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Abstract: Classification is one of the most-common machine learning tasks. In the field of GIS,
deep-neural-network-based classification algorithms are mainly used in the field of remote sensing,
for example for image classification. In the case of spatial data in the form of polygons or lines, the
representation of the data in the form of a graph enables the use of graph neural networks (GNNs) to
classify spatial objects, taking into account their topology. In this article, a method for multi-class
classification of spatial objects using GNNs is proposed. The method was compared to two others
that are based solely on text classification or text classification and an adjacency matrix. The use case
for the developed method was the classification of planning zones in local spatial development plans.
The experiments indicated that information about the topology of objects has a significant impact on
improving the classification results using GNNs. It is also important to take into account different
input parameters, such as the document length, the form of the training data representation, or the
network architecture used, in order to optimize the model.

Keywords: graph neural networks; spatial objects; spatial development plan; supervised classification;
machine learning

1. Introduction

The classification of spatial objects aims to assign a spatial object to the appropriate
class from a given set of classes based on the values of the object’s attributes. These charac-
teristics can be distance, direction, or topological relationships between spatial objects [1].
In geographic information systems (GISs), machine-learning-based classification algorithms
are widely used in the field of remote sensing. Both supervised and unsupervised learning
techniques are used for the classification of images such as aerial or satellite photos. Con-
volutional neural networks are particularly useful in such applications because they take
into account the topology and neighborhood of pixels using masks in the learning process.

The use of machine learning algorithms for raster data yields very good results and is
well described in the literature. However, for features represented in a vector model, the
preparation of data for machine learning is more difficult. In that case, a graph structure
is required to fully describe the topology, which cannot be projected onto a single vector.
Spatial data, represented as polygons such as cadastral parcels or planning zones, can
be represented as a graph where each node represents a spatial object (e.g., parcel) and
edges represent the neighborhood of the spatial object (that is, the topology in GISs).
GNNs are able to learn representations of each node by aggregating information from its
neighboring nodes and edges. This allows them to capture the contextual information
from the surrounding objects and improve the classification of the central object. In the
field of spatial planning, it is important to take into account the dependencies between the
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functions of individual areas. This relationship results from the fact that the function of a
given area is related to and often determined by the functions of neighboring areas. As a
result, it is important to take this dependence into account when predicting the function of
a specific area. In geographic information systems, this is a common problem that involves
many land features that are dependent on their neighbors.

Text classification is one of the most-popular tasks in machine learning. It is essentially
the process of assigning a given set of data (in this case, text documents) to one or more
classes assuming a predefined set of classes. There are a number of methods for classifying
documents, both supervised and unsupervised. These include algorithms such as support
vector machine (SVM), the naive Bayes classifier, and XGBoost. More advanced methods
include those that use large language models such as BERT and GPT-3.

The aim of this article is to develop a multi-class classification method for spatial
objects (represented as polygons) using graph neural networks, which takes into account
the textual description of the object and information about its geometry and mutual neigh-
borhood (topology) with other objects. We chose spatial development plans as a case study.
These are documents that consist of two integral parts: a graphical (plan drawing) and
a descriptive (plan text) part. The graphical part represents spatial objects such as the
boundary of the plan, planning zones, or other objects regulating land use, such as building
lines, restricted use zones, conservation zones, etc. All spatial objects that appear on the
plan drawing have a corresponding reference in the plan text. The basic reference unit in
the plan is the planning zone, for which detailed provisions are formulated regulating the
use of space in a given area. The basic information characterizing the planning zone is the
category of future land use, such as residential development areas, communication areas,
service areas, etc.

In the absence of a planning data model, as is the case in many European countries,
such as Poland, the heterogeneity of planning data models is very high. In addition, the
classifications of future land use are diverse. Currently, in the absence of a planning data
model, as well as a standard for the classification of land uses applied to planning zones,
there is still limited use of such data. It is not possible to integrate and comprehensively
compare them on a larger scale, such as an entire region [2]. The developed method
of classifying spatial objects using graph neural networks has been applied to spatial
development plans. In this case, it aims to support the process of standardizing the future
land use classification in plans and, thus, harmonizing them.

