm (R2 = 0.87). Compared with previous
methods, this algorithm reduces the subjectivity of the traditional assessment models and shows
the ability to automatically obtain the key indicators of urban fire risks. Hence, this new approach
provides us with a more robust tool for assessing the future fire safety level in urban areas.

Keywords: fire risk assessment; spatial distribution; decision tree; neural network; geographically
weighted regression

1. Introduction

Fire is a common phenomenon in the world today. Rapid urbanization can increase
the number of factors contributing to urban fire risks and increase the difficulty of fire
prevention and control. For example, about 748 thousand fires in 2021 were reported in
China, with 1987 deaths, 2225 injuries, and more than 6.75 billion yuan in direct property
losses [1]. Such threats are severe in crowded places, such as business districts and resi-
dential communities, making it necessary to assess and control the fire risks and improve
urban fire safety.
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Nowadays, fire risk assessment studies in urban areas often focus on identifying key
factors and assessment models. The shortcomings of existing research are mainly reflected
in the levels of data collection, indicator selection, and model selection.

At the data level, the resolution of datasets has a major impact on the fire risk assess-
ment results. The minimum units of most urban fire studies are buildings [2–5], blocks [6,7],
and grids with dimensions of several kilometers [8,9]. The relationship between urban fire
dynamics and urban growth varied at different spatial scales as well as across space [10].
Different sizes of grids may have completely different solutions in spatial optimization
models [11]. A low-resolution dataset means a large grid size in the study area, which can
lower the accuracy of fire risk prediction and fail to represent the spatial heterogeneity of
fire risk distribution. For example, Jin et al. [12] divided San Francisco into 100 grids to
explore the spatiotemporal dynamics of fire situations. The low resolution of the grid leads
to imprecise assessment results that only reflect the fire situation at a macro level. On the
other hand, high-resolution data can help improve the accuracy of the model; however,
it often poses challenges to data collection. Therefore, many studies only focus on fire
accidents [13,14], instead of the primary driving factors of fire risks.

At the indicator level, the complexity of fire risks makes it difficult to build a risk
assessment index with strong theoretical support. Fire risks are not only affected by social,
economic, and demographic factors [15] they are also related to the ability of communities
and buildings to withstand fire incidents, residential characteristics, and human behav-
iors [16,17]. Prior studies explain the association between fire risks and their factors and
provide some insight into the analysis of uncertain events [18–21]. However, they tend to
ignore the relationship between the spatial distribution of fire risks and the high-resolution
spatial layout of urban areas [22]. The spatial distribution of fire risk in urban areas can
be explained by the characteristics of urban functional layout, including residential dis-
tricts, business districts, storage districts, road networks, petrol stations, and so on. These
characteristics can help predict human activities, and the areas where human activities
converge often have high rates of fires. For example, the number of fires in residential and
commercial districts is usually higher than that in storage areas or parks.

At the model level, aleatoric, epistemic, and operational uncertainties are the main
challenges for fire risk assessment and prediction. To address these uncertainties and
improve the accuracy of fire prediction, several studies [23–25] have attempted to use non-
parametric models represented by machine learning methods. In addition, McCarty et al.,
Kumar et al., and Chen et al. apply the spatial econometric models to explore the spatial
correlations between different data points and between the spatial distributions of fire
risks [16,26,27]. However, these studies suffer from problems as they analyze the entire fire
dataset and the values of related variables, which only allow for the evaluation of the impact
of factors on fire risk across the entire study area without detecting and characterizing the
spatial variations in the impact of factors on fire risk at the local level, leading to biased
assessment results.

With the increasing demand for objective and real-time risk assessments in the in-
dustrial sector, the use of machine learning algorithms in academia has also become a
trend [28]. Machine learning can automatically analyze data to extract patterns and utilize
these patterns for predicting unknown data. Neural networks, as a type of non-parametric
machine learning algorithm, can help avoid issues such as biases and oversimplification
that arise from inaccurate assumptions. As one of the most versatile and accurate models
among neural network methods, the backpropagation neural network (BPNN) has better
generalization performance and more robust model predictions [29]. Hence, it has become a
popular method in natural disaster assessment [30], security risk assessment [31], financial
risk assessment [32,33], and environmental management [34]. Despite the widespread
application of BPNN in assessing and predicting risks, this method is still absent in study-
ing the relationship between fire risks and urban fire-related factors at the grid level. The
non-parametric nature of BPNN, along with its ability to comprehend complex systems and
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their correlations, offers advantages in fitting fire risk models and contributes to providing
new ideas in fire risk modeling.

