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Abstract: Urban spatial elements present agglomeration and dispersion geographic processes in
the urban development. Identifying the characteristics of their distribution changes and accurately
capturing the evolution of the urban spatial structure is of great significance to urban construction
and management. This study takes Wuhan as a case study and focuses on the spatial agglomeration
distribution of urban elements. Point of Interest (POI) data from 2017 to 2021 were collected, and the
Block2Vec model was employed to extract the comprehensive geographic information from various
elements within the traffic analysis zones (TAZs). Subsequently, identification and division were
carried out to access the level of urban spatial element agglomeration. Finally, the spatial–temporal
evolution characteristics of urban aggregated elements in the Wuhan metropolitan development
area over five years were compared and analyzed. The results indicate the following: (1) urban
elements present an obvious circle structure in their spatial agglomeration, with distinct differences
observed among different element types; (2) from 2017 to 2021, the Wuhan urban development
zone experienced obvious expansion in urban space; (3) increased agglomeration of spatial elements
mainly occurred in the surrounding areas of the city, while some areas in the city center displayed
weaker element agglomeration and a reduction in various service facilities. The results demonstrate
that the method used in this study could effectively identify the spatial agglomeration distribution of
urban elements, as well as accurately distinguishing regions with distinct development characteristics.
This approach could provide robust support for optimizing land use and urban spatial planning.

Keywords: Point of Interest; Block2Vec; urban elements; spatial structure; Wuhan city

1. Introduction

In recent decades, numerous countries globally have undergone a profound and
rapid process of urbanization. With socio-economic development and population growth,
urbanization directly promotes the aggregation of various urban elements. In 2022, China
reached a significant urbanization rate of 65.2%, which represents a notable increment of
24.1% compared to the level observed in 2012 [1]. In Africa, certain countries like South
Africa and Tunisia have reached urbanization rates surpassing 60%. This achievement has
greatly promoted local productivity development and economic innovation capacity [2].
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Element agglomeration refers to the geographic process wherein various elements are
centrally agglomerated under the influence of socio-economic costs, service groups, and
scale effects [3–6]. With the continuous agglomeration of urban elements and population,
scale effects gradually intensify, leading to a significant enhancement in the efficiency
of regional industrialization and urbanization [7–9]. However, the irrational spatial ag-
glomeration of urban spatial elements has also led to an imbalanced distribution of urban
spatial elements, exhibiting unreasonable concentration and dispersion across different
scales [10,11]. For example, the imbalance in facility allocation and job-housing has given
rise to numerous urban issues and compromised the quality of urbanization [12,13]. An-
alyzing the spatial agglomeration pattern and the evolutionary characteristics of urban
elements facilitates a rational understanding of development rules and trends, as well as the
recognition of urban development challenges, thus achieving the healthy and sustainable
development of cities.

Element agglomeration during urbanization has attracted considerable attention
among researchers, with a primary focus on the composition, spatial distribution, and
evolving features of these elements. Many studies have examined the spatial agglomeration
of urban elements, including land use, industrial elements, and public service elements.
Land use is usually used to reveal the process of urban expansion across different scales,
along with corresponding constraints, regulations [14,15], and models [16–19]. Among
these, land use density and intensity may serve as indicators of regional function agglomer-
ation. Manufacturing and productive services are the focus of industrial element research
and have been proved to have a positive effect on economic growth because of their capac-
ity to reduce production costs. However, they have negative effects on the surrounding
environment. The spatial agglomeration and inequity of various public service elements
is another crucial issue in urban studies, including ecosystem services provided by green
spaces [20,21], educational services offered by schools [22], healthcare services provided by
hospitals [23,24], and other services [25]. However, the majority of previous studies focused
on a singular aspect of various elements, potentially failing to explore the distinction and
convergence of comprehensive spatial patterns of urban elements across different regions.