This article describes three methods for classifying planning zones based on fragments
of text and information on the mutual neighborhood of spatial objects. Two of these
methods are based on the use of the XGBoost classifier, while the third method uses graph
neural network models. In order to find the best of these models, a series of experiments
was conducted using the multilingual language model sentence embeddings to vectorize
the text [3,4] and various graph neural network models. The aim of the experiments was to
assign a specific future land use category to each planning zone.

The article is related to our previous work. In [2], we developed a model for classi-
fying planning zones using supervised and unsupervised learning methods. We used a
developed network architecture based on convolutional neural networks for this purpose.
In the created classification model, the training data consisted of text data, i.e., fragments
of text from plans. The model was trained on the basis of these data. However, in the
present study, we also took into account the mutual spatial relationships of objects, i.e.,
the arrangement of planning zones with respect to each other in geographical space. The
consideration of the spatial aspect was possible thanks to the use of graph neural networks.
They allowed for the consideration of the topology and geometric characteristics of objects
represented in the form of a graph.

2. Related Work

Deep learning has been successfully used for the analysis of raster data to detect
geographical features or phenomena based on images [5–8]. It is common to use neural
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networks to detect buildings or other spatial objects in satellite images [9] or to classify
land cover [10].

The graph as a mathematical structure is used to present and study the relationships
between objects. The representation of data as graphs, along with the registration of re-
lations between particular objects under consideration have been very popular in recent
years. Among the most-obvious applications of graphs are molecule representation, trans-
portation maps, social networks, citation networks, etc. The latter one, close to ours, is
constructed as follows. The nodes of the graph are scientific articles; each article is assigned
to one of the given categories; connections between articles (edges of the graph) are created
on the basis of citations, while the properties of individual nodes are keywords that describe
a given article.

Graph neural networks (GNNs) are a response to the need to process such mathemat-
ical structures as graphs. GNNs were introduced already in [11,12], but in recent years,
numerous publications have shown a growing interest in this subject, both at the level of
designing new structures of this type of neural network and their specific applications.

For example, the analysis of the molecule representations mentioned above led scien-
tists to discover new antibiotics [13,14]. Another example is the work [15], which presented
the prediction of the travel time solution used in Google Maps.

As a rule, graphs composed of nodes and their connecting edges do not contain
information about the spatial distribution of individual vertices. In publications related
to GISs, this is often the issue, where the GNNs are combined with, namely, the graph
structure of the data together with the geographic spatial position of the nodes. In the
literature, not only related to geographic data, it is possible to find solutions that address
this issue. An example would be the Spatial GNNs presented in [16]. Another solution,
based on positional encoder GNNs, was given in [17]. In the paper [18], a neighbor
supporting graph convolutional neural network was used for urban scene classification,
which consisted of visual and semantic features and exhibited spatial relationships among
land use types. Other examples of GNN applications in GISs include, for example, traffic
forecasting problems [19], road surface extraction from high-resolution remote sensing
images [20], or site selection tasks [21].

One of the most-popular datasets is the CORA citation dataset [22], which is freely
available, so there are plenty of examples of implementations using these data in the
literature. In addition, the example we present is from the field of natural language
processing (NLP); hence, the examples from the CORA set were easier for us to understand
and then develop towards our needs.

There are now a number of Python packages that support GNNs. Among them, it
is possible to find TensorFlow and Keras. However, there are a number of specialized
TensorFlow-based libraries that provide rich GNN APIs, such as Spektral [23] or Stel-
larGraph [24], while coding with TensorFlow might be rather low-level. Of course, the
approaches may be different; first of all, GNNs can be used in two main ways:

• Classification of nodes, where one extended graph is sufficient for the analysis, in
which we do not know the category of the nodes’ parts;

• Full graph classification, where, in the analyzed dataset, we must have a large number
of “full” graphs.

Each of the existing libraries provides the same or similar features, offering similar
structures of neural networks or individual layers, which can then be stacked into the
desired structures. It is worth noting that the graph can be understood as a strict general-
ization of the image. This observation allows for better understanding of the convolutional
GNN layer, mostly described in the GNN literature. In the image, each pixel can be treated
as a graph node, and each node has 4 or 8 neighbors, which determines the adjacency
matrix between nodes. The layers of graph neural networks used in this work are described
in the Methods Section.
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3. Methods: Graph Convolutional Neural Networks

