
Citation: Zhang, X.; Sun, Y.; Li, Q.; Li,

X.; Shi, X. Crowd Density Estimation

and Mapping Method Based on

Surveillance Video and GIS. ISPRS

Int. J. Geo-Inf. 2023, 12, 56.

https://doi.org/10.3390/

ijgi12020056

Academic Editors: Wolfgang Kainz

and Maria Antonia Brovelli

Received: 2 December 2022

Revised: 30 January 2023

Accepted: 6 February 2023

Published: 8 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Crowd Density Estimation and Mapping Method Based on
Surveillance Video and GIS
Xingguo Zhang *, Yinping Sun, Qize Li, Xiaodi Li and Xinyu Shi

School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China
* Correspondence: zhangxingguo@xynu.edu.cn

Abstract: Aiming at the problem that the existing crowd counting methods cannot achieve accurate
crowd counting and map visualization in a large scene, a crowd density estimation and mapping
method based on surveillance video and GIS (CDEM-M) is proposed. Firstly, a crowd semantic
segmentation model (CSSM) and a crowd denoising model (CDM) suitable for high-altitude scenarios
are constructed by transfer learning. Then, based on the homography matrix between the video
and remote sensing image, the crowd areas in the video are projected to the map space. Finally,
according to the distance from the crowd target to the camera, the camera inclination, and the area of
the crowd polygon in the geographic space, a BP neural network for the crowd density estimation is
constructed. The results show the following: (1) The test accuracy of the CSSM was 96.70%, and the
classification accuracy of the CDM was 86.29%, which can achieve a high-precision crowd extraction
in large scenes. (2) The BP neural network for the crowd density estimation was constructed, with an
average error of 1.2 and a mean square error of 4.5. Compared to the density map method, the MAE
and RMSE of the CDEM-M are reduced by 89.9 and 85.1, respectively, which is more suitable for a
high-altitude camera. (3) The crowd polygons were filled with the corresponding number of points,
and the symbol was a human icon. The crowd mapping and visual expression were realized. The
CDEM-M can be used for crowd supervision in stations, shopping malls, and sports venues.

Keywords: VideoGIS; geographic video; crowd density; geographic mapping; deep learning

1. Introduction

With the acceleration of urbanization, fights and stampedes caused by crowd gathering
have occurred from time to time in large shopping malls, stations, entertainment places, etc.,
which bring great difficulties to urban security and management. At present, intelligent
video surveillance technology is one of the most commonly used technical means in crowd
supervision [1,2]. Surveillance video can record real-time and long-term active images
of targets in the scene. Based on artificial intelligence technology, it can automatically
obtain object behavior characteristics, such as the object type and trajectory [3], crowd
flow [4], and vehicle category [5], which greatly reduces security costs and improves
security efficiency [6].

Research on crowd counting and density estimation mainly includes three categories:
frame difference regression [7,8], texture regression [9–12], and deep learning [13,14].
Among them, the crowd density estimation method based on deep learning is the current
main trend. These related methods have the strong feature extraction ability, which avoids
the shortage of artificially designed features in traditional machine learning, and its ac-
curacy has been greatly improved [15,16]. However, among the current crowd density
estimation methods, the head label is mainly used, which emphasizes the features of the
human head in the crowd and weakens other features of the crowd. In a high-altitude
scene, people who are far away from the camera have fewer head features, or even cannot
see their head information at all, which makes the model unable to count accurately. At the
same time, in the observation mode of the existing pane view, each camera is independent
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and difficult to cooperate. It is difficult to obtain the position, moving the direction and
distribution mode of the crowd in the geographical space, which leads security personnel
to spend a lot of time on a comprehensive analysis [17].

Under this background, this paper proposes the CDEM-M based on deep learning
and GIS technology. Compared with the pane view in video surveillance, GIS provides a
unified map visualization interface, and all objects can be managed in one view, namely
the map view. In terms of crowd feature extraction, the CDEM-M can extract accurate
crowd areas through semantic segmentation. Compared with the deep learning method
that only marks the head, it makes full use of the overall features of the crowd and is
very suitable for monitoring scenes with fuzzy head features. The CDEM-M includes four
aspects, namely crowd information extraction, geographic mapping, number estimation,
and map visualization.