In terms of the spatial analysis of fire risks, the relationship between fire risk factors
varies with geographic locations. Therefore, we need to consider spatial non-stationarity,
which is the variability in the relationship or structure among variables due to changes in
geographic locations. Geographically Weighted Regression (GWR) can effectively capture
the effects of spatial heterogeneity and detect non-smooth spatial relationships and regional
variations as a supportive tool, along with other sets of information, such as the local
weights of independent variables [35]. The applications of neural network models to
studying local spatial heterogeneity remain an open research area. Accordingly, we attempt
to use GWR to overcome limitations such as spatial relation analysis of neural networks in
this aspect.

In recent years, geographic information systems (GIS) and spatial statistics have
become important tools in fire risk assessment and analysis. These tools enable the manip-
ulation of large volumes of data and promote the development of complex models and
statistical algorithms [36]. Particularly, territorial spatial planning provides a guide for the
development of urban space. The results of the grid-scale fire risk assessment can guide
urban fire planning by combining land use development and socioeconomic demographic
data from territorial spatial planning. The geographical characteristics of the territory
are fundamental to performing good urban safety management; in particular, land cover
maps are crucial to defining sustainable management and planning policies [37,38]. This
combination can further match fire infrastructure construction with urban development
and promote the future public safety development of the region.

In summary, it is important to utilize high-resolution data to identify the key fire risk
indicators related to urban characteristics. In this study, machine learning methods were
used to analyze the influence of urban functional layout on the spatial distribution of fire
risk, explore the spatial correlation of fire risk at a micro-scale, and examine the spatial
heterogeneity of indicators influencing fire risk. The suitability of BPNN and GWR models
for fire risk assessment in urban areas was compared. The research data were obtained
from urban land spatial planning data, and the assessment results of fire risk are closely
related to urban development. This research contributes to guiding urban regional fire
protection planning, further optimizing the overall layout of urban safety, ensuring that
regional public fire protection infrastructure construction matches urban development, and
ensuring that the distribution of fire rescue forces aligns with the regional development
level, thus ensuring the high-quality social and economic development of the urban region
in the future.

The following sections of this paper are constructed as follows: Section 2 presents the
materials and methods, including this study area, urban spatial distribution characteristics,
fire dataset, and methods. We then report the main results of the indicator selection
in Section 3.1, the indicator multicollinearity test in Section 3.2, the spatial patterns of
indicators and fire risks in Section 3.3, and the comparison between BPNN and GWR fire
risk assessment models in Section 3.4. Following them, Section 4 is the discussion of results
and relative studies. Conclusions and outlook are presented in Section 5.

2. Materials and Methods
2.1. Study Area

This study area is an administrative district named Longquanyi in the eastern part of
Chengdu City, Sichuan Province, as shown in Figure 1a. It is between 30◦27′52′′–30◦43′23′′

north latitude and 104◦08′19′′–104◦27′09′′ east longitude. The topography of the central city
is flat, except for a very few areas in the east, which are located in the shallow hills. The rest
of the area belongs to the flat dam area of the Chengdu Plain, with a slight natural slope, and
the pink area is the town development area, as shown in Figure 1b. The land survey data
provided by the Longquanyi District Bureau of Natural Resources and Planning includes
commercial and business facilities, administration and public services, specially designated
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streets and transportation, water and water conservancy facilities, land, cultivated land,
fields, wooded land, meadows, residential, industrial, and others with a 1 m resolution.
The central city of Longquanyi District has 168.71 km2, including 83.76 km2 of urban
construction land, 21.20 km2 of residential land, 8.25 km2 of land for public administration
and public services, 5.11 km2 of commercial services, 28.43 km2 of industrial land, 3.28 km2

of storage land, 11.58 km2 of transportation land, 0.79 km2 of land for public facilities, and
5.12 km2 of land for green space and open space, as shown in Figure 1c. To facilitate the
subsequent geometry calculation in the projection space, the China Geodetic Coordinate
System 2000 is used to determine the geographic coordinates of the fire data. Considering
the size of the Longquanyi District and the data set, this study area is transformed into a
grid space with a resolution of 250 m × 250 m. The processed dependent and independent
variable data are mapped to the corresponding grids in the subsequent study to build
models for indicator analysis and fire risk assessment. This study area after gridding is
shown in Figure 1d.
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2.2. Urban Spatial Distribution Characteristics

As a subordinate part of territorial spatial planning, fire safety planning needs to consider
the factors of regional spatial patterns, functional zoning, infrastructure, and land use layout.
Therefore, urban spatial distribution characteristics, including the above aspects, were used to
study fire risk in this study, with a total of 14 characteristics. These indicators were collected
through the comprehensive application of web crawling and multi-source data from many
departments. The details of each indicator, including name, data source, abbreviation, unit,
and value, were listed in Table 1. When analyzing the key influencing factors of fire risk, kernel
density processing is performed, and the optimal bandwidth is calculated by an adaptive
method. The data are displayed in ArcGIS software with graded symbolic color to show the
spatial distribution of each indicator, as shown in Figure 2.