In this section, we use the following notation:
Xin—input to a considered layer;
Xout—output of a considered layer;
D—diagonal degree matrix, which contains the number of edges attached to each node;
A—adjacency matrix;
Ã—adjacency matrix with added self-connections;
W, V—trainable weights matrices;
b—trainable bias vector;
Ni—neighborhood of node i;
I—identity matrix.
Due to the fact that, as we have already mentioned, the graph can be understood

as a generalization of an image, the so-called graph convolutional neural networks are
usually used. In the classical approach, the convolutional layer performs the convolution
operation of a filter, given in the form of a matrix, with the input image. The output of such
a convolutional layer can be presented as:

Xout = F ∗ Xin (1)

where F is the filter matrix and ∗ represents the convolution operation.
In graph convolutional layers, the filter of a matrix form is replaced with more so-

phisticated structures, i.e., polynomial filers. In this paper, we considered three types of
such GNNs. The first model, called the GraphSage Network (GCN) [25], is built from the
convolutional layer, the output of which can be described as

Xout = σ
(

D̃−1/2 · Ã · D̃1/2 · Xin ·W
)

(2)

where
D̃ii = ∑

j
Ãij (3)

and σ(·) stands for activation function, such as rectified linear unit (ReLU).
The GraphSage [26] architecture consists of a combination of GCNs and a neighbor-

hood aggregation mechanism. The GCNs are used to generate low-dimensional represen-
tations of each of the neighboring nodes, and these representations are then combined to
form a representation of the node itself. This is typically performed by concatenating or
averaging the representations of the neighbors.

The architecture contains an encoder, which is a GCN that takes as the input the
feature vector of a node and outputs a low-dimensional representation of the node. The
encoder is applied to the input node and to a fixed number of its neighbors, selected by a
neighborhood sampling strategy.

Then, the aggregator takes the representation of the input node, concatenates it with
the representations of its neighbors, and applies a fully connected layer to obtain the final
representation of the input node.

In the remaining three models, we used three types of graph convolutional layers:
a graph attention (GAT) layer, an auto-regressive moving average (ARMA) layer, and a
Chebyshev convolutional layer.

The GAT layer uses the attention mechanism [27], which has become a standard in
many sequence-based tasks [28,29]. The output of the GAT layer can be calculated as

Xout = α · Xin ·W + b (4)

where

αij =
exp

(
σ
(

aT
[
(XinW)i

∣∣∣(XinW)j

]))
∑

k∈Ni

exp(σ(aT [(XinW)i|(XinW)k ]))
(5)
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where a is a trainable attention kernel, σ(·) represents the LeakyReLU activation function,
and [·|·] denotes concatenation operation.

The ARMA layer [30] is designed as a stack of T graph convolutional skip (GCS) layers.
The output of a single GCS is calculated as

X(t+1)
= σ

(
D−1/2 ·A ·D−1/2 · X(t) ·W + X(0) ·V

)
(6)

where X(0)
= Xin and σ(·) is an activation function (ReLU, sigmoid, or hyperbolic tangent

(tanh)). Then, the output of the ARMA layer is calculated as

Xout =
1
K

K

∑
k=1

X(T)
k (7)

where K is the number of stacked GCS layers.
A Chebyshev layer [31] uses Chebyshev polynomials as filters. Its output is calculated as

Xout =
K−1

∑
k=0

T(k) ·W(k) + b(k) (8)

where T(0), T(1), . . . , T(K−1) are Chebyshev polynomials of L̃ of the form:

T(0) = Xin

T(1) = L̃ · Xin

T(k) = 2 · L̃ · T(k−1) − T(k−2) for k > 2

(9)

and
L̃ =

2
λmax

·
(

I−D−1/2 ·A ·D−1/2
)

︸ ︷︷ ︸
L

−I. (10)

L is a symmetrically normalized Laplacian of the graph, and λmax = max{λi}, where λi
are the eigenvalues of L.

In Figure 1, we present the structures of GAT, ARMA, and Chebyshev graph neural
networks (it is not common to represent GraphSage as a diagram). In the presented neural
network diagrams, question marks are used to represent the dimensions of the input or
output data, rather than specific values. This is because the exact dimensions of the data
may vary depending on the specific problem or dataset being used, and the diagrams are
meant to convey the general structure of the network, rather than the specific values it will
be working with. The use of question marks in these diagrams is a common convention
in the field of machine learning and artificial intelligence, as they allow the diagram to be
more general and applicable to a wide range of different problems and datasets. Another
reason to use question marks is that they allow showing the expected format of the input,
without going into the details of the specific data. This means that the network architecture
is designed to handle an input of a certain shape, without specifying how that input is
going to be.
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(A)
(B)

(C)

Figure 1. Structures of examined graph neural networks: (A) GAT, (B) ARMA, and (C) Chebyshev.