The structure of this paper is as follows: Section 2 provides an overview of the
literature. Section 3 describes the processing flow and related technical details of the
CDEM-M. In Section 4, the crowd density estimation method and map visualization effect
are discussed and analyzed according to the experimental results. Section 5 summarizes
the main conclusions and discusses the planned future work.

2. Related Work

The security work of crowds in complex scenes has always been of concern. Aiming at
the low precision of crowd counting in dense scenes and the difficulty of map visualization,
this paper combines a video surveillance system with a geographic information system
and proposes a new method, namely the CDEM-M. In this section, we introduce the
related works from three aspects: crowd density estimation, semantic segmentation, and
the integration of video and GIS.

2.1. Crowd Density Estimation

The mainstream method of crowd counting is to use the knowledge of computer vision
to count the crowd number in each frame. On the whole, the crowd counting methods
based on computer vision are divided into two categories: the traditional methods and
the deep learning methods. The traditional methods mainly include the crowd counting
method based on detection, regression, and a density map. The detection methods mainly
use sliding windows to segment an image and then use specific detectors to extract features
to achieve crowd counting [18–20]. The regression methods mainly extract multiple features
of the foreground area from the image, then select an appropriate regression model for
training, and finally predict the overall crowd number in the test dataset [21,22]. The
density map method is to first generate the crowd density map and then count the pixel
values [23,24]. The traditional methods for feature design and extraction mostly depend
on manual work and are only applicable to simple scenes. The counting effect is not ideal
in partial occlusion, foreground perspective multi-scale scenes. In recent years, due to
the strong advantages of a CNN and an FCN in extracting and learning image features,
some methods based on deep learning have achieved good results. For example, the
spatial fully convolutional network (SFCN+) takes ResNet101 as the backbone, adding a
spatial encoder and a regression layer, which can encode the global context information
and directly regression the density map [25]. According to different network structures,
the crowd counting model based on deep learning can be divided into a multi-column
network and a single-column network [26]. A multi-column network refers to multi-scale
information with different columns corresponding to different receptive fields. Common
models are CrowdNet [27], MCNN [28], and CP-CNN [29]. Although the research of the
multi-column network has made great progress, its large number of parameters and the
overfitting of training often lead to poor real-time counting. To this end, researchers have
proposed the single-column network. Common models include SANet [30], CSRNet [31],
and SaCNN [32]. Compared with the multi-column network, the single-column network
does not pay attention to more details, and it is easy to ignore the influence of background



ISPRS Int. J. Geo-Inf. 2023, 12, 56 3 of 17

noise. In the case of a dense crowd, the counting effect of this method is still not ideal.
The existing crowd density estimation methods are severely restricted by the perspective,
background, and other factors. Especially in high-density scenes, the head features of
people at a distance are weak, which makes it difficult to identify people with a density
estimation method based on the head label. Therefore, in order to improve the accuracy
of crowd detection, we choose to label the overall information of the crowd in the image.
According to the perspective characteristics of “near large and far small”, the position and
orientation between the crowd and camera are obtained, which can improve the crowd
counting accuracy and generalization performance.

2.2. Semantic Segmentation

As a typical computer vision problem, semantic segmentation takes an image as
the input data and assigns a category label to each pixel [33,34]. Traditional semantic
segmentation methods mainly interpret the target category information through the texture,
edge, spectrum, and geometry [35]. Since the FCN [36] for image semantic segmentation
was proposed, semantic segmentation technology based on deep learning has gradually
emerged. In recent years, a series of semantic segmentation models evolved from the FCN,
such as U-Net [37], PSPNet [38], SegNet [39], and DeepLab series networks, and have
achieved good classification results. The DeepLab series network can effectively solve the
problem of spatial resolution decreasing about downsampling and are commonly used
pixel-by-pixel classification models. At present, the DeepLab series network includes four
models: DeepLabv1 [40], DeepLabv2 [41], DeepLabv3 [42], and DeepLabv3+ [43]. Among
them, the DeepLabv3+ model uses the improved version of the Xception model as the basic
network. It takes the DeepLabv3 model as the encoder and then introduces the Decoder
module. Through the cascade processing of the output features, more position information
in the low-level features is finally obtained, which has the advantages of high segmentation
precision, a fast running speed, etc. Therefore, based on the DeepLabv3+ model, this
paper constructs a crowd semantic segmentation model suitable for high-altitude and
high-density scenes.