Table 1. Fire risk indicators and data sources.

Indicator Data Sources Abbreviation Unit Value

Road https://www.openstreetmap.org/ (accessed on
14 July 2022) ROAD km/km2 Numerical

Gas pipeline Bureau of Economy and Information
Technology PIPE km/km2 Numerical

GDP Resource and Environment Science and Data
Center GDP 1/km2 Numerical

Population https://hub.worldpop.org/geodata/
summary?id=49730 (accessed on 14 July 2022) POPU 1/km2 Numerical

Hazardous chemical enterprises Fire and Rescue Administration HAZA 1/km2 Numerical
Petrol and charging stations Amap PETR 1/km2 Numerical
Cultural Heritage Protection

Unit Bureau of Culture, Sports and Tourism HERI 1/km2 Numerical

Assembly occupancies 1 Amap ASSE 1/km2 Numerical
High-rise building Fire and Rescue Administration HIGH 1/km2 Numerical

Commercial service zone Bureau of Natural Resources and Planning COMM — Binary
Industrial zone Bureau of Natural Resources and Planning INDU — Binary

Warehouse zone Bureau of Natural Resources and Planning WARE — Binary
Residential zone Bureau of Natural Resources and Planning RESI — Binary

Land development intensity Bureau of Natural Resources and Planning LAND — Binary
1 Assembly occupancies mainly mean business halls, malls, auditoriums, cinemas, theaters, and stadiums, etc.,
which are large and gather a large number of people simultaneously.
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development intensity.
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As shown in Table 1, numerical variables are represented by consecutive numbers,
while dummy variables are marked with “0” or “1”. Take the indicator “land” as an
example; the grid within the urban development boundary is characterized as value 1, and
the grid outside the urban development boundary is assigned value 0. Resampling was
performed when the resolution of the original data set was greater than 250 m × 250 m.

2.3. Fire Dataset

The historical fire data were collected in Longquanyi District from 2010 to 2021 and
provided by the Chengdu Longquanyi fire protection and rescue guards. The data contains
aspects of fire date, cause of fires, locations, direct property losses, and response times. The
fire data for this decade is 2096 fires, with a direct economic loss of 40,189,000 RMB.

Modeling fire risk in urban areas is theoretically complex. Many scholars have defined
and modeled fire risk from different perspectives [39]. Yoe [40] holds the view that risk
is a measure of the probability and consequence of uncertain future events; it has two
important components: an undesirable consequence and the probability it will occur. The
most common definition of fire risk takes into account both the probability of occurrence
and the consequences of an event [36,41]. In this paper, we adopted this definition of risk.
The fire risk is characterized as shown in Equation (1):

R = P·L (1)

where R means the fire risk; P is the fire occurrence probability, characterized as the
fire density of the grid; and L represents the undesirable consequence, characterized as the
direct economic loss from the fire of the grid.

To prevent uncertainties and errors in the fire record, kernel density analysis is applied
to process fire occurrence and fire loss. In the process of kernel density analysis, the size of
the bandwidth is mainly related to the analysis scale and geographic phenomena. A smaller
bandwidth can result in more high- or low-value areas in the density distribution, while a
larger bandwidth can make hotspots more prominent at the global scale. In addition, the
setting of bandwidth is also related to the dispersion of data points. Sparse data points are
suitable for using a larger bandwidth, while for dense data points, a smaller bandwidth
should be considered. In this study, the bandwidth is calculated by the “Silverman rule of
thumb”, a bandwidth estimation method based on empirical rules that was first proposed
in 1986 by Silverman [42]. and the relevant data are extracted into corresponding spatial
grids, as shown in Figure 3.
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2.4. Methods
2.4.1. Indicator Selection Models

Considering the characteristics of complex nonlinear relationships among fire risk
factors, we selected RF, GBDT, and XGBoost algorithms to investigate the relationship
between urban characteristics and fire risk distribution patterns. RF is a highly flexible
supervised machine learning algorithm based on the idea of Bagging, which introduces
random features based on Bagging to improve the independence between each base model
further. To reveal the nonparametric characteristics of complex systems and their corre-
lations, studies comparing RF with multiple regression models show that RF performs
better [43–45]. GBDT is a classical algorithm of Boosting, and the basic idea is to sum the
results of all weak classifiers to obtain the predicted value and residuals. Then, through
multiple iterations, the residuals generated by the training process are continuously re-
duced to classify or regress the data [46]. XGBoost is an improved algorithm for boosting
based on GBDT. Compared to GBDT, XGBoost adds a regular term to the objective function
for controlling the complexity of the model and adds a parameter to each subtree so that
the weight of each subtree is reduced to prevent overfitting.

