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Abstract: The vehicle routing problem (VRP) attempts to find optimal (minimum length) routes for a
set of vehicles visiting a set of locations. Solving a VRP calls for a cost matrix between locations. The
size of the matrix grows quadratically with an increasing number of locations, restricting large-sized
VRPs from being solved in a reasonable amount of time. The time needed to obtain a cost matrix
is expensive when routing engines are used, which solve shortest path problems in the back end.
In fact, details on the shortest path are redundant; only distance or time values are necessary for
VRPs. In this study, an artificial neural network (ANN) that receives two geo-coordinates as input
and provides estimated cost (distance and time) as output is trained. The trained ANN model was
able to estimate with a mean absolute percentage error of 7.68%, surpassing the quality of 13.2% with
a simple regression model on Euclidean distance. The possibility of using a trained model in VRPs is
examined with different implementation scenarios. The experimental results with VRPs confirm that
using ANN estimation instead of Euclidean distance produces a better solution, which is verified to
be statistically significant. The results also suggest that an ANN can be a better choice than routing
engines when the trade-off between response time and solution quality is considered.

Keywords: travel time prediction; travel cost estimation; artificial neural network; vehicle routing problem

1. Introduction

The vehicle routing problem (VRP) is one of the most studied combinatorial optimiza-
tion problems [1], and it attempts to find the optimal set of routes for a fleet of vehicles to
visit a given set of geographically scattered customers. The VRP is known to be NP-hard as
it generalizes the travelling salesman problem (TSP), which is also NP-hard [2].

Solving a VRP calls for a cost matrix between all customer and depot locations (nodes).
That is, the cost information from all origin (source) nodes to all destination (sink) nodes
is required. Thus, the size of the cost matrix is quadratic to the number of nodes. This is
quite hindersome when solving large-sized VRPs. For a problem with a thousand nodes,
for instance, one million (a thousand by a thousand) in travel cost information is required.
Moreover, the size of the matrix can be further doubled in cases where the cost or constraints
are specified by both travel distance and time.

The VRP research in general assumes that the cost matrix is already there and ready to
be used. However, the time spent to obtain a cost matrix and the quality of the matrix greatly
matter in practice. Using Euclidean distance [3] can be an easy way of approximating the
road distance or time. However, multiple research projects suggest that this provides sub-
optimal solutions [4], especially when the nodes are densely populated [5,6]. For realistic
delivery operations, a cost matrix must better reflect the true road network.

A much more precise cost matrix can be acquired from routing engines of map service
providers, such as Google Maps [7]. Their application program interfaces (APIs) help
to easily request and get the travel distance and time between nodes. However, the
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information does not come cheap. The large number of queries for solving shortest path
problems in road networks are costly in both response time and service usage fee. As a
matter of fact, the solution to shortest path problems provides information that is redundant
to solving VRPs. The details such as which roads to take or where and when to make turns
are not needed. Only the travel distance or time values are necessary.

In this study, we train an artificial neural network (ANN) model that takes two
geographic coordinates, latitude and longitude, as input and draws the cost, in distance
and time, of travelling the nodes as output. The training and test data are obtained using the
GraphHopper routing engine [8] along with the map data of OpenStreetMap (OSM) [9]. The
trained model is evaluated for estimation performance using various criteria in comparison
with Euclidean approximation. In addition, we examine some application scenarios for
the ANN model in VRP. For different implementation scenarios, VRP solution quality
is analyzed. The quality in this study includes the cost matrix creation time, problem
solving time, and the solution gap in vehicle travel cost. In the end, some promising
implementation strategies of ANN estimations are suggested.

The rest of this paper is organized as follows. Section 2 reviews previous literature on
the use of Euclidean distance in VRP, on available commercial and open-sourced routing
engines, and on travel cost estimation methods including ANNs. Section 3 illustrates the
data set and describes the constructed ANN model in detail. This section also presents
performance evaluation of the ANN model compared to using Euclidean distance. Section 4
explores potential scenarios of implementing ANN cost estimations in VRPs, which are
extensively researched by simulation methods. Section 5 concludes the paper with a
summary, discussion, and directions for future research.

