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Abstract: Cloud and cloud shadow detection are essential in remote sensing imagery applications.
Few semantic segmentation models were designed specifically for clouds and their shadows. Based on
the visual and distribution characteristics of clouds and their shadows in remote sensing imagery, this
paper provides a multi-supervised feature fusion attention network. We design a multi-scale feature
fusion block (FFB) for the problems caused by the complex distribution and irregular boundaries
of clouds and shadows. The block consists of a fusion convolution block (FCB), a channel attention
block (CAB), and a spatial attention block (SPA). By multi-scale convolution, FCB reduces excessive
semantic differences between shallow and deep feature maps. CAB focuses on global and local
features through multi-scale channel attention. Meanwhile, it fuses deep and shallow feature maps
with non-linear weighting to optimize fusion performance. SPA focuses on task-relevant areas
through spatial attention. With the three blocks above, FCB alleviates the difficulties of fusing
multi-scale features. Additionally, it makes the network resistant to background interference while
optimizing boundary detection. Our proposed model designs a class feature attention block (CFAB) to
increase the robustness of cloud detection. The network achieves good performance on the self-made
cloud and shadow dataset. This dataset is taken from Google Earth and contains remote sensing
imagery from several satellites. The proposed model achieved a mean intersection over union (MIoU)
of 94.10% on our dataset, which is 0.44% higher than the other models. Moreover, it shows high
generalization capability due to its superior prediction results on HRC_WHU and SPARCS datasets.

Keywords: cloud and cloud shadow detection; convolutional neural networks; remote sensing;
semantic segmentation

1. Introduction

Detection of clouds and their shadows is essential in preprocessing optical remote
sensing images. That is because they may obscure the task-relevant objects, thus causing
difficulties for various remote sensing applications, such as land cover detection [1], flood
monitoring [2], and forest change analysis [3]. Therefore, it is crucial to segment clouds
and their shadows before applying remote sensing imagery. Traditional algorithms are
based on the spectral and geometric properties of clouds and shadows. A cloud has specific
spectral properties in different bands so that they can be recognized by specific spectral
thresholds [4,5]. Due to the spectral uncertainty of cloud shadows, geometric relationships
are often utilized to locate the shadow corresponding to the cloud. Specifically, the relative
position of the cloud and its shadow is calculated to recognize the corresponding shadow
based on prior knowledge (the satellite sensor view angle, the satellite sensor altitude, the
illumination angle, etc.) [6]. It helps to make up for the shortcomings of spectral analysis.

Zhu et al. suggested an algorithm termed function of mask (Fmask) for detecting
clouds and their shadows in Landsat imagery [6]. The technique combines spectral thresh-
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olds with cloud probability algorithms (including temperature, brightness, and spectral
variability algorithms) to derive potential cloud layers. Then, it matches potential cloud
shadow layers through geometric analysis to generate the final cloud and cloud shadow
masks. After that, several improved versions were developed [7–10]. Li et al. offered an
automatic multi-feature combined (MFC) approach to locate the cloud and its shadow in
GF-1 WFV imagery. The method enhances the performance of cloud and shadow recog-
nition based on their textural features [11]. In addition to the single-image method, the
multi-temporal method was employed to recognize clouds and their shadows. Since they
have significant spectral changes in time series, their characteristic information can be
captured at various times to detect the cloud and its shadow [12–14].

The algorithms described above are computationally challenging and require a large
amount of prior knowledge. Furthermore, they limit the range of applications to a large
extent, as they are primarily designed for specific sensors. Increasing numbers of machine
learning algorithms are employed in clouds and their shadow segmentation as a result of
the advancement of machine learning. They can automatically learn the optimal model,
saving time and reducing manpower costs. Traditional machine learning algorithms such
as decision trees [15,16], random forests [17–19], and neural networks [20,21] were used
to detect cloud and cloud shadow. However, these methods still rely on spectral analysis.
They are scarcely applicable to images from muti-sensors since the multi-spectral bands of
remote sensing imagery generally vary from satellite to satellite.

Deep learning, as a branch of machine learning, recently developed rapidly in the field
of image processing. More and more semantic segmentation networks (such as SegNet [22],
FCN [23], DeepLab [24], and UNet [25]) are used to locate clouds and shadows. These
algorithms, based on convolutional neural networks (CNNs), can consider both spatial and
spectral information. Furthermore, they have the advantages of simple data preprocessing,
convenient operation, wide applicability, and more. Shendryk et al. applied CNN to detect
clouds and their shadows in multi-sensor imagery, proving the potential of CNN [26]. Segal-
Rozenhaimer et al. combined CNN and the domain adversarial neural network (DANN)
to segment clouds and shadows in multi-sensor imagery [24]. They experimentally proved
that DeepLab [27] had higher prediction accuracy than VGG-16 [28]. Wieland et al. proved
the superior performance of UNet for segmenting clouds and their shadows on the SPARCS
dataset [25].

To further improve segmentation performance, semantic segmentation networks, as a
universal network model, can adjust the network structure according to the characteristics
of the segmented objects. Some customized semantic segmentation networks were used in
the field of remote sensing, such as change detection [29,30], land cover [31–33], and water
body segmentation [34–36]. However, because most semantic segmentation networks are
based on CNNs, they face challenges such as reduced feature resolution (caused by max
pooling and down-sampling operations) and being easily trapped in local information
(caused by convolutional kernels), making it difficult to segment boundaries and small-scale
objects. Several improvement measures, such as dual-branch structure [37,38], multi-scale
fusion [39], and attention mechanism [40–43], were proposed to address these challenges.

For now, few researchers designed semantic segmentation models specifically for
clouds and cloud shadows based on their visual and distribution properties in the imagery.
There are three characteristics of cloud and shadow images.