2.4.2. Fire Risk Assessment Models

In this study, two types of models were selected to model fire risk: BPNN and GWR. A
typical BPNN structure consists of three layers, which are the input layer, hidden layer, and
output layer, as shown in Figure 4. The network connection weights are corrected based on
the error between the actual output and the expected output. Finally, the neural network
error is smaller than the target function to achieve the expected result. This study uses the
fire risk indicator as input and the fire risk as output.

The modified value ∆wji(n) of the synaptic weights is defined according to Equation (2):

∆wji(n) = η·δj(n)·xi(n) (2)

where: η is error backpropagation learning rate, δj(n) is local gradient, and xi(n) is input
signal of i neurons.

The δj(n) specifies the required change value in synaptic weights, and its mathematical
expression is as follows:

δj(n) = ej(n)· f ′(vj(n)) (3)
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the expression for ej(n) is shown in Equation (4):

ej(n) = dj(n)− yj(n) (4)
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dj(n) refers to the desired output. f (x) is an activation function. The widely used
activation functions include the threshold, segmentation, Sigmoid, and tanh functions.
Since the Sigmoid function allows for the modeling of non-linear relationships, this study
chose the Sigmoid function as the activation function vj(n) is the input of neuron j. Its
expression is Equation (5):

vj(n) =
m

∑
i=0

wji(n)·xi(n) (5)

wji(n) characterizes the weight of xi(n).
In neural networks, hidden layers are needed when the data are nonlinearly separated.

However, the data set collected in this study is small, and the fire risk features are not
complex. Therefore, one hidden layer is selected, and the network structure has three layers.
The range of neurons in the hidden layer and other optimal parameters of the network
model are determined by tuning hyperparameters, and the parameters are set as shown
in Table 2.

Table 2. BPNN parameter settings.

Parameter Parameter Tuning Optimal Setting

Activation functions Logsig, tansig, ReLU tansig
Transfer functions Logsig, tansig, purelin purelin

Number of neurons in hidden layer [4, 20] 19

Training functions Traingd, traingdm, traingda, traingdx, trainrp,
traincgb, trainscg, trainlm traincgb

Learning Rate 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 0.05
Momentum parameters 0.5, 0.6, 0.7, 0.8, 0.9 0.9

From the MSE and R, the optimal number of hidden layer neurons is 19, as shown
in Figure 5a. At this point, the model has the maximum R and the minimum MSE. After
inputting the optimal parameters in Table 2, the distribution of the error values of the
BPNN model is shown in Figure 5b. It can be seen that the errors of the BPNN model after
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tuning the parameters are minor and concentrated between [−0.01, 0.01]. The errors satisfy
the accuracy requirements of the model training.
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Spatial non-stationarity is commonly found in spatial data. To effectively reflect
the spatial non-stationarity of characteristics in regression relationships, spatial variable
parameter models are proposed, where the regression parameters of the model are functions
concerning geographic location [48]. The GWR model is proposed based on local regression
analysis and variable parameter studies [49]. The relationship between the dependent
variable and independent variables can be modeled locally for each location by GWR;
therefore, it can explain the variability of the effects of different fire risk indicators on fire
risk at different locations. Specifically, the GWR model can be interpreted as follows: in a
spatial region, a continuous decay function is calculated based on the spatial distance of the
element locations, and this decay function is brought in, and the weight of each element in
the local regression equation is calculated to obtain the weighted regression equation. The
model is defined in Equation (6):

Yi = β0(ui, vi) +
p

∑
j=1

β j(ui, vi)·Xij + εi i = 1, 2, . . . , n (6)

A given coordinate (ui, vi), β j(ui, vi) can be estimated using locally weighted least
squares, as in Equation (7):

min
n

∑
i=1

[
yi −

p

∑
j=1

β j(ui, vi)·xij

]2

·wj(ui, vi) (7)

where wj(ui, vi) is the spatial weight at a coordinate (ui, vi).

Let β(ui, vi) =
{

β0(ui, vi), β1(ui, vi), . . . , βp(ui, vi)
}T , then the decay function is shown

as Equation (8):

β̂(ui, vi) =
{

XTW(ui, vi)X
}−1
·XTW(ui, vi)Y (8)

where, X =


1 x11 . . . x1p
1 x21 . . . x2p

. . . . . . . . . . . .
1 xn1 . . . xnp

, Y =


y1
y2
. . .
yn

.
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The spatial weight matrix is W(ui, vi) =


wi1 0 . . . 0
0 wi2 . . . 0

. . . . . . . . . . . .
0 0 . . . win

.