4. Experiment Description
4.1. Data Preparation

The data obtained for the purposes of the work included 19,948 spatial objects, i.e.,
planning zones along with their corresponding texts. The texts were detailed provisions
for each spatial object (see Figure 2). Depending on the method used, the prepared data
had different representations. In the experiments described in Section 4.2.1, the data only
included the texts of the detailed plans. In the experiments described in Section 4.2.2, both
text data and a neighborhood matrix of the planning zones were used. In the experiments
described in Section 4.2.3, the training data were prepared in the form of a graph containing
information about the mutual neighborhood of the planning zones, the category of the
zone, and its textual description. The preparation of the training data required labeling the
category of land use for the planning zones. Due to the lack of a standard for a uniform
classification of future land use in plans, it was necessary to adopt a simplified classification
for all zones. The labels for the training data were, therefore, categories of land use, from
which 8 classes were defined: agriculture, communication and infrastructure, forestry,
housing, mining and quarrying, natural areas, production, and services.

Figure 2. Representation of the data.
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4.2. Assumptions for the Experiments

The machine learning algorithms for supervised learning were trained using the
Sentence Transformers, TensorFlow, Stellargraph, Spektral, and NetworkX libraries in
Python 3.7. In the learning process, homogeneous areas of municipalities were selected in
order to maintain the spatial relationship between objects. As a result, 14 consistent regions
were distinguished. We applied the cross-validation technique using 7 folds to evaluate the
performance of our models.

In the experiments presented below, variants were used that differed in the length of
the training text data. Tests were performed for the first 35, 50, 100, 150, 200, and 300 words
in the texts of local plan provisions. The following subsections describe the classification
methods for spatial objects and the experiments performed in this regard. The proposed
flowchart for all methods is shown in Figure 3. In the method described in Section 4.2.1,
named the sent_trans method, the training data consisted only of the texts of the plans.
In the method described in Section 4.2.2, named the sent_trans_GIS method, the training
data included the texts of the plans and the adjacency matrix of the objects. In the method
described in Section 4.2.3, named the sent_trans_GIS_GNN method, the training data
included the text of the plans and the topology of the spatial objects, represented as a graph.

Figure 3. Flowchart of the proposed methods.

4.2.1. Classification of Spatial Objects Based on Text

In this method, a classifier was created using the corpus of the plan texts as the
input data. The vector representation of the text data was created using an embedding
generated using the Sentence Transformers model. Sentence Transformers are a type of
neural network model that allows for creating numerical representations of sentences or
text fragments, called embeddings. In this work, we used the language-independent BERT
sentence embedding model, which is a version of BERT. It has been trained to generate
embeddings, that is numerical representations of sentences or paragraphs of text in a way
that is not specific to any particular language. This means that the model can be used to
generate embeddings for text in any language, as long as it is entered in the appropriate
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format. The dimension of the embedding vector was 768. The XGBoost algorithm was used
to classify the texts [32].

4.2.2. Classification of Spatial Objects Based on Text and Adjacency Matrix

In this method, the training data included not only the corpus of the texts, but also
aggregated information about the direct neighborhood of the planning zones based on
the adjacency matrix. The adjacency matrix of the planning zones was developed for
two variants. The adjacency matrix is the sum of two pieces of information. The first is
information about which areas are neighbors, and the second is about the potential strength
of the interaction between them (the weight value). In the first variant, in the adjacency
matrix, spatial objects had equal weight values, i.e., values of 1, in the case of having a
neighbor, and 0, in the case of no neighbor. In the second case, the spatial weight value
of the neighborhood was based on the adjacency of the objects (common boundary). A
common boundary of the objects being compared is understood as a common segment
of non-zero length. The individual weights are defined as the ratio of the length of the
common boundary of two neighboring areas to the perimeter of the given area. The weights
are not symmetrical. Despite the common boundary, the perimeter of the areas is different,
so two neighboring objects sharing the same boundary may have different weights. If
the area is adjacent to at least two areas of the same category, the weight is the sum of
the weights of both of these objects. Like in the previous experiment, the embedding was
created using the language-agnostic BERT sentence embedding model, and XGBoost was
used as a classifier.