2.3. Integration of Video and GIS

In the video surveillance network, cameras are scattered, independent, and difficult
to cooperate. It is unable to provide the distribution, orientation, and size information
of crowd targets from a unified view, which makes the spatio-temporal analysis of emer-
gencies more difficult [44–46]. GIS has a clear spatial reference, which mainly presents
spatio-temporal information in the form of two-dimensional or three-dimensional maps,
and can achieve the unified positioning, view, and comprehensive analysis of the objects.
The integration of video and GIS, namely VideoGIS, can enhance and expand the original
semantic information of video data. It will contribute to the real-time supervision, compre-
hensive research, and judgment of a crowd in large scenes and improve the efficiency of
security work [47]. At present, VideoGIS mainly involves two fields: computer vision (CV)
and GIS. In the field of CV, artificial intelligence technology represented by deep learning
has developed rapidly. The accuracy of algorithms, such as object detection [48,49], object
tracking [50,51], and semantic segmentation [52,53], has been greatly improved, and some
achievements have been applied in security. In the field of GIS, a lot of research focuses
on the mutual mapping between video and 2D/3D maps [54], the retrieval and playback
of video through maps [55], the ReID of the objects in overlapping areas under the maps
view [56], the video visualization enhancement [57], and the integration model of GIS and
moving objects [58]. VideoGIS has great potential in navigation systems, public security,
and other fields [59–62]. The crowd analysis and prediction based on VideoGIS can obtain
the position and direction information from the map view, which cannot only reduce the
influence of perspective imaging on crowd counting but also realize the map visualization.
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3. Methodology

Based on real-time video frames and high-definition remote sensing image, this paper
discusses the crowd counting and mapping methods from the view of GIS. The CDEM-M
is mainly aimed at large crowd scene monitored by fixed cameras, including four major
aspects of crowd information extraction, geographic mapping, number estimation, and
map visualization, as shown in Figure 1. Crowd information extraction is based on the
constructed crowd semantic segmentation model to extract the correct crowd semantic
information from camera video. Crowd geographic mapping is the process of mapping
the crowd semantic information in video frames to geographic space. Crowd number
estimation first trains the crowd number prediction model according to the distance from
the crowd target to the camera (distance), the camera inclination (inclination), and the area
of crowd polygon after space mapping (area), and then estimates the crowd number in each
frame. Crowd map visualization is to evenly fill the crowd polygon with the corresponding
number of points. The symbol can be human icon.

Figure 1. Flowchart of the CDEM-M.

3.1. Crowd Information Extraction

Crowd information extraction can achieve high-precision extraction of crowd semantic
information and mainly includes two parts: semantic segmentation and noise removal.

3.1.1. Semantic Segmentation

Deeplabv3+ model has the advantages of high segmentation accuracy and fast running
speed, which can achieve end-to-end segmentation [63]. Based on Deeplabv3+ network
model, this paper constructs a crowd semantic segmentation model suitable for large scenes.
The specific process is as follows: Firstly, the crowd video frames are collected to make
the semantic segmentation dataset; then, according to the semantic information of video
frames, the object categories are determined, and the image semantic information is labeled;
finally, both the original image and the annotated image are simultaneously input to the
computer for image features, learning to construct a crowd semantic segmentation model
(CSSM).

3.1.2. Noise Removal

The misclassification of semantic segmentation categories is a matter of great interest
to scholars today, which often leads to low precision of object counting. In addition, it is
not conducive to the analysis of target motion state and abnormal behavior in the scene.
Therefore, in order to obtain more accurate crowd semantic information, this paper adopts
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image classification to remove the wrong polygon information in semantic segmentation
image.

Image classification is to assign a category label to an image from a given classification
set [64]. Based on convolution neural network, this paper constructs a crowd denois-
ing model (CDM) suitable for large scenes through twice convolution, activation, and
pooling operations. The CDM can remove the boundary information of misclassification
in the process of semantic segmentation and achieve high-precision extraction of crowd
information.

3.2. Crowd Geographic Mapping

Crowd geographic mapping mainly includes two aspects: homography matrix calcu-
lation and geographic video mapping.