The most widely used Gaussian kernel function is used in this study, and its form
is shown in Equation (9) [50]. The smaller dij, the greater the weight between the two
points. b is the bandwidth, which controls the rate at which the weights fall. The larger
the bandwidth, the slower the weights decay with increasing distance. The smaller the
bandwidth, the faster the weights decay with increasing distance.

wij = exp

{
−(

dij

b
)

2
}

(9)

As can be seen from the parameters of the spatial weight function, the choice of
bandwidth is a critical factor in constructing the spatial weight matrix. The commonly used
criteria for optimal bandwidth selection are the Cross-validation criterion, Generalized
cross-validation criterion, and Corrected Akaike information criterion (AIC). The AIC
criterion is modified based on the significant likelihood by considering the number of
independent parameters and improving the fit quality by increasing the free parameters,
thus avoiding over-fitting [51]. With this approach, a model can best explain the data but
contain a minimum number of free parameters. Since the AIC method considers model
complexity and accuracy, the bandwidth corresponding to the geographically weighted
regression weight function with the smallest AIC value is chosen for this study.

Before modeling spatial data, one should determine whether spatial correlation or het-
erogeneity exists in the data. If the effect of fire risk indicators on fire risk is consistent over
space, then a global regression model can be used. Global estimates can mask geographic
phenomena if there is a lack of consistency in the spatial impact of the indicators on fire
risk. Suppose the characteristics of the data need to be understood, and an inappropriate
model is used to analyze the problem. In that case, it may lead to a poor model fit and
failure to obtain realistic results. Generally speaking, Moran’s index is used to measure
spatial correlation. It is based on the principle that the product of attributes and spatial
relationships expresses spatial correlation. Moran’s index value represents the distribution
of an attribute value over the whole space, reflecting the spatial dependence of the observed
value over the whole spatial range. The formula for it is as follows [52,53]:

I =
n
S0

=

n
∑

i=1

n
∑

j=1
wij·zi·zj

n
∑

i=1
z2

i

(10)

where zi is the deviation of the attributes of the element i from the mean, denoted as
zi = (x−_

x ). S0 is the set of all spatial weights, denoted as Equation (11):

S0 =
n

∑
i=1

n

∑
j=1

wij (11)

From the calculation of Moran’s index, it is known that when the values of two
elements are greater than or less than the mean at the same time, the product of deviations
is positive, and 0 < I < 1 indicates aggregation. When the values of two elements differ in
size from the mean value, the product of deviations is negative, and −1 < I < 0 indicates
dispersion. When the positive and negative values of the deviation cancel each other out,
the I value is closer to 0, the closer the distribution is to random. The larger the deviation,
the larger the absolute value of the result obtained. It indicates a more significant spatial
aggregation or dispersion relationship.
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The calculation of the local Moran index is shown in Equation (12):

Ii =
yi − y

S2

n

∑
j 6=i

wij(yi − y) (12)

where Ii is the local Moran index of the ith grid, S2 is 1
n ∑ (yi − y)2, wij is the spatial weight,

and n is the number of all grids.

3. Results
3.1. Indicator Selection

Five-fold cross-validation with five repetitions is used to compare the average per-
formance of different models after training. In order to test which model has the best
performance, the MSE and the coefficient of determination R2 are used as criteria for vari-
able screening. The changes in the optimal subset of independent variables selected based
on the characteristic variables are shown in Figure 6. The blue line with the error bar means
the indicators’ coefficient of determination, R2. The black lines mean the MSE. The optimal
number of indicators obtained from each model simulation is marked with a red dot.
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One observation from Figure 6 is that RF exhibits the best performance, selecting eight
indicators with 0.9 R2 and 0.205 MSE. Then, followed the XGBoost method. It selects eleven
indicators with 0.868 R2 and 0.201 MSE. Finally, thirteen indicators were selected by the
GBDT method, with 0.859 R2 and 0.293 MSE.
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The importance of each indicator and the optimal feature variables selected based on
the feature variables are shown in Figure 7. To facilitate identification and analysis, all the
indicators were listed in ascending order of importance. Meanwhile, the selected indicator
is marked out with a red column; otherwise, it is marked out with a blue column.
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Noticeably, PIPE, HAZA, HIGH, ROAD, HERI, GDP, PETR, and ASSE were the
selected indicators by RF. In the following study, we will conduct a regression analysis
based on these eight indicators. Another observation from Figure 7 is that the common
indicators selected from the three models, including ASSE, PETR, GDP, HERI, ROAD,
HIGH, HAZA, and PIPE, are all numerical variables, which indicates that numerical
variables are more representative than dummy variables in estimating fire risk.

3.2. Indicators Multicollinearity Test

The problem of multicollinearity among explanatory variables can interfere with the
significance of the variables. Therefore, before conducting regression, it is necessary to
check the multicollinearity among the independent variables. In linear regression models,
the variance inflation factor (VIF) is commonly used as a measure of multicollinearity.
Generally speaking, when VIF < 10, there is no multicollinearity among the variables. A
VIF between 10 and 100 indicates strong multicollinearity among the variables. And there
is severe multicollinearity among the variables in the conditional VIF ≥ 100. The results of
VIF, which measures multicollinearity, are presented in Table 3. The value of VIF among
the selected variables is all less than 3, which indicates that there is no multicollinear-
ity among the selected independent variables and proves the indicators selected by RF
are reasonable.