2. Literature Review
2.1. Euclidean Distance and Road Distance

Euclidean distance [3], sometimes referred to as straight-line distance or air distance,
can be used as a simple way of approximating true road distance. However, caution is
advised since the approximation may not reflect the road networks well, especially when
the nodes are closely positioned. Ballou et al. [10] defined the circuity factor (also known
as the deviation factor) as a multiplier to coordinate-calculated distances to approximate
actual road travel distances. They selected 30 economically significant countries or regions
and computed their average circuity factors. The values varied from 1.12 to 2.10. A more
recent study reported that the average circuity factors for landmarked town centres of
12 different countries ranged from 1.17 to 1.40 [5]. A study in Brazil [11] found their average
circuity factor as 1.345 when the straight-line distance is under 891 km. Another research in
South Korea [6] examined the two most populated cities in the country to propose some
realistic VRP benchmark instances. In the analysis of the proposed instances, the circuity
factor was calculated as 2.8 when two nodes are within one kilometer of straight-line
distance, and 1.6 when the nodes are within ten kilometers of straight-line distance. It is
noted that the circuity factor is higher when the straight-line distance between nodes is
closer. Similarly, it has been shown in previous studies that correlation between the road
distance, or time, and straight-line distance diminishes when the targeted territorial range
is smaller [12].

Using Euclidean distance for to measure the closeness of nodes in road networks can
be deceiving [6]. That is, it is easy to misjudge which nodes are closer to and from each
other. These misjudgements bring negative consequences on the quality of vehicle routing
solutions. In fact, it was reported that solving a VRP with Euclidean distance and then
applying asymmetric road distances was suboptimal by almost five percent [4]. Recently,
this impact was more closely examined by research that compared the travel distance of
vehicles when routes are planned using Euclidean distance and when they are planned
using actual road distance [5]. The impact was verified on problem instances of TSP and
VRP. In their analysis, the routes planned based on Euclidean distance resulted in longer
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(from 5.0% to 20.6%, depending on studied regions) tours than the routes planned based
on road distance.

2.2. Routing Engines

For VRP solutions to be more acceptable, the use of routing engines, or routing
machines, can be considered to create cost matrices. It is noted that routing engines focus
on solving shortest path problems in road networks and thus, the focus is on creating
cost matrices. This should not be confused with VRP solvers that focus on assigning and
sequencing the visiting nodes to find optimal vehicle routes, given the cost matrix.

Routing engines may provide precise travel distance and time information between
nodes, but it comes at a cost, which may include a usage fee in addition to the response
time. Google Maps [7] is an example of a commercial routing engine. In South Korea,
TMAP [13] and Naver Maps [14] are also considered major commercial routing engines.
Some providers offer free use volume such as 1000 requests a day or 60,000 requests a
month. In general, their pricings range from 0.004 USD to 0.01 USD per request, which
can be quite expensive when filling up a large sized cost matrix. Apart from the usage
fee, the response time for requests is usually restricted to contracted transactions per
second limitations.

There are also open-sourced routing engines available [8,15–17], which depend on
the use of open-sourced map [9] data for road networks. Thus, their quality on travel
distance and time estimation highly depends on the details of the map data. Compared to
commercial routing engines, they lack considerations on time-dependent traffic congestions.
In addition, they can be late on including new roads, updated traffic laws, construction, or
new network information into the engine. On the other hand, the open-sourced engines
are free of charge. The response time for the open-sourced engines is only restricted by the
computing power of the user’s machine.

2.3. Travel Cost Estimation

Travel costs are specified as travel distance or time in this study, and we review
previous research on travel distance and time estimation (prediction) between two
geographic locations.

Multiple review papers on travel time prediction methods [18,19] reveal that the re-
search area of applying artificial intelligence (AI) and ANN is broad and significant. A more
ANN-focused review paper in travel time prediction [20] attests that ANN applications in
numerous research are proven to be effective. In most previous research on ANN appli-
cations, historical data such as global positioning system (GPS) trajectories (also known
as probe vehicle data or floating car data) are used as the data source [21–28]. Some of the
previous works further augmented their dataset by employing the OpenStreetMap [9] to
acquire complex road network data or by including traffic speed data provided by map
service providers [24,25].

3. Artificial Neural Network Model
3.1. Training and Test Data

As shown in Figure 1, the latitude bound (37.46~37.62) and longitude bound (126.80~127.18)
for the targeted area are set to include Seoul, the most populated city in South Korea. The size
of the bounding box is approximately 17.5 by 33.5 km, which is rather large compared
to previous studies on using ANN to estimate travel costs. Within the boundary, two
geo-coordinates are randomly selected with uniform probability. The coordinates are then
converted into the coordinates of the closest node in the road network, or the point of
interest (POI). This conversion, illustrated in Figure 2, assures that paths should exist to
connect the two locations in all samples. Note that forest (green) and water (blue) areas
from Figure 1 are very well reflected in the converted points in Figure 2b. The shortest
route with the travel distance and time values are provided with the help of GraphHopper
routing engine [8] and map data of OpenStreetMap [9].
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Figure 1. Latitude and longitude bound for the distance and time sampling.

Figure 2. Converting randomly generated points to the closest POIs. (a) Random origin–destination
points. (b) Converted points.