3.2.1. Homography Matrix Calculation

The mutual conversion between video image space and geographic space can be
achieved through homography matrix [65]. This method requires that the area in the image
and the corresponding area in the map or remote sensing image are flat, which is suitable
for the mutual mapping between fixed cameras and 2D geospatial data, and can meet
the requirements of the mutual mapping between video and geospatial data in a large
range [66]. Therefore, the homography method is adopted in this paper. Four or more
corresponding points between the video and corresponding remote sensing image or map
are selected, respectively, and then the homography matrix of the camera is calculated. If the
pixel coordinate of the video frame is set as Pn(Xn, Yn), whose corresponding geographic
coordinate is P′n(X′n, Y′n), the solution of homography matrix is shown in Equation (1).X′n

Y′n
1

 =

H11 H12 H13
H21 H22 H23
H31 H32 H33

 Xn
Yn
1

 (1)

where Hij is a 3 × 3 matrix. By using Hij, the pixel coordinate can be converted into the
corresponding geographic coordinate, and the opposite coordinate transformation can be
realized through H−1

ij (Hij inverse matrix). If multiple cameras are deployed in a large scene,
the corresponding homography matrix of each camera needs to be calculated separately.

3.2.2. Geographic Video Mapping

When the video sensor is imaging, the imaging accuracy of near and far objects is
different, and the size of the object displayed in the video shows the rule of “near large,
far small”. At the same time, the mutual occlusion between crowds in the video will also
lead to low crowd counting accuracy. Therefore, in order to solve the above problems, this
paper maps the geographic space of the crowd to obtain the polygon semantic information
of each crowd.

Crowd space mapping refers to mapping the semantic information of crowd polygons
in video image space to geographic space. Firstly, the real-time video frames of the crowd
scene are extracted; then, the video frames are semantically segmented to extract the correct
crowd semantic information, and the polygon pixel coordinates of each crowd in the video
frames are obtained at the same time; according to the coordinates of surveillance videos
and high-definition remote sensing image, the homography matrix of each camera is solved;
finally, the pixel coordinates of video frames are converted into corresponding geographic
coordinates and displayed in the GIS polygon layer based on the solved homography
matrix. This method can realize the geographic space mapping of crowds in video. Figure 2
shows the technological process of crowd space mapping.
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Figure 2. Flowchart of crowd geographic mapping.

3.3. Crowd Number Estimation

Crowd number estimation mainly includes crowd number prediction model, model
factor calculation and prediction.

3.3.1. Crowd Number Prediction Model

This paper constructs a crowd number prediction model (CNPM) suitable for large
scenes. The specific steps are as follows: (1) Dataset collection. The dataset is mainly
composed of four types of data, which are the distance from the crowd target to the camera
(distance), the camera inclination (inclination), the area of crowd polygon after geographic
mapping (area), and real number of people (PN). (2) Training the CNPM. Based on the
above four parameters, this paper constructs a back propagation (BP) neural network for
crowd density estimation. BP neural network is an error back propagation neural network,
which includes input layer, hidden layer, and output layer. Each layer consists of a certain
number of neurons, which has excellent nonlinear fitting ability. However, BP neural
network converges slowly. It is easy to fall into the local minimum and the prediction
results are extremely unstable [67]. Genetic algorithm (GA) has a strong global optimization
capability. It is very important to optimize the weights and thresholds of BP neural network
by using GA [68]. Therefore, this paper takes the distance, the inclination, and the area as
the input layer of the model, and the number of people as the output layer. GA is used
to encode the weights of the BP neural network so as to obtain the optimal combination
of weights and thresholds; thus, a high-precision crowd prediction model is established.
Figure 3 shows the construction process of the CNPM, and Figure 4 shows the structure of
the CNPM.

Figure 3. Flowchart of the CNPM.
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Figure 4. The structure of the CNPM.

3.3.2. Model Factor Calculation and Prediction

For large scene surveillance videos, the crowd geographic mapping cannot only
display the crowd distribution from the map view but also obtain the model factors of the
crowd count in real time. Figure 5 is a schematic diagram of three model factors of a crowd
polygon.

Figure 5. Schematic diagram of three model factors of a crowd polygon.

Distance: The distance between the coordinates of the center point of the crowd target
polygon M(XM, YM, ZM) and the camera center point C(XC, YC, ZC) in geographical space,
as shown in Equation (2).