Table 3. Results of multiple covariance test for fire risk indicators.

Indicator VIF Indicator VIF

ROAD 1.56 HIGH 1.9
PIPE 2.87 HERI 1.19
GDP 1.2 PETR 2.77
ASSE 2.61 HAZA 1.18
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3.3. Spatial Patterns of Indicators and Fire Risk

The spatial association between a variable and its geographical neighbors was mea-
sured by Moran’s index of spatial autocorrelation. In spatial correlation analysis, the p-value
represents the probability of a random process creating and generating the observed spatial
pattern. Z-value means the dispersion of the data set, which helps determine if a particular
location exhibits a significant spatial pattern. According to Moran’s I, a Z-score lower
than−1.65 means dispersed patterns, a higher than 1.65 means clustered patterns, and else
means random patterns, respectively [54,55]. The global Moran’s I of fire risk calculated
by using ArcGIS is 0.96, with a Z-value of 183.40 and a P-value of 0. The Moran’s I and
Z-value for each grid are extracted and visualized, as shown in Figure 8.
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Figure 8. The visualization of (a) local Moran’s I and (b) significance test results.

To test the local Moran’s index, the Z-score is utilized as the standard. Based on
the extracted data, one immediate observation is that the majority of sample points have
positive values for Moran’s I and Z-scores. This indicates that the spatial distribution of fire
risk exhibits a “high-high” clustering pattern. In other words, areas with high fire risk tend
to cluster together in space. Meanwhile, another observation from the results of the P-value
and Z-score indicates that the global Moran index is credible, and the fire risk shows a
clustered distribution in the global space.

Unlike the Ordinary Least Squares (OLS) regression model, GWR gives the coefficients
for each independent variable at each position. For a better understanding of the spatially
varying relationship between the independent variables (fire risk indicators) and dependent
variables (fire risk), we created coefficient raster surfaces for each explanatory variable.
These surfaces represent the spatial distribution of the coefficients for each independent
variable, that is, the strength of the indicators’ influence on the fire risk across different
regional locations. The maximum, minimum, and average weight coefficients of each
indicator in each grid were calculated based on the distance from the center of the grid
image element to all input elements in the neighborhood (bandwidth), as listed in Table 4.
The spatial visualization of the coefficients for the independent variables is presented
in Figure 9.
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Table 4. Statistical table of the spatial impact of independent variables.

Variable Minimum Maximum Average

ROAD −0.91597 6.035046 0.630819
GDP −0.00289 0.00005 −0.00038
PIPE −0.20668 7.034545 3.139437
ASSE −8.72046 141.7564 60.52752

HAZA −990.822 1065.363 −178.216
PETR −158.038 61.62599 −14.656
HIGH −5.08626 15.4803 3.095104
HERI −26.4821 1180.921 159.7819ISPRS Int. J. Geo-Inf. 2023, 12, x FOR PEER REVIEW 17 of 24 
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The data from Table 4 indicates that there are significant variations in the impacts
of different independent variables on fire risk at the urban spatial grid scale. Among all
indicators, the minimum and average weight coefficients of hazardous chemical enterprises
are the largest, and the maximum cultural relic protection unit weight coefficient is the
largest. Therefore, these two indicators have the greatest impact on the distribution of fire
risk among all indicators. Then, following that, variable assembly occupancies, petrol and
charging stations, gas pipelines, high-rise buildings, and roads have a relatively smaller
impact, while GDP has the smallest impact on the spatial distribution of fire risk. This is
different from the contribution ranking of the independent variables to fire risk obtained
by the RF model. The possible reason is that the RF model obtains the global coefficient
of the independent variable on fire risk, while the GWR model reflects the local change
of the independent variable coefficient. Furthermore, as seen in Figure 9, the blue and
red regions indicate that the independent variables have a greater impact on the fire risk,
while the yellow regions indicate that the independent variables have a smaller impact on
the fire risk. The impact of each indicator on fire risk is not uniform globally; however,
there are obvious local differences. Therefore, another feature observed is that the spatial
distribution of the impact of different independent variables on fire risk is not consistent.
In addition, the spatial distribution of the coefficient does not necessarily correspond with
the spatial distribution of the independent variable value.