(1) Clouds and their shadows have complex and diverse boundaries, uneven distribution,
and large-scale changes. As is mentioned above, although the general semantic
segmentation models can extract rich semantic information, it is easy to overlook
details and they are not friendly to the boundary and small-scale segmentation. Multi-
level fusion mechanisms were used to overcome this shortcoming [44–46]. This
enhances the performance of the model by fusing shallow feature maps with rich
location information and deep feature maps with abundant semantic information.

(2) Cloud and cloud shadow images have complex and diverse backgrounds since they
carry massive amounts of information about ground objects. The high-intraclass and
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low-interclass variance make semantic segmentation more difficult. The problem of
how to segment small-scale targets from interference deserves to be studied.

(3) Clouds have a unique visual appearance in imagery but can still be mistaken for other
objects under some backgrounds. Cloud shadows are also difficult to identify under
certain circumstances.

Based on the above characteristics of clouds and their shadows in remote sensing
imagery, our model made the following three innovations:

(1) This paper designs a multi-scale feature fusion block. Unlike existing multi-scale
feature fusion networks [23,47], which fuse features in a simple linear fashion, the
block we built allows the network to automatically learn the parameters that aid in
selecting appropriate feature representations from deep and shallow feature maps.

(2) This work develops a multi-scale channel attention mechanism to focus on local
as well as global information, hence improving the expression of local features. It
can assist us in more precisely identifying cloud shadow boundaries and detailed
information. The background of remote sensing images is complex and diverse, and
paying too much attention to local details may introduce interference. As a result, we
also added a spatial attention mechanism to focus on task-related areas while limiting
background interference.

(3) Some clouds and shadows are inconspicuous. Since they have unique properties, we
provided a class feature attention mechanism to learn class features. It helps balance
background interference and local representations.

2. Proposed Network

Based on the previous discussion, a semantic segmentation network is suggested to
address the challenges of cloud and shadow detection. This section presents the architecture
of the proposed network for the detection of clouds and shadows. Next, the sub-modules, in-
cluding the fusion convolution blocks (FCB), channel attention blocks (CAB), spatial attention
blocks (SPA), and category feature attention blocks (CFAB), will be discussed in detail.

2.1. Network Architecture

Our model is based on the encoder–decoder structure. The encoder conducts feature
extraction, gradually reducing the resolution of features and enriching them with semantic
information. We chose to use a residual network (ResNet) as the encoder since its residual
blocks help resolve issues with gradient explosion and disappearance resulting from net-
work deepening [48]. Many researchers improved ResNet with different versions [49–52].
Merely replacing ResNet with the improved versions in our model framework can improve
the experimental results. The decoder gradually recovers lost spatial details from the
encoder’s features, which is critical for semantic segmentation. Our model focuses on de-
signing the decoder to ensure that it recovers lost details and spatial information efficiently.
As shown in Figure 1, the decoder in our model comprises four feature fusion blocks (FFBs)
and one category feature attention block (CFAB). Each FFB consists of two fusion convolu-
tion blocks (FCBs), a channel attention block (CAB), and two spatial attention blocks (SPA).
FFBs fuse low-level and high-level feature maps by extracting multi-scale features, thus
recovering the lost details. FCBs reduce the significant semantics gap between shallow
and deep feature maps. CAB learns the importance of each channel to achieve remarkable
segmentation performance with a slight increase in computation. SPA reconstructs the
spatial details to focus on the task-related areas. CFAB is introduced after the final FFB to
enhance semantic information by learning class features. These blocks will be described in
detail later.
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Figure 1. Framework of our proposed cloud and shadow detection network. Here, C represents the
number of channels, N represents the number of classes, and H, W represent the height and width of
the input images.

ResNet comprises five encoder stages, depicted in Figure 1. The initial stage, known
as Res-0, performs a 7 × 7 convolution with a stride of 2. Subsequently, the feature maps
are subsampled by maximum pooling, resulting in a 1/4 size reduction prior to entering
the remaining four stages. The four subsequent stages are constructed using bottlenecks
and exhibit comparable architectures. The decoder receives the output features from the
five encoder stages as input. To reduce computation, the decoder compresses the output
channels of the latter four encoder stages. A 1 × 1 convolution is applied to halve the
number of channels. Auxiliary training can enhance the predictive performance of the
model and hasten the network convergence. Our model is equipped with auxiliary heads
to supervise each decoder stage. The segmentation head (seg head) generates prediction
maps during auxiliary training. The seg head utilized for both main and auxiliary training
is made up of convolution and dropout layers. The decoder is augmented with these heads
at each FFB for auxiliary training purposes.

2.2. Feature Fusion Block (FFB)

Feature fusion of different scales can improve the performance of semantic segmen-
tation. Shallow feature maps have a high resolution with more location and detailed
information. They pass fewer convolutions with more noise and less semantic information.
Deep feature maps have significant semantic information, but they have a low resolution
and poor detail perception. Efficiently fusing both is crucial when it comes to enhancing
segmentation accuracy. The feature fusion block implements this function. Usually, the
common feature fusion is achieved through simple linear operations such as summation or
concatenation. However, merely adding or concatenating features can result in significant
inconsistencies in scale and semantics and may limit the model’s performance. The fusion
convolution block in this paper processes the shallow and deep feature maps before they
fuse. It reduces excessive semantic differences. Another measure to overcome this difficulty
is to learn the importance of fusion features and then fuse features again through nonlinear
weight. Some previous researchers used these methods, such as SKNet and ResNeSt. They
learn fusion weights through the global channel attention mechanism [50,52]. However,
these methods are suitable for global information but not for small targets. Our objectives
are to detect both massive cumulus clouds and small discrete clouds. Since detecting targets
of different scales is vital, this work offers a multi-scale channel attention mechanism that
focuses on global and local information.