Distance =
√
(XC − XM)2 + (YC −YM)2 + (ZC − ZM)2 (2)

Inclination: Assuming that point c(x, y, 0) is the coordinate of the intersection point

between the main optical axis and the ground. Inclination is the angle between
→

MC and
→
Cc,

as shown in Equations (3) and (4).

cos
( →

MC,
→
Cc
)
=

(Xc − XM)(x− Xc) + (Yc −YM)(y−Yc) + (Zc − ZM)(−Zc)√
(XC − XM)2 + (YC −YM)2 + (ZC − ZM)2

√
(x− XC)

2 + (y−YC)
2 + (−ZC)

2
(3)
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Inclination = cos−1
( →

MC,
→
Cc
)

(4)

Area: The crowd polygon is mapped to the geographical space, and the area of each
crowd polygon can be calculated.

Based on the CNPM, the PN of each polygon in each frame can be obtained by taking
the above three model factors as inputs. Figure 5 shows a certain crowd polygon P, with
distance of 88.84 m, inclination of 68.89◦, and area of 56.34 m2. Through the calculation of
the CNPM, the PN of this polygon is 20.

3.4. Crowd Map Visualization

Crowd map visualization mainly includes crowd polygon filling and map symbol
setting.

Crowd polygon filling is to determine the number of points in the corresponding
polygon according to the crowd estimated number. It mainly includes the following three
steps: Firstly, we add equidistant lines in the crowd polygon and combine them into a
whole to obtain its total length (L); then, according to the PN and L of the polygon, the
position of each point can be calculated.

Map is the main form of geographic information visualization, and symbolic design is
a key factor of map visualization. Different types of map symbols can reflect different spatial
geometric characteristics of geographical things. Map symbol setting, that is, according to
the position of each point within the crowd polygon, fills the designed crowd symbols. In
this paper, the people symbols are produced based on the image creation symbol library.
Figure 6 shows the map visualization of a crowd polygon. The process starts with the
position of the polygon outline after mapping and obtains the coordinate of a point at each
L/r distance, which fills the entire polygon area for visualization. Through this method,
the static and dynamic crowd in video surveillance can be visualized.

Figure 6. Schematic diagram of the crowd map visualization.

4. Experiments and Results
4.1. Experimental Environment and Data

The experimental environment of this paper is as follows: GPU RTX 2080 Ti, CPU
i9-9820X, memory 32 G. A school playground was selected as the experimental area, and a
high-definition camera was deployed at a height of about 33 m. The experimental scene is
shown in Figure 7. In the experimental area, 5000 images at different times and in different
motions were collected. Among them, 2000 frames were used as segmentation dataset to
train the CSSM; 1000 frames were used as classification dataset to train the CDM; 2000
frames were used for training and testing the CNPM. Based on MATLAB 2019b, VS 2012
and ArcGIS 10.2, this paper carried out relevant experiments.
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Figure 7. The 2D map of the experimental area.

4.2. Experimental Analysis
4.2.1. Crowd Extraction and Geographic Mapping

(1) Crowd Extraction
The crowd counting scene generally faces the problem of a huge density change,

and the computer will also have misjudgment when executing the semantic segmentation
command, which makes it impossible to achieve a completely correct segmentation effect.
Therefore, this paper proposes a method combining the semantic segmentation and image
classification to improve the accuracy of the crowd semantic information extraction.

In this paper, 2000 frames of crowd images were divided into the training set and
test set at a ratio of 3:2. Then, according to the semantic information, two categories
of people and background in the video frame were labeled. Based on this, the crowd
semantic segmentation model (CSSM) was constructed. The training duration of the CSSM
was about 15 min, and the accuracy of the test set was 96.70%. According to the CSSM,
the real-time segmentation of crowds can be realized, and the semantic information of
each crowd polygon can be obtained. Figure 8 shows the effect of the crowd semantic
segmentation in this paper. It can be seen that this method has a good segmentation effect
on the crowd areas for the high-altitude large scene. However, the CSSM still has some
shortcomings. For example, the football frame and playground edge facilities are prone to
wrong classification.

Figure 8. Crowd semantic segmentation.