The proliferation of big data, represented by Points of Interest (POIs), has provided an
opportunity for a more comprehensive understanding of the distribution patterns of various
urban elements and services [26–29]. For example, Jiao investigated the features of the
distribution pattern of urban spatial agglomeration elements, observing the distribution,
degree, and pattern of agglomeration [30]. Based on POI data, Hu used the method
of spatial point pattern analysis to characterize the territorial spatial agglomeration in
Ningbo, China [31]. Lu used the industry classification of POI data to analyze the spatial
cluster-discrete distribution of economic geographic elements in Lanzhou, China [32]. He
identified the polycentric spatial structure of urban agglomeration in the Pearl River Delta
based on the fusion of nighttime light data, POI data, and Tencent migration data [33].
Zeng investigated the spatial heterogeneity of producer service agglomeration and carbon
emissions based on POI data and remote sensing data from China’s Yangtze River Economic
Belt [34]. By extracting industry-related points of interest (POIs), Yu emphasized the spatial–
functional roles of regional agglomeration and their network behaviors in China’s Greater
Bay Area [35].

For the measurement of agglomeration, previous studies have primarily employed
spatial analysis approaches, including Kernel Density Estimation (KDE), Standard De-
viation Ellipse (SDE), the Getis-Ord Gi* statistic, and Moran’s I, which mainly focus on
the density attributes of spatial elements [36–40]. However, the importance of spatial
interaction between these elements may be overlooked, as it serves as a primary driving
force for urban element aggregation and urban expansion [28,29,41]. Various embedding
models, including word2Vec [42], place2Vec [43], and Block2Vec [44], have been proposed
to investigate the spatial interactions among different elements using natural language pro-
cessing (NLP) techniques. However, the link between them and the spatial agglomeration
of urban elements has not been thoroughly examined.
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To address the above problem, Wuhan, a rapidly developing megacity situated in the
center of China, was selected as a case study. Based on an embedding model that utilizes
NLP techniques, an assessment process framework of urban element agglomeration is
proposed that combines the volume of spatial elements and their spatial interaction. POI
data, the Block2Vec model, machine learning, and GIS spatial analysis were employed to
measure the spatial and temporal evolution of urban element agglomeration. The specific
objectives of the study were (1) to unify the quantities and spatial interactions of spatial
elements into a consistent assessment process and compare spatial agglomeration, and
(2) to investigate the temporal evolution of urban elements through the measurement of
element agglomeration over multiple years. Theoretically, the proposed framework could
emphasize the volumes and spatial interactions of urban elements, thereby enabling a more
comprehensive understanding of their agglomeration situation. This is crucial in accurately
capturing the spatial evolution of urban elements. The remaining research is organized as
follows: Section 2 details the study area and data sources; Section 3 introduces the research
methods; Section 4 presents the research results, followed by a discussion in Section 5; and
conclusions are presented in Section 6.

2. Study Area and Data Sources

The urban development area of Wuhan was used as the study area; it is the main
area for the concentration of urban spatial elements and spatial expansion [45]. By 2020,
Wuhan had a resident population of 11.12 million and an administrative area of 8569 km2,
of which the urban development area is 1045 km2. Based on the regional coordinated
development strategy of a rational division of labor and optimal development, the gov-
ernment proposed an effective strategy during the 14th Five-Year Plan period to promote
multi-centered, networked, and clustered development of the city with a view to building
a spatial development pattern of “one main city and four sub-cities” and integrated urban
and rural development [46].

In order to capture the spatial characteristics of element agglomeration at the micro-
scale and dynamically between years, the planned road network was used to delineate the
Traffic Analysis Zones (TAZs), which formed the minimum research unit in this study. The
planned road network data were acquired from the Wuhan Municipal Bureau of Natural
Resources and Planning.