3.4. Comparison of BPNN and GWR Fire Risk Assessment Model

The dataset of the BPNN model is divided into four parts. Three of them are used for
training, and the rest for prediction. To ensure the prediction set covers all the raw data, we
performed four combinations of tests in total and integrated the BPNN predicted results
together. The comparison between actual fire risk and predicted fire risk with the BPNN
and GWR models is presented in Figure 10, respectively.
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As shown in Figure 10, each scatter point corresponds to the fire risk value of a grid.
The x-axis of each scatter point is the actual fire risk value of the grid, and the y-axis is
the fire risk value predicted by the model. To facilitate comparison, we superimposed
the bisector y = x on the graph. The scattering of points around the bisector indicates the
difference between the actual and model-predicted values. In an ideal case, all the points
should be distributed along the bisector. Moreover, a linear function is fitted based on the
model’s predicted values, which are marked out with a red line. The root-mean-square
error (RMSE) is utilized to evaluate the performance of the model.
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One conclusion from Figure 10 is that the BPNN model’s performance in predicting
fire risk is better than that of the GWR model, which has a value of 0.97 R2 and a value of
8.28 RMSE.

To further analyze the reliability of the predicted results of the two models, we ex-
tracted and spatially visualized the grid values of the predicted and observed values from
BPNN and GWR, respectively. As shown in Figure 11, the left, middle, and right figures
show the observed fire risk values, fire risk values obtained from the BPNN predictions,
and fire risk values obtained from the GWR predictions. Compared to the GWR model,
BPNN provides fire risk assessment results that are more similar to the actual distribution
of fire risks.
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With these data, it is simply possible to obtain the spatial distribution of the predicted
residuals for BPNN and GWR, as presented in Figure 12. To quantify the difference in
predicted residuals between these two models, five parts with corresponding interval
values are obtained by means of the natural segment point method. The different values of
residuals are marked out with blue, light blue, yellow, orange, and red.
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With these visualization methods, one of the observations from Figure 12 is that the
residual distribution obtained by BPNN is obviously smaller than that obtained by GWR.
The grid with larger residual values in the GWR model exhibits spatial clustering, which
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is predominantly concentrated in areas with higher fire risk. This feature indicates that
the reliability and applicability of the GWR model in predicting high-fire-risk regions are
inferior to those of the BPNN model.

4. Discussion

This study aims to characterize the spatial distribution of urban fire risk based on
regional-scale high-resolution data, considering three factors: urban population, economy,
and functional space distribution. A list of key factors is identified through the fire risk
feature selection model, which is constructed based on the decision tree algorithm. The
spatial pattern variability of fire risk and its impact factors is studied, and the applicability
of spatial econometric models and machine learning models in high-resolution urban area
fire risk assessment is discussed by comparing GWR models with BPNN models.

One of the contributions is that numerical variables, including ASSE, PETR, GDP,
HERI, ROAD, HIGH, HAZA, and PIPE, are the key factors that influenced fire risk in the
RF model, with a value of 0.9 R2. And during the indicator selection process, it was found
that the dummy variables such as WARE, COMM, INDU, and RESI were not effective in
explaining fire risk. It may be attributed to the nature of the numerical variables and dummy
variables. When estimating micro-scale fire risk, numerical variables provide more precise
and detailed information compared to dummy variables. Numerical variables allow for a
continuous range of values, which can capture variations and gradients in fire risk more
effectively. Dummy variables, on the other hand, are categorical variables that represent
different categories or levels of a particular factor. While they are useful for capturing
qualitative differences or classifying data into distinct groups, they may not capture the
nuanced variations in fire risk that can be expressed by numerical variables. This is similar
to previous studies. For example, Song Chao et al. [9]. built a fire risk assessment model
with six numerical variables, including distance to fire stations, population, line density
of roads, kernel density of enterprise points, yearly average minimum temperature, and
elevation. Note that we do not consider influence factors such as elevation and temperature
since these indicators differ little at the micro-scale, while numerical variables such as
crowded places, GDP, road network density, and high-rise buildings indirectly reflect the
region’s population distribution.

The second contribution is that the distribution patterns of the variables and their
coefficients of fire risk, at global and local scales, are generally very different. Due to
the spatial correlation of data attributes, there are significant variations in the impact
of independent variables on fire risk at the grid scale. In general, previous research
represented the influence of variables on fire risk in their entire study areas using a unified
value [56,57]. However, this type of analysis does not allow detecting and characterizing
regional differences in variables’ influences on fire risk distribution; this and the usage
of findings have overlooked the importance of localized variations in the influence of
variables on fire risk [22]. For example, the distribution of hazardous chemical enterprises
and cultural relic protection units has significant variations in their impact on fire risk
at different grids, while GDP has the smallest variations on fire risk at different grids.
However, on a global scale, GDP shows a greater impact on fire risk based on analysis
results. The above analysis is helpful for government managers to determine urban fire risk
prevention and control strategies. The independent variable with a large global coefficient
but small local variation can be used to determine the fire control strategy of the whole
region, while the large global variable with strong local variation can be used to determine
the local fire control strategy of the city. For example, GDP is suitable for the fire safety
management of the entire region, while hazardous chemical enterprises and cultural relic
protection units are suitable for the local region.