Therefore, in order to improve the accuracy of the crowd semantic segmentation and
extraction, this paper designed a crowd denoising model (CDM) to remove the wrong
semantic information. In this paper, 1000 frames of sample images were collected for the
semantic segmentation of the crowd, and the semantic information of each crowd polygon
was extracted. Then, the CDM was trained by learning the two datasets of the people and
the background. The crowd denoising results are shown in Figure 9. In the experiment,
this paper collected 2013 crowd polygons to test the CDM accuracy, of which 1737 were
correctly classified, with an accuracy rate of 86.29%.
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Figure 9. Crowd noise removal.

(2) Geographic Mapping
In this paper, 14 pairs of points were selected from video frames and a high-precision

remote sensing image, respectively. Then, according to the coordinates of the selected
points, the camera homography matrix was calculated to realize the transformation from
the video frame image coordinates to geographical coordinates. Finally, based on the solved
homography matrix, each crowd polygon in the video was mapped to the geographic space.
The crowd geographic mapping effect is shown in Figure 10.

Figure 10. Crowd geographic mapping.

4.2.2. Crowd Number Estimation

(1) Crowd Number Prediction Model
Based on 3000 crowd polygons in the sample, this paper calculated the distance,

inclination, and area of each crowd polygon. Then, with the three types of factors as the
input parameters of the model and the real number of people as the output parameters,
a prediction model dataset was constructed. In addition, the dataset was divided into a
training set and test set according to the ratio of 4:1. Finally, based on the GA-BP network,
the crowd number prediction model (CNPM) was constructed.

(2) Crowd Number Estimation
In the experiment, the typical frames were selected for the crowd number estimation.

The specific steps were as follows: Firstly, the semantic segmentation and noise removal
were performed on the video frames to extract the semantic information of the crowd
polygons. Then, the crowd polygon was mapped to the geographic space according to the
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homography matrix. Finally, based on the CNPM, the number of people in each crowd
area was estimated by the distance, inclination, and area. We obtained 400 crowd polygons
in the experimental area, and Figure 11 shows the comparison between the true value and
the predicted value. On the whole, the predicted value is closer to the true value. The
average error is 1.2, and the mean square error is 4.5, which has a good estimation effect. In
addition, the prediction accuracy is higher when there are more crowd targets but lower
when there are more individual targets. On an individual level, some polygons (such as
narrow and long polygons) have low or high predictive values. The reason is that the
feature is caused by the perspective imaging of the camera. The closer the crowd polygon
is to the camera, the smaller the degree of crowd mapping distortion, and conversely, the
distortion is larger when the crowd is mapped from a distance. In addition, if the crowd
density is high in the scene, especially in the area where people block each other seriously,
the true value will also be affected by subjective factors.

Figure 11. Chart of predicted value and true value of crowd counting.

(3) Algorithm Comparison and Analysis
Among the current numerous counting methods, the SFCN+ algorithm takes Resnet-

101 as the backbone and generates a crowd density map by training the personnel’s head
features to achieve the statistics of the number of people in the image and show a strong
density regression ability in the crowd scene [69]. Based on typical video frames with a high
density in the experimental area, this paper used the CDEM-M and the SFCN+ algorithm
for comparison. The crowd detection effect is shown in Figure 12.

Figure 12. Crowd detection results in dense scenes: (a) the CDEM-M; (b) the SFCN+ algorithm.
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In this paper, the performance of different methods was evaluated using the most
common counting evaluation indicators in crowd counting research, namely the mean
absolute error (MAE) and root mean square error (RMSE), as shown in Equations (5) and (6).

MAE =
1
N

N

∑
1

∣∣Y′i −Yi
∣∣ (5)

RMSE =

√√√√ 1
N

N

∑
1

∣∣Y′i −Yi
∣∣2 (6)

where N is the number of images in the test set, Yi is the actual number of people in a
picture, and Y′i is the estimated number of people in this picture. Generally, the MAE
reflects the accuracy of the crowd counting, and the smaller the value is, the higher the
accuracy of the algorithm is. The RMSE is used to evaluate the robustness of the crowd
number estimation, and the smaller the value, the better the algorithm performance.

In the experiment, this paper selected 500 frames of different categories in the scene and
tested them based on the CDEM-M and the SFCN+ algorithm. The precision comparison of
the two algorithms is shown in Table 1. The MAE and RMSE of the CDEM-M are reduced
by 89.9 and 85.1, respectively, indicating that the CDEM-M can improve the accuracy of the
crowd counting results and have certain advantages.