The division of TAZs and the distribution of POI data in Wuhan are shown in Figure 1.
The Point of Interest (POI) data were collected through Amap Development Platform con-
tinuously from 2017 to 2021. Within the urban development area, an average of 537,511 POI
data were acquired over five years (as shown in Table 1). Each of these POI data contained
its type classification and geographic coordinate information. Meanwhile, according to
the three-level type division provided by Amap (https://lbs.amap.com/ (accessed on
28 April 2022), three hierarchical types were obtained for each POI datum. Among them,
the first-level classification includes 20 primary categories such as food service, shopping
service, living service, etc. (Table 2). In the second-level classification, the middle categories
mainly include 93 types such as Chinese restaurant, western restaurant, shopping mall, etc.
The third-level classification includes subdivision types such as hotpot restaurant, special
restaurant, etc., with 493 types in total.

In addition, 1-meter-resolution remote sensing images from different years were used
to compare the land cover across the years. Images for each year were taken from Google
Earth map data.

Table 1. POI data acquisition in Wuhan, 2017–2021.

Year 2017 2018 2019 2020 2021 Average

Number of data 563,187 594,276 502,579 535,490 492,021 537,511

https://lbs.amap.com/


ISPRS Int. J. Geo-Inf. 2023, 12, 448 4 of 19

Table 2. Classification types of level 1 POI data in Wuhan (2017).

POI Category Proportion POI Category Proportion

Automotive Services 1.51% Tourist Attraction 0.40%
Car Repair 0.17% Business Residential 3.29%
Car Sales 0.65% Government and Public Organizations 2.49%

Motorcycle Service 0.09% Science and Education Services 4.12%
Catering Services 13.50% Transportation Facilities 4.09%
Shopping Services 24.68% Financial Services 1.20%

Living Services 13.53% Company Enterprise 7.35%
Sports Facility 1.99% Road Appurtenances 0.02%

Medical Services 2.38% Place Names 15.64%
Accommodation Services 1.90% Public Facilities 0.96%

Total 100%
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3. Methodology

The aim of this study was to investigate the spatial agglomeration pattern of urban
elements during different time periods. The overall framework is shown in Figure 2. Firstly,
the Block2Vec model was employed for extracting spatial features from the POI data; this
model mainly considers the spatial features between each POI within a specific TAZ and
the spatial interaction features between TAZs. Second, TAZs with different agglomeration
features could be obtained by performing K-Means clustering analysis on the extracted
spatial features. Finally, a spatial–temporal comparison analysis of these categories across
different time periods was performed, and the changes in spatial distribution of various
agglomerative features were analyzed using spatial autocorrelation statistics.
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3.1. Spatial Feature Extraction Model

Different urban elements tend to cluster or be mutually exclusive in geographical
space, indicating the presence of spatial information between spatial elements that can
enhance the understanding of spatial interaction [28,41]. In this study, the Block2Vec
model was used to establish the spatial semantic sequences and the central-context block
spatial correspondence for all the TAZs. Taking the central TAZ depicted in Figure 3 as
an example, the POI sequence Si was constructed based on the distance from the POI
location to the center of this TAZ. The semantic sequence group

[
Si,

(
Si,c1 Si,c2 Si,c3 , Si,c4 )]

of this special TAZ was then constructed based on the spatial proximity between this TAZ
and the surrounding TAZs. Inspired by the skip-gram framework in natural language
processing [47], the Block2Vec model was constructed using an encoder and four decoders
based on a Long Short-Term Memory (LSTM) network. A detailed description of this model
can be found in previous studies [44].

The Block2Vec model was implemented using Python and related open-source ma-
chine learning modules, including Scikit-Learn, Pytorch, the Gensim module etc. In this
study, both the encoder and decoder LSTM network layers were set to 1, and the dimension
of latent semantic features was set to 200. Furthermore, the batch size for model training
was set to 64, and the number of iterations was set to 150.
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3.2. Feature Clustering Analysis

The K-Means method is an efficient unsupervised classification method and is widely
used in related research [42,48]. In this study, the POI semantic sequences of TAZs were
mapped onto a high-dimensional latent semantic feature vector space using the above
spatial feature extraction model. When two TAZs have similar spatial elements, such as
dense urban elements, their spatial features are expected to be close to each other in the
high-dimensional space. Regarding this, different spatial distance calculation methods
could be used to measure their spatial distance. Due to the high dimensionality of the
spatial features in this study, the cosine distance was utilized to measure the similarity
between different TAZs; this distance measure has been verified in related research [42,44].
Consequently, the K-Means method with cosine distance was used to aggregate these TAZs
with different spatial features.