FFB comprises FCB, CAB, and SPA. Figure 2 illustrates the structure of the feature
fusion block. The shallow and deep features extracted by the backbone network are used
as inputs. The deep feature maps are first up-sampled. Then, the deep and shallow feature
maps pass through FCB, respectively, and are fused for the first time. After that, the
fusion feature maps pass through CAB, which will be introduced in the next section, to
obtain fusion weights. Then, the shallow and deep features are weighted on the channel
dimension, respectively. SPA, which will also be introduced in the following section, is
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added to the weighted feature maps to provide better spatial information. Finally, the
processed shallow and deep features are fused again.

Figure 2. Feature fusion block. Here, FCB represents the fusion convolution block, CAB represents
the channel attention block, and SPA represents the spatial attention block.

The shallow feature information X0 ∈ RC×H×W and the deep feature information
Y0 ∈ RC×H×W are first processed by FCB and then element-wise added to obtain the
fusion feature information F ∈ RC×H×W, where C, H, and W represent the channel count,
height, and width of the input maps. Ms and Mc refer to the spatial and channel attention
operation, respectively. The operating procedure of FFB is as follows:

F = FCB(X 0) + FCB(Y 0) = X + Y (1)

X′ = Mc(F)⊗ X (2)

Y′ = (1−Mc(F))⊗ Y (3)

F′ = Ms
(

X′
)
⊗ X ′ + Ms

(
Y′
)
⊗ Y′ + X′ + Y′. (4)

The symbols + and ⊗, respectively, denote the element-wise addition and multipli-
cation in the given formulas. X0 and Y0 represent the original shallow and deep features,
while X′ and Y′ denote the channel-wise weighted shallow and deep feature information.
F′ represents the final fusion feature information. The sigmoid activation function in Mc
constrains the fusion weights Mc(F) from 0 to 1. Subtracting the fusion weights from 1 aims
to calculate the weighted average of X and Y, which is equivalent to a soft selection. The
fusion weights are learned during training.

2.2.1. Fusion Convolution Block (FCB)

Large semantic differences between the two input feature maps significantly affect the
fusion weights and limit the semantic segmentation performance. To address this issue, this
paper proposes FCB. This block is made up of two multi-scale convolution blocks and is
inspired by residual connections in the middle layer of Res2Net [49]. The features first pass
through the first point-wise convolution layer and are split equally into six subsets along
the channel dimension, as shown in Figure 3. The first point-wise convolution layer adjusts
the channel number to multiples of 6 (C//6×6, where C represents the channel number).
To reduce the number of model parameters, five of these sub-features undergo 1 × 3 and
3 × 1 convolution kernels instead of a single 3 × 3 convolution kernel. Then, the feature
maps are reconstructed by concatenating the six subsets and passing a 1 × 1 convolution
layer. Finally, the processed features and the initial features are element-wise added to
form the output feature maps. This block achieves more fine-grained receptive fields at the
convolution level.
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Figure 3. Multi-scale convolution block.

The feature subsets are denoted by xi, where i ranges from 1 to 6. The number of
channels per subset is one-sixth of the original. Except for x1, each xi goes through 1 × 3
and 3 × 1 convolution kernels, denoted by Ci(·). Thus, each output yi can be written by
the following formula:

yi =


xi i = 1
Ci(xi) i = 2
Ci
(
xi + yi−1

)
2 < i 6 6

. (5)

2.2.2. Channel Attention Block (CAB)

CAB focuses on the information from the channel dimension. Each channel of the
feature maps represents a feature, and CAB obtains the importance of each channel to
assign a weight value. This enables CAB to enhance or suppress the corresponding feature
by learning the importance of each channel. To obtain the importance of each channel,
each feature map of size H ×W is typically compressed into a scalar. However, this rough
operation is only suitable for large targets, not for small ones. To address this issue, this
paper proposes the improved channel attention block.

Figure 4 shows the structure of our CAB. The upper and lower branches, respectively,
employ the global and local channel attention mechanisms. The dual-branch design
mitigates issues associated with the spatial variability of clouds and their shadows, as it
obtains channel attention at multiple scales. Subsequently, the outputs of the two branches
are element-wise added and passed through a sigmoid nonlinear activation function to
obtain channel weights.
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Figure 4. Channel attention block. Here, Favg
C represents average pooling, and F1×1 represents a

point-wise convolution layer.

The fusion feature information F ∈ RC×H×W is taken as the input of our CAB. The
global attention branch includes average pooling Favg

C , and a point-wise convolution layer
F1×1. Pointwise convolution (1 × 1 convolution), rather than larger convolution kernels, is
selected to reduce the computational complexity of our proposed module. The process of
our proposed channel attention operation Mc is formulated as:

Favg
C (F) =

1
HW

H

∑
i=1

W

∑
j=1

F(i, j) (6)

F1×1(F) = B(f1×1
2

(
Relu

(
B
(

f1×1
1 (F)

)))
) (7)

Mc(F) = σ(F1×1
(

Favg
C (F)

)
+ F1×1(F)). (8)

In the given formulas, f1×1 represents 1× 1 convolution, B represents batch normaliza-
tion, and Relu and σ represent the Relu and sigmoid activation functions; f1×1

1 reduces the
number of input feature channels to 1

r of the original, while f1×1
2 restores the initial number

of channels. Here, r represents the channel scaling ratio.