A total of 5 million samples are collected. 4.8 million samples were used for training
the ANN model and the rest, 0.2 million samples, are used for testing the model. As shown
in Table 1, each sample includes two geo-coordinates (the latitude and longitude of the
origin and destination), and costs (the distance and time value of the travel).

Table 1. Examples of the collected samples for input and output values.

Sample
Number

X (Input) Y (Output)

Longitude 1 Latitude 1 Longitude 2 Latitude 2 Distance (m) Time (s)

1 126.9808 37.6141 127.1293 37.5760 17,511 1097

2 126.8230 37.5060 127.0829 37.5098 26,943 1400

3 127.0719 37.5136 126.9036 37.4888 17,235 1069

. . . . . . . . . . . . . . . . . . . . .



ISPRS Int. J. Geo-Inf. 2023, 12, 57 5 of 20

3.2. Model Construction and Train Parameters

As implied in Table 1, we construct an ANN model that receives coordinates of two
POIs as input and draws travel distance and time values as output. Naturally, the model
has four neurons in the input layer and two neurons in the output layer. As shown
in Figure 3, the structure including input, hidden, and output layers is constructed as
4–16–64–256–64–16–4–2 neurons. All neurons in a layer are fully connected (linear) to the
neurons in the next layer. Each layer includes the batch normalization [29] process that
accelerates deep network training. For activation function, a rectified linear unit, usually
abbreviated as ReLU, that is known to be effective in preserving information through
multiple layers [30,31] is used.

Figure 3. The ANN structure used for training.

The model is trained to minimize mean absolute percentage error (MAPE). The MAPE
can be stated as provided below.

MAPE =
100%

n ∑n
i=1|(Ai − Pi)/Ai| (1)

In the formula, Ai is the actual value and Pi is the predicted value of sample i. It is
noted that the model has two output values to estimate, and the sum of MAPE for travel
distance and for travel time is used in the training. In training the weights in the model, an
adaptive moment estimation (Adam) optimizer that is known to be effective in learning
complex systems [32] is used with a learning rate of 0.01. The size of the training batches is
set to 8192 and the training data are shuffled when constructing the batches in every epoch.
The model is trained over 1500 epochs. The training of the model took around 12 h using
Intel i5-10600K CPU @ 4.10 GHz with 6 cores, and 16 GB of RAM.

3.3. Estimation Performance of the Model

The trained ANN model is analyzed for its performance in comparison with a linear
regression model. The linear regression method is used to find multiplication coefficients

to the Euclidean distance (
√
(lon1− lon2)2 + (lat1− lat2)2) that minimize the sum of
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squared errors in the test dataset. The coefficient for travel distance in meters, bm, is found
to be around 117,563, and the coefficient for travel time in seconds, bs, is about 6589.

The ANN model and the regression model are compared in three different criteria.
Since the objective of training ANN is to minimize MAPE, the first comparison criterion
is on the percentage errors. Figure 4 compares absolute percentage errors of the two
models, and Figure 5 compares the non-absolute percentage errors. Whether it is absolute
or non-absolute, the ANN model exhibits better estimation quality. For the regression
model’s result provided in Figure 4a, the MAPE measure for distance and time are 11.47%
and 14.97% respectively, and the aggregated average of the two is 13.2%. Using the
ANN model as provided in Figure 4b, the MAPE for distance and time are 7.27% and
8.08%. The aggregated average value is only 7.68%, which is 5.52% point lower than the
regression model. The analysis of non-absolute percentage errors in Figure 5 also presents
the superiority of the ANN model’s estimation.

Figure 4. Absolute Percentage error of estimation in box whisker plot. (a) Regression model. (b) Arti-
ficial neural network model.

The second comparison criterion is the closeness deceived by estimated cost, which
was suggested in the work of Lee & Chae [6]. Suppose three POIs of nodes i, j and k.
The estimated cost from i to j and from i to k are measured and compared. The same
comparison is subsequently carried out using actual road distance and road time. If the
comparison using estimation and using actual cost selects different winners, the estimation
is labelled inaccurate. How often (frequency) and how much (magnitude) the estimated
cost chooses a false winner are both examined. The result on the frequency is provided in
Figure 6. Figure 6a shows that using the regression model to decide which node is closer
in distance measured has a 38.9% chance of giving wrong winners, while using the ANN
estimation has a 30.8% chance. For the travel time measurement in Figure 6b, the regression
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model has a 40.7% chance, while the ANN model has a 32.4% chance of producing false
winners. It is noted that the x-axes in the figures represent air distance ranges. The chances
of false selection are calculated only when the two air distances from node i to j and from i
to k are both in the same air distance range, which has intervals of one kilometer. When
this condition is ignored, chances of deception are much lower, since they would include
comparisons on some obviously large differences, e.g., air distance of 50 m and 2450 m. In
ignorance of the condition, the regression model has a 6.5% chance, while the ANN model
has a 5.7% chance of being wrong in selecting false winners using estimated travel distance.
In estimation of travel time, the regression model is wrong 7.2% of the time, while the ANN
model comes in lower at 6.4%.