3.3. Analysis of Spatial and Temporal Evolution

The POI sequences obtained from 2017 to 2021 were used to compare and analyze the
temporal evolution characteristics of each cluster over time. Firstly, the annual samples
of POI sequences were aggregated for clustering analysis as described above. Then, the
clustering results for each year were analyzed individually. For the temporal dimension,
the number of different classes of TAZs was calculated for all years, enabling a longitudinal
comparative analysis of the temporal evolution characteristics of these different classes
of TAZs. In terms of the spatial dimension, the agglomeration distribution characteristics
in 2017 and 2021 were compared at TAZ scale. The Moran’s I and Local Moran’s I were
employed to analyze the variation in their spatial distribution characteristics.

4. Results

Due to the presence of many undeveloped areas on the periphery of the city, there
are no POI data in the TAZ where they are located. Therefore, to ensure the reliability of
model training, the TAZs within the main urban area were used as training samples for the
Block2Vec model in this study. Then, the POI sequences within the urban development
area were extracted.
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4.1. POI Sequence Construction

POI data spanning five years were utilized to construct POI sequences based on the
three-level categories. A total of 29,254 sequences were obtained in the urban development
area, while 11,586 spatial groups corresponding to the main urban area were acquired.
Figure 4 illustrates a long-tailed distribution pattern with most POI sequence lengths
being relatively short. Excluding TAZs without available POIs, the range of TAZs’ POI
sequences varied from a minimum of 1 to a maximum of 3074, with an average length of
170. Furthermore, as 94.17% of all TAZs had sequence lengths of less than 500, a sequence
length of 500 was chosen for this study.
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4.2. Spatial Agglomeration Characteristics of Urban Elements

The K-Means algorithm was used to aggregate different TAZs into k-many categories.
Previous studies have shown that when the value of k is small, the clustering results better
reflect the overall aggregation differences within the region [44]. Therefore, the value of k
was set to three in this paper.

Figure 5 shows the spatial distribution of K-Means results for TAZs within the study
area from 2017 to 2021. These TAZs were aggregated into three classes—category I, category
II, and category III—and undefined classes with no available POI data. Figure 6 shows
the distribution of the percentage of POI primary-level classification types for different
clustering classes. The following descriptions define the results for the three classes:

Category I: High-concentration areas, which are primarily located in the city center
but exhibit clusters in surrounding areas as well. These areas are characterized by a high
proportion of entertainment elements, such as catering services, shopping services, and
living services. Business and residential elements, as well as scientific and educational
services, also contribute significantly to this category. This indicates a well-developed
service infrastructure and a high agglomeration of urban elements in these areas.

Category II: Medium-concentration areas, which are mainly distributed continuously
in the peri-urban areas. This category has a high proportion of POI types, with corporate
enterprise elements being the most common, followed by shopping services, catering
services, transportation facilities, and others. This indicates that these areas have relatively
better facilities for all types of services in the process of urban development.