2.2.3. Spatial Attention Block (SPA)

Spatial information plays a vital role in image segmentation because even the slightest
positional change can significantly impact the segmentation results. Therefore, it is neces-
sary to incorporate spatial attention (SPA) to boost spatial information. Shallow features are
rich with location information, while deep features contain effective semantic information.
Passing both shallow and deep features through SPA enhances spatial information further.
Average pooling is the most common way of aggregating spatial information. Alternatively,
maximum pooling gathers unique spatial details from average pooling, enhancing the
most representative spatial information. Previous research showed that combining both
average and maximum pooling in spatial attention mechanisms leads to performance
improvements [53].

As shown in Figure 5, the input feature maps Z ∈ RC×H×W undergo maximum and
average pooling to obtain two one-channel features, Favg

s (Z) ∈ R1×H×W and Fmax
s (Z) ∈

R1×H×W, respectively. Next, these two features are concatenated together. Finally, the stitched
feature maps pass through a 7 × 7 convolution layer and a nonlinear activation function to
obtain spatial weights. The process of the proposed spatial attention operation Ms can be
represented as follows:

Favg
s (Z) =

1
C

C

∑
k=1

Z(k) (9)

Fmax
s (Z) = max(Z(k)), for k = 1, 2, . . . (10)

Ms(Z) = σ
(

f7×7
(

concat
(

Favg
s (Z), Fmax

s (Z)
)))

. (11)
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Figure 5. Spatial attention block. Here, Favg
s represents average pooling, Fmax

s represents maximum
pooling, and f7×7 represents 7 × 7 convolution.

Here, f7×7 represents 7 × 7 convolution, concat represents concatenation along chan-
nels, and σ represents sigmoid activation function. Z could be X′ or Y′ as mentioned in
the above section.

2.3. Category Feature Attention Block (CFAB)

Remote sensing images have complex geological backgrounds. The high-intraclass
and low-interclass variance make cloud and cloud shadow segmentation difficult. Inspired
by OCRNet [54], a category feature attention block (CFAB) is designed in the proposed
model to learn class feature representations. Figure 6 illustrates the architecture of the
CFAB, which accepts two inputs: the output feature maps from the last feature fusion block
(FFB) in the decoder stage and the coarse semantic segmentation maps derived from it.
By taking the product of these two inputs, the CFAB generates class feature maps with
each column representing feature representations of a specific class. The coarse semantic
segmentation maps are used directly as attention maps, and the class feature maps are
multiplied with them to calculate class attention feature maps. Finally, these class attention
feature maps are merged with the original feature maps as the final output.

Figure 6. Category feature attention block. Here, N represents the number of classes, and
K, H, and W represent the channel, height, and width of feature maps.
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The feature maps F ∈ RK×H×W, marked in blue in Figure 6, are reshaped into a two-
dimensional vector F ∈ RK×H∗W. Each column of F represents the K features of a given
pixel. Similarly, the coarse semantic segmentation maps S ∈ RN×H×W, marked in orange,
are reshaped into a two-dimensional vector S ∈ RH×W×N. Each row of S represents the
class probability of a given pixel. The class feature Fc ∈ RK×N, marked in red, is calculated
by the matrix multiplication formula Fc = F× S. Each column of Fc represents the K
features of a given class. Specifically, it consolidates the feature representations of all pixels
that are classified as a given class. Pixels that have high probability values in S are more
likely to be accurate, so they should have more significant contributions while computing
class features. Therefore, the class attention feature Fa ∈ RK×H×W, marked in pink in
Figure 6, is applied. It is calculated by the matrix multiplication formula Fa = Fc × ST. In
this way, the CFAB can create a mapping of features from pixels to categories and back
to pixels, and it can extract the feature information of pixels that share the same category
more effectively.

To confirm the efficacy of CFAB, the heatmaps of output features without and with
CFAB are shown in Figure 7. The heatmaps denote high-weight areas in red and low-weight
areas in blue. Figure 7 depicts that the network with CFAB exhibits higher weights at cloud
and shadow boundaries. In particular, for thin clouds in the white box and cloud shadows
that tend to be confused with the background in the red box, the CFAB can allocate more
attention to them. Therefore, the model with CFAB is more accurate and stable in predicting
clouds and cloud shadows.

Figure 7. (a) Test image and its label; (b) heatmaps without CFAB; and (c) heatmaps with CFAB. In
(b,c), the top row shows the heatmaps focusing on clouds, while the bottom row shows the heatmaps
focusing on cloud shadows. The white and red rectangles highlight the regions where CFAB has
made a considerable impact on the model’s performance.

3. Experiments and Result Analysis
3.1. Experimental Datasets

The dataset used in this study for clouds and cloud shadows was derived from high-
resolution remote sensing imagery available on Google Earth. The majority of the images
in this dataset were obtained from QuickBird and WorldView-4 satellites. QuickBird satel-
lite images contain a panchromatic band (450–900 nm), a blue band (450–520 nm), a green
band (520–600 nm), a red band (630–690 nm), and a near-infrared band (760–900 nm). The
WorldView-4 sensor captures the remote sensing images in specific bands, including a panchro-
matic band (450–800 nm), a blue band (450–510 nm), a green band (510–580 nm), a red band
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(655–690 nm), and a near-infrared band (780–920 nm). To ensure credible experimental results,
several high-resolution images with complex and changeable backgrounds were selected as
the original image data. These images, distributed in the plains of China, have a resolution
of 30 m. The chosen images contain various backgrounds, including urban areas, farmland
areas, plant areas, water areas, and wasteland areas.