Figure 5. Percentage error of estimation in box whisker plot. (a) Regression model. (b) Artificial
neural network model.

The second criterion examines not only the frequency, as in Figure 6, but also the
magnitude, as in Figure 7. It is more likely to be wrong when the two actual costs are
similar and less likely when the two actual costs are largely different. When the closeness
measurement is wrong, the magnitude is calculated as the cost from i to j divided by the
cost from i to k, with the denominator being the smaller value. Figure 7a shows that when
the wrong winner is chosen by distance estimations, the average difference magnitude of
the two actual values is 1.185 times. On the other hand, the ANN model has the magnitude
of 1.169. For time estimations as shown in Figure 7b, the average difference magnitude
of being wrong in the regression model is 1.178, while it is 1.158 in the ANN model. In
every aspect of performance evaluation in the second criterion (whether on frequency or
on magnitude, and on any range of air distance intervals), the ANN model outperforms
the regression model.
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Figure 6. Frequency of estimations being wrong is closeness measure. (a) Distance measure.
(b) Time measure.

Figure 7. Magnitude of estimations being wrong in closeness measure. (a) Distance measure.
(b) Time measure.

The third comparison criterion is the correctness rate of selecting a specified number
of closest neighbors. Arnold et al. [33] analyzed collections of optimal VRP solutions and
reported that the nodes were connected to the 20 closest neighbors 95% of the times, and
to the 50 closest neighbors 99% of the times. The study implies that solutions of good
quality can still be obtained when edges to only some closest neighbors are available. This
selective strategy has been an efficient way of solving large-sized VRP instances. The third
criterion is to see how well the estimated distance or time can select a specified number
of closest neighbors correctly. Figure 8 summarizes the result of correctness rate when
closest neighbors in distance are estimated using the regression model and the ANN model.
The x-axes in the figures represent the targeted closest neighbor counts. In Figure 8a, for
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instance, when ten neighbors are chosen using the Euclidean distance, 77% of them are
correct on average. Using the ANN model, on the other hand, the correctness is about 80.1%.
The correctness increases as the targeted closest neighbor count increases. Figure 8a–c are
different in terms of the total number of nodes in the analysis: 100, 500, and 1000. When a
larger number of nodes are drawn within the specified range of longitude and latitude, the
distance between the nodes become denser. When nodes are densely populated, it is harder
to determine the closest neighbors correctly as the tendency shown in the three figures. For
example, when ten closest neighbors are determined from a total of 100 nodes using the
ANN model, the correctness is around 80.1% as in Figure 8a, while it is 66.1% from a total
of 1000 nodes as in Figure 8c. Figure 9 presents results of the same analysis as Figure 8, but
with the time estimations. In every aspect of the performance evaluation in Figures 8 and 9,
for different measure of distance and time, for different number of nodes to choose from,
and for different targeted closest neighbor counts, the ANN model surpasses the quality of
using the Euclidean distance.

Figure 8. Correctness rate of selecting closest neighbors using estimated distance. (a) Number of
nodes = 100. (b) Number of nodes. = 500. (c) Number of nodes = 1000.

Figure 9. Correctness rate of selecting closest neighbors using estimated time. (a) Number of
nodes = 100. (b) Number of nodes = 500. (c) Number of nodes = 1000.
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4. Potential Application in Vehicle Routing Problems

In the previous section, the performance of the ANN model for distance and time
estimation is confirmed to be superior to the simple regression model on Euclidean distance.
In general, better VRP solution quality is expected with a more precise cost matrix. In
this study, the utility of the ANN model is further examined for various implementation
scenarios on the VRP to see if it is as beneficial as expected.

4.1. Scenario Design

The scenarios are constructed to verify that using the ANN model for cost matrix
creation instead of Euclidean distance is favorable. The implementation scenarios of the
ANN on VRPs are designed as provided in Table 2.

Table 2. Implementations scenarios of the ANN on VRP.