Category III: Low-concentration areas, which are scattered in the peripheral areas of
the city. The POI categories with a high proportion of types include science and education
facilities, business and residential, and transportation facilities. This indicates that this
category is mainly focused on living and working purposes, with relatively incomplete
recreational facilities. This suggests that the degree of agglomeration of various urban
elements is relatively low in these areas.
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4.3. Analysis of the Time-Series Evolution of Urban Element Agglomeration

Figure 7 shows the change in the number in each class for the years 2017–2021, with
the “other” class representing TAZs for which POI data are unavailable. A significant
difference can be clearly observed in the trends of change among the various classes.
Over time, the number of TAZs without POI data gradually decreased. At the same
time, the number of TAZs with both high and medium agglomeration (category I and
category II in Figure 7) increased to varying degrees, whereas the number of TAZs with
low agglomeration (category III) experienced a slight increase. By combining the spatial
distribution characteristics in Figure 5, it was found that during the urban development and
expansion, areas with a low agglomeration of elements surrounding the city underwent
significant development. The overall service integrity gradually improved, resulting in a
transformation into medium or high agglomeration. Meanwhile, previously undeveloped
areas gradually developed, ultimately evolving into areas with low agglomeration.
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4.4. Analysis of Spatial Changes in Urban Element Agglomeration

The preceding analysis revealed that the three categories of clustering findings may
embody distinct attributes of element agglomeration within urban space, representing
varying phases of urban advancement. Thus, if a TAZ progressed from low agglomeration
(category III) to either high (category I) or medium (category II) agglomeration over an
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interval, it could be perceived as a substantial escalation in urban elements. If a TAZ moves
from a high-concentration area (category I) to a low-concentration area (category III), it
suggests a substantial decrease in urban elements within the TAZ.

To quantify the change in urban development, values of three, two, and one were
assigned to categories I, II, and III, respectively, representing the degree of urban element
agglomeration in each TAZ. Furthermore, the undefined areas were assigned a value of
zero. Higher values indicate a greater degree of regional development. These values
were utilized to determine the change in urban element agglomeration over the five-year
period by subtracting the values in 2017 from those in 2021. Figure 8 displays the results,
which reveal that areas of positive change (indicated by red to orange color) are mainly
concentrated around the city. Negative change areas (indicated by blue to green color)
are more widely distributed. The spatial distribution’s Global Moran’s I was 0.081, with a
z-score of 45.911 and a p-value of 0.000, indicating significant spatial autocorrelation in the
change in urban element agglomeration.
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To further examine the urban development characteristics, the Local Moran’s I was
calculated to evaluate changes in the degree of agglomeration. According to Figure 9a,
areas with positive values (high–high clustering) are primarily located in the peripheral
regions. These areas align with, or are adjacent to, major functional groups outlined in
government planning, such as Changjiang New Area (north area) and Sixin Area. This
observation suggests that these regions have undergone more apparent changes in the
agglomeration of urban elements due to urban planning directives. Consequently, several
services and facilities in these regions have gradually improved. Conversely, negative
changes have been identified in certain areas (low–low clustering) within the main urban
area (Figure 9b). These areas include Changjiang New Area (south area), Erqi Riverside
District, Wuchang Riverside Business District, Hanzheng Street, and Gutian Area, among
others. Most of these regions are currently undergoing urban regeneration, which includes
a considerable amount of demolition and redevelopment projects. For instance, both the
Erqi Riverside District and the Wuchang Riverside Business District are designated as
significant planned core areas with a substantial quantity of urban renewal projects in
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progress. Hence, these regions show a decrease in the agglomeration of urban elements
and a reduction in multiple services and facilities.
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4.5. Validation of Typical Areas

To verify the validity of the previously identified degree of urban element agglom-
eration, an analysis of typical areas was carried out by integrating the regional remote
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sensing images with various types of POI ratios. Six regions, as illustrated in Figure 9,
were randomly chosen as typical samples for validation. Table 3 displays the six selected
regional samples, featuring three regions with increasing agglomeration (Changjiang New
Area, Sixin District, and Guanggu East) and three with decreasing agglomeration (Erqi
Riverside District, Hanzheng Street, and Gutian Area).

Table 3. Results of the identification of the corresponding planning and concentration changes within
the regional sample.