Table 1. Comparison of two algorithms.

Algorithm MAE RMSE

SFCN+ 126.9 128.6
CDEM-M 37.0 43.5

Table 2 shows the crowd number estimation in the CDEM-M and SFCN+ algorithm.
Obviously, the SFCN+ algorithm is difficult to recognize the personnel head feature. This
may easily lead to the problems of missing individual detection in the area near the camera,
fewer crowd counts in the area far away, and the wrong classification of some objects (such
as trees) in the whole image. However, the CDEM-M used the CSSM to recognize the
entire personnel feature and removed the crowd noise based on the CDM. It effectively
avoids the difficulty in the head feature recognition of the SFCN+ algorithm, especially in
the area where the head texture is not clear and people block each other. In addition, the
crowd number is estimated by the three factors of the distance, the inclination, and the area,
which effectively reduces the impact of the difference in the imaging accuracy between
near and far objects on the crowd estimation. Therefore, the SFCN+ algorithm is suitable
for small scenes with clear personnel head texture, while the CDEM-M is more applicable
in high-altitude and high-density scenes.
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Table 2. Crowd number estimation of two algorithms.

Frame SFCN+ CDEM-M
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4.2.3. Crowd Map Visualization

In order to intuitively express the spatial distribution state of the crowd in the map,
this paper displayed the mapped crowd polygon area in the GIS polygon layer and filled
the crowd polygon with the corresponding number of points. Figure 13a shows the
crowd polygon after the semantic segmentation of an image, and Figure 13b shows the
visualization effect of its crowd map. The experimental results show that the CDEM-M
can accurately map the crowd in large scenes to the geographic space and realize the map
visualization of the crowd. The CDEM-M not only provides a new decision-making method
for the crowd supervision of large-scale activities, stations, shopping malls, and sports
venues but also solves the problem that the crowd is difficult to visualize, which has a
certain practical value.
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Figure 13. Crowd visualization: (a) crowd polygon; (b) crowd map visualization.

5. Conclusions and Discussion

For large and complex crowd scenes, the CDEM-M has advantages in remote object
extraction and visualization. Through the theoretical analysis and experimental verification,
this paper draws the following main conclusions: (1) Based on the Deeplabv3+ network
model, the CSSM was constructed. Its test accuracy was up to 96.70%, which can achieve
high-precision crowd segmentation in surveillance videos; the classification accuracy of the
CDM based on a convolutional neural network was 86.29%. Through the combination of
the CSSM and the CDM, it can achieve a high-precision extraction of a crowd in large scenes
and reach the practical application level. (2) Based on the points selected from video frames
and a remote sensing image, this paper calculated the camera’s high-precision homography
matrix; then, the crowd semantic information was mapped to the geographic space. (3) The
CNPM was constructed based on the BP neural network. The average error was 1.2, and the
mean square error was 4.5. By inputting the distance, inclination, and area of each crowd
polygon in the real-time video frames, the crowd number can be estimated. Compared with
the SFCN+ algorithm based on the density map estimation, it was found that the SFCN+
algorithm makes it difficult to identify the personnel head features in high-altitude and
high-density large scenes. In this paper, the whole personnel feature was identified based
on the semantic segmentation. Even in areas where the personnel texture features were not
clear and people blocked each other seriously, the personnel information can be accurately
identified. (4) The crowd map visualization was realized by filling the crowd polygon with
the corresponding number of points. The experiment shows that the CDEM-M based on
the distance, inclination, and area is more applicable in large, crowded scenes.

The CDEM-M can be used for a crowd flow analysis in commercial areas and crowd
supervision in large-scale activities and sports venues, and it has an important application
value in the field of intelligent security. However, the CDEM-M has several shortcomings:
(1) In future research, we will pay more attention to the mixed scene of individuals and
groups and discuss the research mode of “object detection for near individual and semantic
segmentation for far crowd”. (2) The crowd geographic mapping is approximate, and the
perspective imaging of a narrow and long crowd polygon is deformed greatly. Therefore,
the following research needs to pay attention to the geometric relationship among the
mapping deviation, crowd polygon shape, and distance threshold. (3) The CDEM-M is
only suitable for crowd monitoring in high-altitude scenes and cannot meet the needs of
crowd monitoring in close range. How to integrate traditional methods and make them
more general is the focus of follow-up research.
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