Scenarios Matrix Type Cost Type Details

S0
(Base) Full OSM matrix for VRP

Distance

-

Time

S1
S1-1 Full EucDist matrix for VRP

Distance

Time

S1-2 Full ANN matrix for VRP
Distance

Time

S2
S2-1

Full EucDist matrix for VRP and
partial OSM matrices for TSPs

Distance

After running VRP,
run TSP for
each vehicle

Time

S2-2
Full ANN Matrix for VRP and
partial OSM matrices for TSPs

Distance

Time

S3

S3-0 Partial OSM matrix for VRP
Distance 50 closest neighbors

based on OSMTime

S3-1 Partial OSM matrix for VRP
Distance 50 closest neighbors

based on EucDistTime

S3-2 Partial OSM matrix for VRP
Distance 50 closest neighbors

based on ANNTime

The ‘S0’ scenario is the base scenario, where OpenStreetMap (OSM) matrix is used
to solve the VRP. Here, the OSM matrix refers to the road distance or road time matrix
obtained using the GraphHopper routing engine [8]. In the experiment, the base scenario
is assumed to produce the base quality of the VRP solution, and the qualities of the VRP in
other scenarios are compared to the base scenario. The solution quality can be defined as
the sum of vehicle routes’ travel cost, which is used as the objective function value (OFV)
in most VRP research. This research also examines another aspect of quality, the response
time that includes the time for matrix creation and problem solving. Since response time for
the solution matters in real operations, it is reasonable to consider the cost matrix creation
time for quality.

The ‘S1’ scenarios include the use of Euclidean distance (EucDist) and the ANN model
for cost matrix creation. It is noted that scenario names ending with ‘-1’ imply the use of
Euclidean distance matrix and the ones ending with ‘-2’ imply the use of the ANN model.
The ‘S1-1’ scenario makes use of the Euclidean distance matrix for solving the VRP. After
the problem is solved, the solution’s OFV is recalculated by using the actual road distance
or road time, with the OSM matrix. Note the vehicle assignments and visiting sequence
of nodes in the solution are intact in the recalculation process. The recalculation is only to
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see how suboptimal the solution is from the base scenario. The ‘S1-2’ scenario follows the
same process, but with the only difference in matrix creation method.

The ‘S2’ scenarios aim to improve the solution quality of ‘S1’ with some partial OSM
matrices. That is, after solving the VRP with estimated costs, each vehicle’s visiting
sequence is reconstructed by solving TSP with the actual OSM cost for each vehicle. The
full matrix for the VRP being the (N × N) matrix, where N is the number of nodes, partial
matrices are smaller sets of elements from the full matrix. For instance, if the problem has
ten vehicles and each vehicle is assigned ten visiting locations, then the required partial
matrices for solving TSPs are (10× 10× 10). The size of the partial matrices in the example
is ten times smaller than the full (100× 100) matrix.

The ‘S3’ scenarios are also designed to use only some portion of the OSM matrix.
For each visiting node, the 50 closest nodes are determined. In the determination of the
closest nodes, scenario ‘3-0’, ‘3-1’, and ‘3-2’ use OSM costs, Euclidean distance, and the
ANN model’s estimation, respectively. Then, the cost matrix size of (N × 50) is created
to solve the VRP. In scenario ‘3-0’, the OSM costs are already obtained in the closest node
selection process, and they are ready to be used. In the other two scenarios, the OSM costs
are requested after the selection process. It is noted that in a strict sense, the size of the cost
matrix is 50(N − 1) + 2(N − 1), since costs for all edges connecting to the depot are fully
required. However, this paper simplifies the notation as (N × 50).

4.2. Instance Creation and Solution Method

The experimental instances are created to test the implementation scenarios. For
any instance, the number of vehicles is fixed to ten. Within the territorial boundaries
described in Section 3.1, customer nodes are randomly selected with uniform distribution.
The number of nodes to be created for the problem instances are set to be 100, 500, and
1000. For each problem size, 300 replications of instances are created. Each replication
includes problem solving of eight scenarios, from ‘S0’ to ‘S3-2’. Each scenario includes
two cost matrix types (distance and time), and two parameter settings for the problem-
solving algorithm (short search and long search). In total, the problems are solved for
28,800 (3 different problem sizes by 300 replications by 8 scenarios by 2 matrix types by
2 parameter settings) times.

The large neighborhood search (LNS) algorithm [34] is used for solving VRP and TSP
in the experiments. The LNS algorithm explores the current solution’s neighborhoods by
removing a large portion of customer nodes from the solution and re-inserting these nodes.
Figure 10a shows an initial suboptimal solution of the given VRP instance with the depot
in the centre and three vehicle routes. In Figure 10b, customers have been removed from
the routes. The neighborhood contains all solutions that can be created by reinserting the
customers into the routes. Figure 10c represents such a solution. To be able to provide
solutions that are close to the optimal solutions, an improved version of LNS from the work
of Lee [35] is employed. In that study, the simulated annealing (SA) algorithm [36] is used
as a meta-heuristic algorithm. For each annealing temperature in the cooling schedule, a
specified number of LNS iteration is carried out. The number of iterations is the parameter
setting to decide if the solution search is short or long. For the short and the long search,
the iteration parameter is set to 1000 and 5000, respectively.
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Figure 10. An Illustration of Large Neighborhood Search Algorithm. (a) Before removal. (b) After
removal (destroy). (c) After repair.