Area Planning Levels Concentration Change
(Up ↑, Down ↓)

Changjiang New Area Secondary Urban, Center ↑
Sixin District Main Urban, Sub-center ↑

Guanggu East Secondary Urban, Center ↑
Erqi Riverside District Main Urban, Center ↓

Hanzheng Street Main Urban, Center ↓
Gutian Area Main Urban, Sub-center ↓

The spatial distribution of the agglomeration degree of urban elements and the remote
sensing images for the six selected regions are shown in Figures 10 and 11, respectively.
Overall, the trend of the identification results is well in line with the observed changes in
the built area as depicted in the remote sensing images. For example, Figure 10c shows a
significant increase in element agglomeration in Guanggu East during the study period.
Newly constructed buildings, roads, etc., in the corresponding area can be observed in
the remote sensing images in Figure 11c. It is important to note, however, that while the
remote sensing image can only capture the change in built land cover within a region, the
identification process utilizing POI data not only makes it possible to interpret the varying
degree of spatial element agglomeration, but also allows for a detailed analysis of specific
changes in different types of facilities.

Figure 12 illustrates the alteration in the quantity of various POIs in the six selected
regional samples during a span of five years. Changjiang New Area, Sixin Area, and
Guanggu East, which form the primary regions of urban expansion, evince a definitive
growth in the agglomeration of spatial elements. However, up until 2021, a significant
number of TAZs in these three regions had no available data for POIs. Guanggu East stands
out with the highest count of TAZs that lack POI data. This indicates that there is ample
scope for urban element concentration increase and the expansion of construction land
in the future. Changjiang New Area and Sixin District exhibit comparable trends in the
proportion of various POI types. Specifically, the pace of growth was greater from 2017 to
2018, before slowing down from 2018 to 2021. Guanggu East exhibits a greater proportion
of POIs in the categories of transportation facilities and company enterprise, in comparison
to Changjiang New Area and Sixin Area. The growth of POIs in these categories displayed
a slower rate from 2017 to 2018; however, the growth accelerated from 2018 to 2021.

In contrast, Erqi Riverside District, Hanzheng Street, and Gutian Area, located in the
primary urban area, have a medium to high agglomeration of spatial elements. Moreover,
these areas are presently enduring urban reconstruction on the available construction
land, with a resultant drop in the agglomeration of spatial elements aspects from 2017
to 2021. During this period, catering services, shopping services, sports services, and
financial services showed a decrease followed by an increase, while the number of all other
categories of POIs gradually decreased in Erqi Riverside Area. In the Hanzheng Street
area, shopping services, living services, and companies dominated, with shopping services
displaying a gradual decrease and living services and companies exhibiting a slow increase.
Conversely, the number of government agencies, scientific and educational institutions,
and transportation facilities in Gutian Area remained stable, with all other types of POIs
exhibiting a gradual decline.
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5. Discussion

In this paper, POI data were taken as the urban elements, and the Block2vec model was
employed to extract the spatial characteristics of POI data within TAZs. K-Means clustering
was then applied to classify different levels of spatial agglomeration types. Finally, the
temporal–spatial evolution of TAZs classified under different agglomeration types was
analyzed.
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5.1. Spatial Agglomeration Identification Based on the Block2vec Model

The location of urban elements is a result of bottom-up location choices and top-down
city-level influences for each place [49]. Spatial interaction between these different elements
plays a crucial role in facilitating agglomeration and dispersion. Previous studies mainly
used POI data and density-based methods, such as SDE, Ripley’s K, and KDE, to explore
the characteristics of spatial distribution and the degree of urban element agglomeration,
paying more attention to the volume of elements but neglecting their spatial interaction. In
this study, an NLP-based model, called the Block2Vec model, was adopted to examine the
agglomeration characteristics of urban elements. Compared to traditional density-based
methods, the proposed method could capture more comprehensive geographic information
as it incorporates both the density and the spatial interaction between urban elements. The
research results show that the Block2Vec model could objectively and comprehensively
describe the agglomeration characteristics of urban elements in Wuhan city, which allows
us to understand the urban development process.