4.2.3. Classification of Spatial Objects Based on Text and Topology of Objects

The training data used in this method consisted of spatial and text data, which were
represented as a graph. The graph was based on the geometry of the spatial objects, their
topology, and the text description (Figure 4). Each node in this graph corresponds to the
identifier of the object, its land use category, and the text description.

Figure 4. Spatial and graph representation of spatial objects.

The textual description is represented in the form of an embedding, created, as in
previous methods, with the use of sentence Transformers. The edges, on the other hand,
describe the neighborhood relationships between the planning zones (see Figure 5). Thus,
by writing the data in the form of a graph, it is possible to represent the full topology of the
spatial objects.
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Figure 5. Representation of spatial objects in the form of a graph.

The experiments were performed for the four neural network structures described in
Section 3, namely GAT, ARMA, Chebyshev, and GraphSage.

5. Results and Discussion

The following drawings show the results of the evaluation of the methods devel-
oped in Section 4. Figure 6 shows the values of the F1 measure, which is the harmonic
mean of the precision and recall for different document lengths, using semantic Trans-
former embeddings, an XGBoost classifier, and graph neural networks (Chebyshev). The
sent_trans method described in Section 4.2.1 uses only the plan documents as the training
data. The sent_trans_GIS method described in Section 4.2.2 takes into account the spa-
tial neighborhood information in the form of an aggregated neighborhood matrix. The
sent_trans_GIS_GNN method uses a Chebyshev model based on the graph neural net-
works described in Section 4.2.3, in which spatial data and text representation in the form
of embeddings are stored in the form of a graph.

Figure 6. Comparison of F1-score for three different classification models for spatial objects.

It can be noticed that there are diverse F1-scores for the above-mentioned methods in
different document length categories. For the shortest documents (n = 35), poor F1 results
were achieved with all three methods, ranging from 0.669 for text-only classification to
0.723 for the use of a neighborhood matrix and 0.680 for GNNs. For the document length
n = 50, the F1 value was similar for all three methods and oscillated within the range of
0.826–0.831. For document lengths greater than 100 words, the model using graph neural
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networks outperformed the others, achieving F1 values of 0.925 for 100 words, 0.924 for 150,
0.945 for 200 words, and 0.935 for 300 words. It is worth noting that, for a document length
of 200 and 300 words, the other two models, namely the model using only text and the
model using the spatial object neighborhood matrix, had lower quality, with an F1 value of
0.897 to 0.913, compared to the graph neural-network-based model, where the F1 value
was, respectively, 0.945 and 0.935.

An example visualization of the classification results is shown in Figure 7, where
the classification of objects according to the method from Section 4.2.1 is presented. The
dimension of the embedding vector was reduced to two using principal component analysis
(PCA), and the category labels were assigned the corresponding colors.

Figure 7. T-SNE visualization of the embedding matrix generated with the language-agnostic BERT
sentence embedding model.

Figures 8 and 9 shows the waveforms of the accuracy and loss functions for the training
and validation sets for all considered GNNs and for all considered lengths of the input
sequences. In the case of the ARMA, Chebyshev, and GAT models, it was necessary to train
for up to 500 epochs to obtain satisfactory accuracy and loss values for the training and
validation sets, while in the case of the GraphSage model, about 20 epochs turned out to be
sufficient, after which, further training led to overtraining. Observing the accuracy and loss
waveforms, we can see that, when classifying texts with a length of 35, the models were
usually overtrained, but shorter training resulted in poor accuracy. For texts with a length
of 50 or more, we obtained correctly trained models.
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A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A5 B5 C5 D5

A6 B6 C6 D6

Figure 8. Accuracy waveforms for the (A) ARMA, (B) Chebyshev, (C) GAT, and (D) GraphSage
models, which considered: 1. 35, 2. 50, 3. 100, 4. 150, 5. 200, and 6. 300 words.
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A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