4.3. Experimental Results

An Intel i5-10600K CPU @ 4.10 GHz and 16 GB of RAM are used for the experiments.
Figures 11 and 12 summarize the experimental results of various implementation scenarios
provided in Table 2. The two figures are separated by the type of the cost matrix (distance
and time). Each of the two figures contains six graphs that are distinguished by the size of
the problem and the parameter settings of LNS iterations. The scenario names are displayed
in the x-axes. Note that there are two y-axes in each graph. The response time is measured
at the left y-axis with bar graphs. Each bar consists of problem-solving time (non-shaded)
and matrix creation time (shaded). The right y-axis measures the solution gap (%) from the
base scenario with ‘x’ marks. Since the solution gap is the difference between the average
OFV for a scenario and the average OFV for the base scenario, divided by the average OFV
for the base scenario, the solution gap for the base scenario is marked as 0%. The following
are the major findings from the experiments.

Figure 11. Cont.
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Figure 11. Solution time and gap for experimental scenarios with cost matrix type of distance.
(a) Problem size: 100, LNS iteration: 1000. (b) Problem size: 100, LNS iteration: 5000. (c) Problem
size: 500, LNS iteration: 1000. (d) Problem size: 500, LNS iteration: 5000. (e) Problem size: 1000, LNS
iteration: 1000. (f) Problem size: 1000, LNS iteration: 5000.

First, employing the ANN model for matrix creation, instead of Euclidean distance,
is verified to be beneficial in VRP as expected. For ‘S1’ scenarios, the advantage of the
ANN model is not certain. Rather, the use of Euclidean distance seems to provide better
solution quality in many cases. However, in ‘S2’ and ‘S3’ scenarios, using the ANN model
surely outperformed the Euclidean distance. That is, ‘S2-2’ produces better solutions than
‘S2-1’, and similarly for ‘S3-2’ and ‘S3-1’. To prove the effectiveness of the ANN model, the
solution gaps of ‘S2-1’ and ‘S2-2’ are compared using the t-test as shown in Table 3. The
t-test for the ‘S3-1’ and ‘S3-2’ comparison is also provided in Table 4. The mean gap from
‘S0’ in the tables is calculated as the sum of OFV from a specific scenario minus the sum of
OFV from ‘S0’, divided by the number of replications.

The results in the tables verify that the average solution gap differences are statistically
significant, particularly in problem sizes of 500 and 1000. In the small size of 100, the results
of the t-test do not verify the significance of the differences. This can be explained by the
fact that the LNS algorithm finds solutions that are optimal, or almost optimal, most of the
time in small sized problems, and the differences are too small to be verified as statistically
significant. It is noted that the average difference is much more significant in Table 3 (‘S2-1’
to ‘S2-2’ comparison) than in Table 4 (‘S3-1’ to ‘S3-2’ comparison).
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Figure 12. Solution time and gap for experimental scenarios with cost matrix type of time. (a) Problem
size: 100, LNS iteration: 1000. (b) Problem size: 100, LNS iteration: 5000. (c) Problem size: 500, LNS
iteration: 1000. (d) Problem size: 500, LNS iteration: 5000. (e) Problem size: 1000, LNS iteration: 1000.
(f) Problem size: 1000, LNS iteration: 5000.
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Table 3. t-test to compare the implementation scenario ‘S2-1’ and ‘S2-2’.

Cost
Type

Problem
Size

LNS
Iteration Scenario Mean Gap

from S0 Variance Degree of
Freedom t-Statistics p (T ≤ t)