The original high-resolution cloud and shadow images were resized to 224 × 224
in size, considering the limitation of GPU memory. These images have three channels,
RGB. A total of 1916 images were obtained by cropping and filtering, 1545 images among
them were utilized for training, and 371 were used as the validation set. We manually
labeled and classified each pixel of the cloud and shadow images into three categories:
backgrounds, clouds, and shadows. The annotations were performed by a team of five
trained annotators who are engaged in the field of remote sensing images. The annotators
worked independently. In cases where there was disagreement, the annotators discussed
the examples until a consensus was reached. The decision process was based on full
agreement, meaning that all five annotators had to agree on the classification of a feature
before it was included in the dataset. Figure 8 illustrates several representative images
and their corresponding labels with various backgrounds, where clouds, shadows, and
backgrounds are labeled in red, green, and black, respectively.

Figure 8. Some cloud images and their labels against different backgrounds. Clouds, cloud shadows,
and backgrounds are marked red, green, and black, respectively. (a) urban areas; (b) farmland areas;
(c) plant areas; (d) water areas; and (e) wasteland areas.

The generalization experiments were conducted on the public datasets, namely the
HRC_WHU and SPARCS datasets, to prove the generalizability and validity of our model.
The lab from Wuhan University offered the HRC WHU dataset [55]. The dataset contains
150 high-resolution images from around the world, with resolutions ranging from 0.5 to
15 m. The images come from Google Earth, and only clouds were labelled. The backgrounds
of these images are divided into five main types of land cover (i.e., snow, urban, wasteland,
plant, and water). To preserve GPU memory, 150 high-resolution images from HRC_WHU
were cropped into 3488 images of the size 3 × 224 × 224. The training and validation sets
were divided into a 4/1 ratio, with 2791 and 697 images, respectively.

The SPARCS dataset was produced by a team from Oregon State University. The
dataset contains 80 images of the size 1000 × 1000 pixels with 10 wavebands [56]. The
images were collected from the Landsat8 satellite in 2013 and 2014. Clouds, cloud shadows,
snow, water, and backgrounds were labelled. Due to memory constraints, 80 images of
size 1000 × 1000 from SPARCS were resized into 256 × 256, and the red, green, and blue
(RGB) channels were selected as the image channels. A total of 1280 images were obtained.
The model is vulnerable to overfitting due to the limited training data. Thus, the SPARCS
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dataset needs to be expanded. This paper used random rotation and vertical and horizontal
flips to augment the original 1280 images to 3168 images. The training and validation
datasets were divided into 2534 and 634 images, respectively.

3.2. Execution Details

All works rely on the device equipped with NVIDIA GeForce RTX 3080. The operation
platform is Windows, and the software platform is PyTorch 1.10.0.

3.2.1. Super Parameter Setting

The learning strategy affects the final training outcome, so choosing the right learning
strategy is crucial. Our experiments set the initial learning rate, batch size, and iterations
to 0.0001, 16, and 200, respectively. Considering that the Adam optimizer can converge
quickly and stably, it was used as our optimizer, where β1 and β2 were set to 0.9 and 0.999.
The exponential decay strategy was chosen as the learning rate decay strategy, and its
formula is as follows:

lr = lrinit ×
(

1− epoch
num_epoch

)power
. (12)

Here, lr and lrinit represent the current and initial learning rates, epoch represents the
count of present iterations, and num_epoch represents the total count of iterations; power,
which controls the shape of the curve, was set to 2.

3.2.2. Loss Function

In our experiments, the cross-entropy loss function, a typical loss function in semantic
segmentation, was employed. This loss function examines each pixel one by one and
compares the prediction vector with the true value vector. It is expressed as follows:

L = − 1
N

N

∑
i=1

M

∑
c=1

yic log
(
pic
)
. (13)

Here, N means the count of pixels; M means the count of categories; yic means the
indicator variable (0 or 1), yic is 1 if the predicted class c of the pixel i is true, else 0; pic
means the prediction probability of pixel i belonging to the c class.

In our proposed model, auxiliary loss was also set to supervise and optimize the
learning process. The auxiliary segmentation heads are after four feature fusion blocks, as
can be seen in Figure 1. They can help supervise each stage of the decoder without affecting
the main loss. The final loss consists of one main loss and four auxiliary losses. The ratio
of each loss was set to 1. To prevent overfitting and improve the generalization ability, L2
regularization is introduced in the loss function. The final form is as follows:

Lf(θ) = Lm(θ) + ∑4
i=1 Lai(θ) +

λ

2
‖ θ ‖2 . (14)

Here, Lf denotes the final loss, Lm denotes the main loss, Lai denotes the ith auxiliary
loss, and θ denotes the network parameters. The coefficient λ in L2 regularization was set
to 1.

3.2.3. Evaluation Indicators

Some common evaluation indicators for semantic segmentation were used in this
work to assess and compare the results of different segmentation models. The following is
a brief introduction to the evaluation indicators used in our experiments.

The percentage of all correctly categorized pixels of all pixels is known as pixel accuracy
(PA). Precision (P) is the percentage of pixels accurately categorized per category of those
predicted for that category. Recall (R) is the ratio of the count of pixels accurately categorized
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per class to the total count of pixels per class, mP is the cumulative mean of P for each class, and
mR is the cumulative average of R for each class. Their formulas are as follows:

PA = ∑k
i=1

pii

∑k
j=1 pij

(15)

Pi =
pii

∑k
j=1 pij

, i = 1, . . . , k (16)

Ri =
pii

∑k
j=1 pji

, i = 1, . . . , k (17)

mP =
1
k ∑k

i=1 Pi (18)

mR =
1
k ∑k

i=1 Ri. (19)

Here, k denotes the count of categories, pii denotes the count of pixels predicted
correctly in class i, pij denotes the count of pixels predicted as class j in class i, and pji
denotes the count of pixels predicted as class i in class j. F1 score is the harmonic average
of P and R. If the two are quite out of balance, where one is particularly high and the other
is particularly low, the resulting F1 score will be particularly low. The F1 score will only be
high when both are very high. Its formula is as follows:

F1 =
1
k ∑k

i=1
2× Pi × Ri

Pi + Ri
. (20)

Here, Pi denotes the precision of class i, and Ri denotes R of class i. IoU is the proportion
of the intersection and union of the predicted and true value for each category. MIoU is the
cumulative mean of IoU for each category. The purpose of FWIoU is to weigh IoU according
to the frequency of each class and then sum them. Their formulas are as follows:

IoUi =
pii

∑k
j=1 pij + ∑k

j=1 pji − pii

(21)

MIoU =
1
k ∑k

i=1 IoUi (22)

FWIoU =
1

∑k
i=1 ∑k

j=1 pij
∑k

i=1(IoUi ∑k
j=1 pij). (23)

3.3. Ablation Study on Cloud and Cloud Shadow Dataset

Ablation experiments were performed on four modules of our proposed model,
namely CAB, FCB, SPA, and CFAB. The details of them were described in the second
section. Among them, CAB, FCB, and SPA belong to the feature fusion block. Table 1 com-
pares the evaluation indicators, the quantity of parameters, and the volume of calculations
for each ablation module. ResNet50 was used as the backbone in our ablation experiments.
It can save time and memory with relatively high accuracy. The reference model uses
ResNet50 as the encoder and performs simply additive fusion in the decoder stage. As seen
in Table 1, the MIoU of it is 92.18% and PA is 96.58%.
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Table 1. Comparison of each ablation model (the best model is in bold).

Models Parameters (M) Flops (G) PA (%) MIoU (%)

ResNet50 27.00 4.95 96.58 92.18
ResNet50 + CAB 27.53 5.17 96.93 92.79

ResNet50 + FCB + CAB 43.53 7.94 97.25 93.60
ResNet50 + FCB + CAB + SPA 43.53 7.95 97.36 93.82

ResNet50 + FCB + CAB + SPA + CFAB 44.06 8.52 97.39 93.99

Addition testing for CAB: CAB weighs and averages the channel weights from the
fusion features to the shallow and deep features, then fuses them again to improve the
fusion effect. It increases PA from 96.58% to 96.93% and MIoU from 92.18% to 92.79%.

Addition testing for FCB: FCB includes two multi-scale convolution blocks (MSC). It is
added before the feature maps are fused. MSC can enlarge the receptive field by multi-scale
convolution at the convolution level. It reduces the excessive semantic differences between
deep and shallow features, thus improving the fusion performance. FCB raises PA from
96.93% to 97.25% and MIoU from 92.79% to 93.60%.

Addition testing for SPA: SPA focuses on the spatial information of cloud and shadow.
Through increasing the almost negligible amount of model parameters and calculations, it
improves PA from 97.25% to 97.36% and MIoU from 93.60% to 93.82%.

Addition testing for CFAB: Cloud and cloud shadow have obvious category char-
acteristics. CFAB is added after the final part of the decoder to learn category feature
information. It increases PA from 97.36% to 97.39% and MIoU from 93.82% to 93.99%.

3.4. Analysis of Comparative Experiments

To compare with our suggested model, SegNet, U-Net, FCN8s, DeepLabV3+, PSPNet,
HRNet, and OCRNet were used in this work. SegNet is a semantic segmentation model
with an encoder–decoder architecture [57]. The encoder of it uses VGG16 as the backbone
and is symmetrical to the decoder. U-Net is one of the most common and simple semantic
segmentation models and was designed originally for segmenting medical imagery [58].
Its structure is U-shaped. FCN is the most basic network in image segmentation, substi-
tuting a convolutional layer for the final fully connected layer [59]. FCN8s in this paper
used ResNet50 as the backbone with down-sampling 8x. The latter two down-sampling
operations of ResNet50 were replaced with dilated convolution.

DeepLabV3+ is the improved model of the DeepLab series, proposed for image
segmentation by the Google Team [60]. Based on the dilated convolution and ASSP module,
it fuses multi-scale information through the encoder–decoder architecture. DeepLabV3+
in this paper used ResNet50 as the backbone with 8x down-sampling. PSPNet is the
scene analysis network proposed for the disadvantages of FCN [61]. It collects contextual
information more effectively through the pyramidal aggregation mechanism. PSPNet in
this paper used ResNet50 as the backbone with 8x down-sampling. HRNet is a key point
detection network proposed for human pose estimation [62]. High-resolution and low-
resolution features in HRNet are connected in parallel and exchange information constantly.
OCRNet is an advanced segmentation model that transforms pixel-level classification issues
into object-level classification issues [54]. It uses HRNet as the backbone and explicitly
enhances object-related information through the OCR concept.

Table 2 shows the comparative results of the above segmentation algorithms on our
self-made dataset. The backbone of each model is shown in the table too. All models were
pretrained in our experiments. The results show that our proposed model is superior to
other algorithms for segmenting clouds and their shadows. In order to facilitate comparison,
ResNet50, which was also used in the majority of other models, was used as the backbone
of our proposed model. The MIoU of our model was 93.99%. It is 1.14% higher than PSPNet
using the same backbone, and 0.33% higher than advanced OCRNet. Our proposed model
can improve semantic segmentation results by changing the improved backbone. The
MIoU of our model based on Res2net50 was 94.10%, which is 0.44% higher than OCRNet.
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Considering that our model parameters and calculations are smaller than OCRNet, it is
a good result. In addition, Table 3 provides a detailed list of the accuracy improvement
of our proposed model under different surface types. Our model shows varying degrees
of improvement in segmentation performance across five different backgrounds (water,
farmland, plant, wasteland, and urban) in our self-made dataset.