A4 B4 C4 D4

A5 B5 C5 D5

A6 B6 C6 D6

Figure 9. Loss waveforms for the (A) ARMA, (B) Chebyshev, (C) GAT, and (D) GraphSage models,
which considered: 1. 35, 2. 50, 3. 100, 4. 150, 5. 200, and 6. 300 words.
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Figure 10 shows the F1 values for all tested graph neural network architectures using
different document lengths. The best quality was achieved by the Chebyshev model, with
an F1 measure of 0.945 for document lengths n = 200. It can be seen that the results were
slightly worse at a 300 word length than at a 200 word length. It can be noticed that the
best results occurred with document lengths of 200. This situation resulted from the fact
that the key information about the land use of the planning zones was at the beginning
of the document, which is consistent with the way of formulating text arrangements for
individual areas in the plans. Such models that are used to classify documents can be
sensitive to the document length because longer documents can contain more information
and be more difficult to classify.

(A) (B)

(C) (D)

(E) (F)

Figure 10. Comparison of the quality of three graph neural network models, ARMA, Chebyshev,
and GraphSAGE, for different document lengths measured by word count. (A) 35, (B) 50, (C) 100,
(D) 150, (E) 200, and (F) 300.

Figure 11 shows selected confusion matrices for the ARMA, Chebyshev, GraphSage,
and XGBoost models. For each model, we chose two matrices with the best results (in our
opinion), for different lengths of the analyzed texts: ARMA for 150 and 200 words, Chebyshev
for 150 and 200 words, GraphSage for 200 and 300 words, and XGBoost for 150 and 200 words.
By analyzing all the matrices, for all the considered lengths of the analyzed texts, it can be
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seen that the quality of the classification improved with the increase in the number of words.
Analyzing the matrices, we can observe a high imbalance in the data that we considered,
which usually strongly affects the quality of the classifier. In this case, taking into account
information about the vicinity of objects significantly improved the quality of the classifiers.
Additionally, it is possible to observe that the ARMA model did not detect the seventh class
even for a larger number of words. Surprisingly, the Chebyshev neural network recognized
this class for a smaller number of considered words. However, due to the small number of
texts in this class, it can be seen that it was a problem for most models.

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

A6 B6 C6 D6 E6 F6

Figure 11. Confusion matrices for models: (A) ARMA, (B) Chebyshev, (C) GAT, (D) GraphSage,
(E) XGBoost, and (F) XGBoost with the GIS, which considered 1. 35, 2. 50, 3. 100, 4. 150, 5. 200,
and 6. 300 words.
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To compare the efficiency of trained models, we executed pairwise paired t-tests
with the Benjamini–Hochberg correction for multiple comparisons at the 95% confidence
level [33]. For this purpose, we randomly repeated the selection of seven folds for the
models’ evaluation three times. The results were used to conduct a statistical test. We
found that the Cheby GNN outperformed all other models with its mean F1-score equal to
0.945. The second-best model was GraphSage (F1 = 0.935), which was indistinguishable in
the t-test from Cheby (F1 = 0.913, p = 0.252), but worked better than XGBoost (F1 = 0.910,
p = 0.021) and less efficient than GAT (p < 0.001) and ARMA (p < 0.001). The baseline GAT
model was the least-successful model with its poor performance (F1 = 0.60). The ARMA
model (F1 = 0.846) worked much better than GAT, but was beaten by all other approaches.
The results of the tests are presented in Table 1.

Table 1. Results of paired pairwise t-tests.

Model 1 Model 2 Fdr_bh

GAT Cheby 0.000
GAT ARMA 0.000
GAT GraphSage 0.000
GAT sent_trans_GIS 0.000
GAT sent_trans 0.000
Cheby ARMA 0.000
Cheby GraphSage 0.252
Cheby sent_trans_GIS 0.025
Cheby sent_trans 0.021
ARMA GraphSage 0.000
ARMA sent_trans_GIS 0.000
ARMA sent_trans 0.000
GraphSage sent_trans_GIS 0.113
GraphSage sent_trans 0.101
sent_trans_GIS sent_trans 0.101

6. Conclusions

In summary, the classification method based on GNNs presented in this article gave
better results than the methods based solely on spatial objects represented as text embed-
dings or text embeddings with an adjacency matrix only. These conclusions were confirmed
by the statistical tests. Testing the algorithms on short texts was intended to check the
impact of neighborhood information on the classification result. Reducing the length of the
text caused a deterioration in the classification results for the methods using embedding
and highlighted the importance of topological information for classification quality.