The third contribution is that urban fire risk exhibits significant spatial clustering.
According to the analysis of the Moran index of fire risk, fire risk shows a “high-high”
aggregation phenomenon in most of the grids, i.e., the grids around the grids with high



ISPRS Int. J. Geo-Inf. 2023, 12, 404 19 of 22

fire risk also had high fire risk, and the GWR model is suitable for modeling and analyzing
fire risk.

The fourth contribution of this work reveals that BPNN is more suitable for predicting
the micro-scale fire risk distribution in urban areas than GWR. Due to the nonlinear
relationships among the various factors contributing to fire occurrences and the spatial
correlation in fire risk distribution, it is urgent to develop a fire risk assessment model
that can simultaneously capture the nonlinear features and spatial correlation associated
with fire risk. The fitting result of the GWR model for fire risk in urban areas is 0.862,
which is consistent with previous studies [9,58]. The fitting results of the BPNN model
(0.97) are better than GWR. A previous study verified that the performance of the neural
network model is better than the logistic regression model in fire risk assessment [59]. The
assessment performance of the model indicates that BPNN, as a machine learning model,
can not only effectively capture the nonlinearity of fire risks but is also capable of effectively
assessing the spatial distribution of fire risks. Therefore, concerning the exploration of the
relationship between fire risk and urban fire-related factors at the grid scale in urban areas,
although the BPNN model is not adept at extracting spatial relationships from attribute
data, its nonlinear entity fitting ability and feature extraction capabilities still exhibit better
fitting performance compared to the GWR model.

In summary, the most important finding of this study is the strong correlation between
the distribution of urban fire risk and the functional zones, as well as the spatial distribution
of critical facilities within a city. Generally speaking, most urban fires are man-made and
are affected by human behavior, human activities, and the urban environment. In the past
few decades, many researchers have devoted themselves to identifying the factors that
contribute to fire risk. However, it is still a challenge to find out all the related factors due to
the randomness and uncertainty of fire occurrences and the complexity of human behavior
and activities. In addition, sometimes fires occur as a result of the coupling effects of human
factors and environmental factors. For example, unsafe behaviors of individuals in an
insecure environment, such as smoking in bedrooms without fire alarms and automatic
sprinkler systems, can significantly increase the risk of fires. Unsafe behaviors of individuals
in a safe environment and safe behaviors of individuals in an unsafe environment may
result in relatively lower fire risks across the country. Therefore, it is a new approach that
studies fire risk distribution and regional variability through urban functional zoning and
feature distribution. With this approach, we do not directly consider the specific factors
that cause fires but study the fire risk’s spatial distribution and variability through data
related to urban planning. The advantages of this approach lie in two aspects. Firstly,
the data required for analysis, such as functional zones and the spatial distribution of
critical facilities, are relatively easier to collect. This allows governments to quickly obtain
the distribution of fire risk by analyzing such data. Secondly, urban planning is a long-
term process, and so is the availability of data. Once the relationship between urban
characteristics and the distribution of fire risk is understood, policymakers and decision-
makers can incorporate fire risk into urban planning accordingly.

5. Conclusions

The findings of this study contribute to a better understanding of the spatial distri-
bution of urban fire risk, especially the key factors that influence fire risk distribution
related to urban functional zoning and feature distribution based on indicator selection
and regression modeling methods. The results validated the significant differences in the
impact of indicators on the distribution of fire risk in different regions. Since the fire risk
indicators are derived from the territorial spatial planning data collected and managed
by the government departments, managers can better and more quickly understand the
changing trends in fire risk distribution and identify the high-risk areas through changes in
the fire risk indicators. Furthermore, territorial spatial planning guides the development of
urban space. The results of grid-scale fire risk assessment can be combined with socioeco-
nomic population data on land use development and territorial spatial planning to guide
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urban fire planning. This integration can further align the development of firefighting
infrastructure with urban development, improve the efficiency of urban fire management
activities, including prevention, preparedness, adaptation, firefighting, and mitigation of
fire consequences, and promote the future development of regional public safety.

Of course, this study also has some limitations. Firstly, the sample size is comparatively
small compared to the total number of regions in China; therefore, potential regional
differences should be considered. In the following study, we need to collect data from a
wider range of areas and explore a greater number of quantitative indicators to achieve more
robust results. Secondly, due to limitations in the data obtained, the variables we selected to
characterize urban functional layout and infrastructure construction are not comprehensive.
In the future, adequate data will allow us to model fire risk spatial distribution through
more factors related to urban development and human activity-intensive areas.
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