Table 2. Comparative cloud and shadow detection results of various algorithms (the best model is
in bold).

Methods Backbone PA (%) mP (%) mR (%) F1 (%) MIoU (%) FwioU (%)

SegNet [57] VGG16 95.58 94.32 94.79 94.55 89.74 91.60
U-Net [58] VGG16 96.46 95.51 95.84 95.67 91.74 93.20
FCN8s [59] Resnet50 96.55 95.76 95.74 95.75 91.89 93.36

DeepLabv3+ [60] Resnet50 96.85 96.09 96.18 96.14 92.59 93.91
PSPNet [61] Resnet50 96.96 96.25 96.30 96.28 92.85 94.12
HRNet [62] HRNet-W48 97.09 96.16 96.74 96.45 93.17 94.38

OCRNet [54] HRNet-W48 97.30 96.63 96.80 96.71 93.66 94.76
Ours Resnet50 97.44 96.95 96.84 96.89 93.99 95.02
Ours Res2net50 97.48 97.03 96.88 96.95 94.10 95.10

Table 3. The MIoU of our model under different backgrounds (the best model is in bold).

Methods Urban (%) Farmland (%) Plant (%) Water (%) Wasteland (%)

SegNet 85.12 81.76 83.96 84.50 87.60
U-Net 85.84 82.66 84.75 85.21 88.73
FCN8s 87.07 83.92 87.40 86.53 90.56

DeepLabv3+ 88.01 85.27 87.88 87.21 91.07
PSPNet 87.60 85.28 88.13 87.29 91.30
HRNet 88.61 85.11 89.64 88.12 92.25

OCRNet 89.22 85.40 90.05 88.30 93.77
Ours 90.38 85.98 90.74 88.94 93.90

The predicted pictures of different segmentation models are shown in Figures 9–12,
which intuitively reflect the superior performance of our proposed model. Our model
can obtain good recognition results for small-scale targets. It benefits from multi-scale
fusion and category feature learning in our designed network. As is shown in Figure 9, our
proposed model recognized the small-scale thin cloud marked by the white boxes better
than other algorithms.

The proposed model can better identify the boundary between cloud, cloud shadow,
and background. As shown in Figure 10, FCN8s, DeepLabv3+, PSPNet, and HRNet failed
to recognize the holes of the cloud shadow very well in the area marked by the white boxes.
This is due to the insufficient perception of local feature information. In the area marked
by the blue boxes, OCRNet had identification errors. Our designed model enhances the
expression of global and local information through attention mechanisms. Therefore, it has
a higher boundary recognition ability and a lower error rate.

Our model can identify details better than other models. As shown in the area marked
by the white boxes in Figure 11, FCN8s, DeepLabv3+, PSPNet, and HRNet only recognized
the rough outline of the cloud, losing too much detailed information. On the other hand,
our network performs several effective multi-scale feature fusion operations to improve
the ability to perceive details. Even compared to OCRNet, which has high semantic
segmentation performance, our model still identified more abundant and accurate details.
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Figure 9. The predicted images of different segmentation models under the plant or farmland area.
Clouds, cloud shadows, and backgrounds are marked red, green, and black, respectively. The white
rectangles highlight the areas where our model has shown significant improvements compared
to other models. (a) The original picture, (b) the label, (c) FCN8s, (d) DeepLabv3+, (e) PSPNet,
(f) HRNet, (g) OCRNet, and (h) ours.

Figure 10. The predicted images of different segmentation models under the wasteland area. Clouds,
cloud shadows, and backgrounds are marked red, green, and black, respectively. The white and
blue rectangles highlight the areas where our model has shown significant improvements compared
to other models. (a) The original picture, (b) the label, (c) FCN8s, (d) DeepLabv3+, (e) PSPNet,
(f) HRNet, (g) OCRNet, and (h) ours.
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Figure 11. The predicted images of different segmentation models under the water areas. Clouds,
cloud shadows, and backgrounds are marked red, green, and black, respectively. The white and
blue rectangles highlight the areas where our model has shown significant improvements compared
to other models. (a) The original picture, (b) the label, (c) FCN8s, (d) DeepLabv3+, (e) PSPNet,
(f) HRNet, (g) OCRNet, and (h) ours.

Figure 12. The predicted images of different segmentation models under the urban area. Clouds,
cloud shadows, and backgrounds are marked red, green, and black, respectively. The white and
blue rectangles highlight the areas where our model has shown significant improvements compared
to other models. (a) The original picture, (b) the label, (c) FCN8s, (d) DeepLabv3+, (e) PSPNet,
(f) HRNet, (g) OCRNet, and (h) ours.
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Our model can maintain good prediction performance even under complex back-
grounds. To prove this, we selected an image with an urban background for testing. The
background contains rich ground object information, making it challenging to identify
clouds and shadows accurately. As seen in the areas marked by the blue boxes in Figure 12,
DeepLabv3+, HRNet, and OCRNet falsely predicted other objects as cloud shadows. The
reason for these false predictions is that the background of this area is similar to cloud
shadow. On the other hand, FCN8s and PSPNet had correct predictions, not because of their
superior semantic segmentation performance, but because they focus on global information
and ignore local information. As shown in the areas marked by the white boxes, these
models did not predict the details of the cloud boundary very well. In contrast, our model
adds spatial attention mechanisms, focusing on task-related areas. Thus, only our model
can balance local information and noise interference effectively.