Distance

100

1000
S2-1 0.059340 0.000447

593 3.032024
0.002535
(<0.01)S2-2 0.054336 0.000370

5000
S2-1 0.060147 0.000366

595 0.687932
0.491764
(>0.05)S2-2 0.059109 0.000316

500

1000
S2-1 0.230325 0.001727

575 13.60022 1.01 × 10−36

(<0.001)S2-2 0.188196 0.001151

5000
S2-1 0.223133 0.001536

594 11.89121 2.12 × 10−29

(<0.001)S2-2 0.186558 0.001302

1000

1000
S2-1 0.303998 0.003369

544 12.95487 1.21 × 10−33

(<0.001)S2-2 0.250463 0.001754

5000
S2-1 0.308150 0.003582

543 12.40323
2.8 × 10−31

(<0.001)S2-2 0.255393 0.001846

Time

100

1000
S2-1 0.053796 0.000306

598 1.411387
0.158651
(>0.05)S2-2 0.051796 0.000296

5000
S2-1 0.054809 0.000275

597 1.81339
0.070274
(>0.05)S2-2 0.052409 0.000251

500

1000
S2-1 0.195454 0.001088

582 19.36356 7.51 × 10−65

(<0.001)S2-2 0.147109 0.000782

5000
S2-1 0.187688 0.001239

535 16.68161 1.3 × 10−50

(<0.001)S2-2 0.146321 0.000606

1000

1000
S2-1 0.246780 0.002444

460 23.11096 5.35 × 10−79

(<0.001)S2-2 0.171819 0.000712

5000
S2-1 0.242476 0.002457

454 21.17282 1.03 × 10−69

(<0.001)S2-2 0.173965 0.000685

Second, the solution OFV gaps of using time matrices are smaller than using distance
matrices for both Euclidean estimation and the ANN model estimation. That is, the solution
gaps marked in Figure 12 (time) are lower than the values marked in Figure 11 (distance),
given the problem size and the iteration limits. For example, in cases of problem size 1000
and LNS iteration 5000, which are the (f) figures, the solution gaps of ‘S2-1’ are 30.82% for
distance and 24.25% for time with Euclidean estimations. When the ANN model is used
for the costs (‘S2-2’), it showed a 25.54% solution gap for distance and 17.40% for time. This
trend is commonly observed when Figures 11 and 12 are compared piece by piece. This is
opposite to the original expectation, since the performance evaluation of Euclidean and
ANN estimations conducted in Section 3.3 has shown that the estimations better predict
distance than time in most criteria. Revisiting Figure 7, the only performance measure
favourable to time over distance is the deception magnitude. The average difference
magnitude values are favourable to time estimations more than distance, but the gap is not
noticeable much in the interval of {0~25} km. However, for the interval of {0~1} km, where
most optimal VRP solutions are supposed to be susceptible, the value differences are more
prominent. In Euclidean estimation, the magnitude is 2.08 for distance and 1.87 for time,
while it is 2.02 for distance and 1.82 for time in the ANN estimation. An emphasis should
be put on the deception magnitude criterion when the estimations are meant to be used in
solving VRPs.
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Table 4. t-test to compare the implementation scenario ‘S3-1’ and ‘S3-2’.

Cost
Type

Problem
Size

LNS
Iteration Scenario Mean Gap

from S0 Variance Degree of
Freedom t-Statistics p (T ≤ t)

Distance

100

1000
S3-1 −0.00051 5.43 × 10−5

593 −0.27505
0.78337
(>0.05)S3-2 −0.00035 4.52 × 10−5

5000
S3-1 −0.00020 1.64 × 10−5

597 −0.70038
0.483964
(>0.05)S3-2 2.61 × 10−5 1.50 × 10−5

500
1000

S3-1 0.038191 0.000367
590 2.96851

0.003114
(<0.01)S3-2 0.033792 0.000292

5000
S3-1 0.032218 0.000228

596 1.988923
0.047166
(<0.05)S3-2 0.029834 0.000203

1000
1000

S3-1 0.080004 0.000563
597 2.073294 0.038573

(<0.05)S3-2 0.076061 0.000522

5000
S3-1 0.075898 0.000481

594 2.977116
0.003028
(<0.01)S3-2 0.070769 0.000409

Time

100

1000
S3-1 0.000427 3.21 × 10−5

598 0.579254
0.562636
(>0.05)S3-2 0.000161 3.12 × 10−5

5000
S3-1 0.000478 1.03 × 10−5

597 −0.31144
0.755578
(>0.05)S3-2 0.000561 1.11 × 10−5

500

1000
S3-1 0.030004 0.000177

597 2.757916
0.005995
(<0.01)S3-2 0.027065 0.000164

5000
S3-1 0.026874 0.000128

598 2.263893
0.023938
(<0.05)S3-2 0.024801 0.000123

1000

1000
S3-1 0.059465 0.000304

596 2.464255
0.014011
(<0.05)S3-2 0.056052 0.000271

5000
S3-1 0.055786 0.000218

598 2.154696
0.031584
(<0.05)S3-2 0.053207 0.000212

Third, there exist promising implementation strategies for the ANN model, considering
the solution gap of OFV and response time. As underlined in this research, response time for
the VRP solution matters in the operational level. It is shown in Figures 11 and 12 that the
matrix creation time accounts for a large portion of the response time when road distance or
road time are to be used with the help of a routing engine. For more detailed analysis, the
average matrix creation time and problem-solving time presented in Figures 11 and 12 are
restated with more precise numbers in Table 5. In the table, the matrix size (N × N) refers
to the full cost matrix, (10 × n × n) refers to the partial cost matrix required for TSP for each
vehicle of ten, and (N × 50) refers to the partial cost matrix for 50 closest nodes.
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Table 5. Average matrix creation time and problem-solving time from experimental results.