The conducted experiments clearly indicated that topological information is important
in the process of classifying spatial objects. The developed method was tested for spatial
objects such as planning zones in spatial development plans. The specificity of spatial
planning is holistic, and the functions of neighboring lands are interdependent. However,
we believe it is universal and can be applied to other vector data, where objects’ geome-
try and topology are represented as a graph and object features are written in the form
of embeddings.

The method using text and the adjacency matrix, although it gave good results, had
limited application only to individual objects. Information about the categories of adjacent
areas is required as the input data for prediction. Therefore, in the case of the need to
predict a category of land use for the entire area, not a single object, this method is not
applicable. It is different in the case of the method based on GNNs, where the adjacency
matrix is not required and the prediction of new categories is based on the created graph
and object features represented as embeddings.

Combining spatial information with lexical knowledge bases is a tempting direction
of development. Sajjadian and Scheider [34] used WordNet to enrich the content of users’
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queries in geodata source retrieval. We plan to use the Polish WordNet [35] to describe the
predicates of the spatial graph using lexical information, which in combination with the
language model (in a hybrid approach) should bring interesting results.
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Iwona Kaczmarek, Aleksandra Świetlicka, and Adam Iwaniak; visualization, Aleksandra Świetlicka;
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16. Danel, T.; Spurek, P.; Tabor, J.; Śmieja, M.; Struski, Ł.; Słowik, A.; Maziarka, Ł. Spatial Graph Convolutional Networks. arXiv 2019,
arXiv:1909.05310. [CrossRef].

17. Klemmer, K.; Safir, N.; Neill, D.B. Positional Encoder Graph Neural Networks for Geographic Data. arXiv 2021, arXiv:2111.10144.
[CrossRef].

18. Xu, Y.; Jin, S.; Chen, Z.; Xie, X.; Hu, S.; Xie, Z. Application of a graph convolutional network with visual and semantic features to
classify urban scenes. Int. J. Geogr. Inf. Sci. 2022, 36, 2009–2034. [CrossRef]

19. Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [CrossRef]
20. Yan, J.; Ji, S.; Wei, Y. A Combination of Convolutional and Graph Neural Networks for Regularized Road Surface Extraction.

IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]
21. Lan, T.; Cheng, H.; Wang, Y.; Wen, B. Site Selection via Learning Graph Convolutional Neural Networks: A Case Study of

Singapore. Remote Sens. 2022, 14, 3579. [CrossRef]
22. Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi-Rad, T. Collective Classification in Network Data. AI Mag. 2008,

29, 93. [CrossRef]
23. Grattarola, D.; Alippi, C. Graph Neural Networks in TensorFlow and Keras with Spektral. arXiv 2020, arXiv:2006.12138.

[CrossRef].
24. CSIRO’s Data61. StellarGraph Machine Learning Library. GitHub Repository 2018.
25. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.

[CrossRef].
26. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2017, arXiv:1706.02216.

[CrossRef].
27. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need.

arXiv 2017, arXiv:1706.03762. [CrossRef].
28. Bahdanau, D.; Cho, K.; Bengio, Y. Neural Machine Translation by Jointly Learning to Align and Translate. arXiv 2014,

arXiv:1409.0473. [CrossRef].
29. Gehring, J.; Auli, M.; Grangier, D.; Dauphin, Y.N. A Convolutional Encoder Model for Neural Machine Translation. arXiv 2016,

arXiv:1611.02344. [CrossRef].
30. Bianchi, F.M.; Grattarola, D.; Livi, L.; Alippi, C. Graph Neural Networks with Convolutional ARMA Filters. IEEE Trans. Pattern

Anal. Mach. Intell. 2021, 44, 3496–3507. [CrossRef]
31. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

arXiv 2016, arXiv:1606.09375. [CrossRef].
32. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the KDD’16: 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Francisco, CA, USA, 13–17 August 2016; ACM: New York,
NY, USA, 2016; pp. 785–794. [CrossRef]

33. Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R.
Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. . [CrossRef]

34. Sajjadian, M.; Scheider, S. Geodata source retrieval by multilingual/semantic query expansion: The Case of Google Translate and
WordNet version 3.1. AGILE GISci. Ser. 2022, 3, 60. [CrossRef]
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