3.5. Generalization Performance Analysis

Comparative studies were carried out on the HRC_WHU and SPARCS datasets to
further demonstrate the viability of our suggested model. The experiments on HRC_WHU
help analyze the performance of cloud recognition. Table 4 lists evaluation indicators
of various algorithms on HRC_WHU. From the table, the proposed model has superior
performance for cloud recognition compared to other algorithms. The MioU of our model
was 95.26%, which is 0.73% higher than the best model (i.e., PSPNet) of the other algorithms.
In addition to our model, the predicted images of the three other models that achieved the
best results among these algorithms (i.e., DeepLabv3+, OCRNet, and PSPNet) are shown in
Figure 13. In order to be more convincing, the test images under different backgrounds are
specially selected. It is evident that the visual images produced by our model have more
cloud details and better segmentation effects compared to others.

Table 4. Comparative results of various algorithms on HRC_WHU (the best results are in bold).

Methods PA (%) mP (%) mR (%) F1 (%) MIoU (%) FwioU (%)

SegNet 94.73 94.63 94.54 94.58 89.74 89.99
UNet 95.94 95.86 95.81 95.84 92.01 92.20

HRNet 95.97 95.87 95.86 95.87 92.07 92.27
FCN8s 96.87 96.75 96.84 96.80 93.80 93.94

DeepLabv3+ 97.04 96.91 97.02 96.97 94.11 94.26
OCRNet 97.24 97.14 97.19 97.16 94.49 94.63
PSPNet 97.25 97.16 97.21 97.18 94.53 94.65

Ours 97.63 97.55 97.59 97.57 95.26 95.37

The experiments on the SPARCS dataset can analyze our model performance in the
face of complex segmentation problems. The segmentation models need to identify all
pixels of the test images into five classes, including clouds, cloud shadows, snow, water, and
backgrounds. Table 5 shows evaluation indicators of different segmentation algorithms on
the SPARCS dataset. From the table, our proposed model maintains a good segmentation
performance for multi-class classification compared to other algorithms. The MIoU of our
model was 91.31%, which is 0.34% higher than the best model (i.e., OCRNet) among the
other algorithms. The performance of these models for various classes was assessed by
the evaluation indicator called IoU. Table 6 shows the comparative results of each class.
As seen from the table, our model has better results for each class than the other models.
Our model maintains a relatively high recognition accuracy in the face of indistinguishable
clouds and snow.
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Figure 13. The predicted images of different segmentation models under the background of veg-
etation, urban, barren, snow, and water. (a) The original pictures, (b) the labels, (c) DeepLabv3+,
(d) OCRNet, (e) PSPNet, and (f) ours.

Table 5. Comparative results of different algorithms on SPARCS (the best results are in bold).

Methods PA (%) mP (%) mR (%) F1 (%) MIoU (%) FwioU (%)

SegNet 92.19 89.46 87.64 88.48 80.07 85.80
PSPNet 95.56 94.02 92.81 93.39 87.84 91.61
UNet 95.48 93.92 92.92 93.40 87.91 91.47

FCN8s 95.60 94.27 92.68 93.44 87.94 91.69
DeepLabv3+ 96.43 95.21 94.16 94.67 90.05 93.18

HRNet 96.60 95.15 94.90 95.03 90.67 93.51
OCRNet 96.79 95.66 94.76 95.20 90.97 93.85

Ours 96.90 95.76 95.03 95.39 91.31 94.05

In addition to our model, Figure 14 shows the predicted images of the other three
models that have the best results (i.e., DeepLabv3+, HRNet, and OCRNet). Clouds, cloud
shadows, snow, water, and backgrounds are marked white, black, cyan, blue, and grey,
respectively. As seen from the picture, our model performs better for boundary recognition
than the others.
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Table 6. Comparative results (IoU) of each class obtained by different algorithms on SPARCS (the
best model is in bold).

Methods Clouds (%) Cloud Shadows (%) Snow (%) Water (%) Backgrounds (%) Average (%)

SegNet 81.71 59.67 89.28 78.92 90.75 80.07
PSPNet 89.42 75.77 93.33 85.98 94.72 87.84
UNet 88.57 74.22 93.48 88.61 94.68 87.91

FCN8s 89.59 75.97 93.41 85.95 94.75 87.94
DeepLabv3+ 91.45 80.31 94.50 88.27 95.72 90.05

HRNet 91.57 81.24 94.87 89.73 95.93 90.67
OCRNet 92.39 82.46 95.05 88.78 96.15 90.97

Ours 92.41 82.63 95.26 89.90 96.32 91.31

Figure 14. The predicted images of different segmentation algorithms. Clouds, cloud shadows, snow,
water, and backgrounds are marked white, black, cyan, blue, and grey, respectively. (a) The original
pictures, (b) the labels, (c) DeepLabv3+, (d) HRNet, (e) OCRNet, (f) ours.

4. Conclusions

Cloud and cloud shadow segmentation is an important research direction in the field of
remote sensing. This paper proposes a multi-supervised feature fusion attention semantic
segmentation network. The network chooses the ResNet series as the encoder. The decoder
includes the feature fusion block (FFB) and category feature attention block (CFAB), which
restore the spatial information lost during the encoder stage. FFB consists of FCB, CAB, and
SPA, which effectively fuse the multi-scale features from the encoder. Since cloud and cloud
shadow have obvious feature information, this paper designs the CFAB to learn category
feature information before outputting the final segmentation maps. Compared to previous
segmentation models, our algorithm can better capture the details and boundaries of
clouds and their shadows and reduce interference under complex backgrounds. Our model
performs well on the homemade dataset, and experiments on the HRC_WHU and SPARCS
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datasets show the good generalization performance of our model. However, our network
still has some shortcomings: (1) Our model can have a relatively accurate segmentation
effect for clouds and cloud shadows under complex backgrounds, but it may have errors
identifying nearby similar objects as clouds or shadows. (2) It is worth investigating how
to reduce the number of parameters and calculations in our model without significantly
reducing recognition accuracy.
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