Time Matrix Size Problem Size (N) OSM EucDist ANN

Matrix creation

(N × N)

100 5.12 s

<0.01 s <0.01 s

500 126.12 s

1000 505.13 s

(10× n× n)

100 0.52 s

500 12.79 s

1000 51.18 s

(N × 50)

100 2.57 s

500 12.80 s

1000 25.9 s

Problem-solving

(N × N)

100 2.72 s

500 28.46 s

1000 127.51 s

(10× n× n)

100 3.69 s

500 29.81 s

1000 130.17 s

(N × 50)

100 2.62 s

500 5.70 s

1000 9.82 s

A huge matrix creation time gap between using a routing engine and using estimations
is noted. For (N × N) OSM cost matrices, the average creation time is 5.12 s with 100 nodes,
126.12 s with 500 nodes, and 505.13 s with 1000 nodes. It is clear from the results that
matrix creation consumes much more time than problem-solving, from double to almost
quadruple in some cases. Moreover, the matrix creation time can be even greater with
more accurate commercial routing engine APIs. On the other hand, the creation of the
Euclidean distance matrix only takes an instant. Likewise, the ANN model, which has
already been trained in advance, takes only a split second given the simple structure
described in Section 3.2. Since the problem-solving is ignorant of how the cost matrices are
created, problem-solving times do not differ by the sources (OSM, EucDist, and ANN), as
expressed in the table. Considering the small OFV gaps in most cases and the dramatic
decrease in the response times, scenario ‘S3-1’ with Euclidean estimation and ‘S3-2’ with
the ANN model estimation are both acceptable implementation scenarios. However, it is
identified that the ANN model, provided with enough training time in advance, estimates
cost better, while having almost the same matrix creation time.

5. Conclusions

The use of straight-line distance, or Euclidean distance, heavily distorts the actual
travel cost, while the use of accurate routing engines requires a lengthy response time or
high usage fee. Alternative methods of obtaining better estimated cost matrices without
adding too much time or fee are worth consideration in VRP application.

This study constructed and trained an ANN model for estimating the travel cost
between two geo-coordinates within a bounded territory. The ANN model receives four
input values, which are the latitudes and longitudes for the two coordinates, and produces
two output values, the travel distance and time. The trained ANN model is compared
to the Euclidean estimation for performance evaluation using multiple criteria, including
MAPE, frequency and magnitude of closeness deception, and the ability to identify some
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number of closest neighbors. In every aspect of the evaluation, the ANN model is verified
to outperform the Euclidean estimation.

The ANN model is further examined for potential implementation strategies in VRP.
Scenarios are constructed to compare the utility of the ANN estimations when full or
partial cost matrices are used. As expected from the estimation performance evaluations,
using cost matrices from ANN estimation, instead of Euclidean estimation, results in
smaller OFV gap in VRP solutions. The differences in OFV gaps of the two estimation
methods are verified to be statistically significant. It is noted that given the training time in
advance, the matrix creation time for the ANN model is almost the same as the Euclidean
distance calculation.

Suggestions are made from the experimental results. When the VRP solution quality is
comprised of both OFV gap and response time, there exist promising VRP implementation
scenarios where the ANN estimations are used for cost matrix creation. Euclidean estima-
tions are also fast, but the ANN estimations produce better results with almost no increase
in matrix creation time. It is noted that in most performance evaluation criteria, distance
estimations were better than time estimations. The only measure in which the distance
estimations were poor in performance was the deception magnitude, but it did have a
major impact on the VRP solutions. The OFV gaps of using estimated distance matrices
turned out to be higher than using estimated time matrices. Accordingly, the performance
criteria of deception magnitude should be paid more attention in future research.

The ANN model in this study is not perfect. By the innate nature of machine learning,
the performance of the model is dependent on the training data. The estimations are only
valid within the specified bounding box, and any changes in the road network cannot be
immediately accommodated into the model. Moreover, the training data did not consider
different traffic conditions at different times of the day. Future research should be directed
by the model’s limitations. Research on ways to reflect changes in the network or the
traffic conditions are called for. Regarding traffic conditions, traffic speed prediction
methods [37,38] can be consulted in future research. This research verified that a simple
ANN model for cost matrix creation is worth implementing in VRPs. A simple structure
was employed considering the large size of targeted territory. However, ANN models with
higher accuracy are expected to bring even more benefit, and thus, improvements on the
model, such as different loss functions or different structures (deeper or larger), need to be
tested in future research.
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