5.2. The Comparison of Element Spatial Agglomeration and Urban Planning

The spatial agglomeration of urban elements is a significant aspect of the urbanization
process, and effective urban planning is essential in local urban development as a guidance
tool. Identifying the spatial agglomeration of urban elements enables us to analyze the
various element agglomeration situations within the urbanization process and determine
whether local planning decisions have played an appropriate guiding role. This study
revealed that the spatial agglomeration of urban elements in Wuhan is not a straightforward
circular structure but instead tends towards a decentralized distribution pattern of spatial
agglomeration, spreading out on a large scale across the city as a whole and regrouping at
specific nodes. The general distribution identified aligns with the 14th Five-Year Plan, which
aimed to promote Wuhan’s multi-centered, networked, and clustered development [46].
This implies that the urban planning decisions made in Wuhan have been an important
external impetus driving the urbanization process. Such external drivers have also been
identified in other urban development processes [50]. Additionally, the decentralized
distribution pattern’s outcomes could assist the government in comprehending the city’s
intricate spatial structure, enabling more robust decisions to be made for areas with different
agglomerations of urban elements.

5.3. Policy Implications

The spatial agglomeration of urban elements in Wuhan has formed a distribution
pattern of “multi-centered, networked and clustered development”. Based on the changing
trends of spatial agglomeration identified in this study, it is particularly important to
optimize urban development strategies to further improve the high-quality and sustainable
development of cities.

(1) Following the principle of coordinated regional development, the organic inte-
gration and development of new and old urban areas should be promoted from the top
level of planning. The coordination of functions between different areas at the urban scale
should be fully considered, and a shift in developmental thinking should be accelerated
to formulate a polycentric development strategy that is more adaptable to decentralized
development, rather than simply considering peripheral areas as functional complements
to the inner core areas.

(2) The appropriate strategy should be chosen to address the gaps according to the
levels of development of the different expanding urban areas. For mature areas with
peripheral expansion, targeted complements should be made to the elements that are more
lacking in them, in order to increase the level of diversified agglomeration in peripheral
areas, thus reducing the negative effects caused by the singularity of the elements’ functions.

(3) The renewal of the old urban area takes into account the distribution of facilities in
the neighborhood in order to improve the functions of the old urban area. While promoting
urban renewal, due consideration should be given to the impact of urban renewal projects
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on the agglomeration of different types of elements in the neighboring areas, so as to
promote the organic renewal of old urban areas.

5.4. Limitations and Future Work

Geospatial big data offer a reliable and accessible resource for empirical research on
urban element agglomeration and urban structure. This leads to the provision of more
informative suggestions for urban policymaking and management through high precision
and full coverage. The framework presented in this study can also be applied to other
cities with different levels of development in order to examine their agglomeration of
urban elements or their evolutionary characteristics. Meanwhile, some limitations should
also be noted. The analysis was based on POI data from 2017 to 2021, which covers a
relatively short time period, while urban expansion and renewal have undergone more
significant changes over a longer time horizon. Therefore, further studies may assess the
long-term and comprehensive changes in urban expansion by acquiring data over a larger
span. Further information from additional data sources, including remote sensing and
street view imagery, would improve our ability to achieve greater precision on this matter.

6. Conclusions

In this study, an assessment process framework of urban element agglomeration was
proposed by incorporating the volume of spatial elements and their spatial interaction.
Moreover, the changing trends in spatial agglomeration were explored by using a five-year
period of POI data.

Overall, the amount of spatial element agglomeration showed a clear upward trend
between 2017 and 2021, with a significant increase in the number of high agglomerations
and a slight increase in the number of medium and low agglomerations. Among them,
the areas where element agglomeration increased significantly are mainly located in the
periphery of the city, and there was a phenomenon of decreasing element agglomeration
in some areas within the city. In the future, different strategies should be considered for
regions with diverse levels of urban element agglomeration to improve urban development
sustainability.
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