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5. Sensitivity analysis with the five most sensitive features  

6. Reference 

1. Land use variables 

The land use variables are calculated using Messier et al [1] as a guide and the de-

tailed instructions are available in the Messier et al. (2018) supplementary material. In 

general, we construct 108 land use variables from the following datasets with six buffer 

sizes including 50 m, 100 m, 250 m, 500 m, 1000 m, and 2500 m: 

we construct the binary road classification variable based on the OpenStreetMap da-

taset, which is open-source data that provides roads, trails, cafes, railway stations, and so 

on all over the world[2]. In the OpenStreetMap dataset, the road systems are classified 

into multiple categories based on their importance within the local road system as a 

whole. To simplify the road classification variable, we construct three categories from tens 

of categories in the OpenStreetMap dataset, which are highways, arterials, and residential 

roads. The highways category contains a motorway, motorway link, and trunk link; the 

arterials category contains a primary, primary link, secondary, secondary link, service, 

tertiary, tertiary link, and unclassified; the residential category contains living street and 

residential.  

For each category (highways, arterials, and residential roads), we calculate the total 

road length within each buffer size based on the OpenStreetMap data[2]. 

Two binary variables indicating whether a road segment is on a designated heavy-

duty truck route or on a road where heavy-duty trucks are prohibited are created based 

on the Oakland Truck Routes (2017) report created by the city of Oakland which is avail-

able online at 

https://www.arcgis.com/home/item.html?id=0fe7f165a9274b1182002ff9c0f4851d[3]. 

Three binary variables indicating commercial, industrial, and residential zonings are 

created based on the City of Oakland zoning classifications, which is available online at 

https://oakgis.maps.arcgis.com/apps/webappviewer/in-

dex.html?id=3676148ea4924fc7b75e7350903c7224[4]. These three land use zonings are 
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generalized from the complex city zoning codes based on the explanations in Table S2 in 

the supplementary material in Messier et al. (2018)[1]. 

We also calculate the average Normalized Difference Vegetation Index (NDVI) 

within each buffer to represent the coverage of vegetation around each road segment. The 

NDVI is calculated based on the measurement from LANDSAT 8 in Google Earth En-

gine[5].  

To include land cover information in the LUR model, we created 6 land cover types 

based on the USGS National Land Cover Database (NLCD) 2016[6,7] at 30 m resolution. 

These 6 land use types are Developed Open, Developed low, Developed medium, Devel-

oped high, evergreen forest, and mixed forest. For each land cover type, six buffer sizes 

are used to calculate the corresponding variables, except evergreen forest and mixed for-

est, which only have 2500 m buffer since the rest buffer sizes lead to variables with all 

zeros. For the land cover variables, the percentage of the land cover type within the buffer 

area is calculated by using the number of pixels representing the corresponding land cover 

type divided by the total number of pixels within the buffer area. 

We use the 2010 census tract population data[8] to calculate the population density 

within each buffer. By assuming the population is evenly distributed within each census 

tract, we can compute the population density of each buffer based on buffer area and pop-

ulation density in each intersected census tract. 

To calculate the mean elevation within each buffer area, we use the National Eleva-

tion Data (NED)[9] in Google Earth Engine[5], which has approximately a 10 m resolution 

in the US. 

Some other point sources may also contribute to air pollution concentrations. To in-

clude the point source contributions in the LUR model, we select four point source cate-

gories, which are ports, airports, National Priority Listing (NPL) sites, and Toxic Release 

Inventory (TRI) sites, and calculate the exponentially decayed contributions from these 

sources by using Equation 1 in supplementary from Messier et al. (2018)[1]. We use 8 de-

cay distances (𝜆𝑙) including 50 m, 100 m, 500 m, 1,000 m, 2,500 m, 5,000 m, 10,000 m, and 

50,000 m for all the 4-point sources listed above. 

Ports data is downloaded from the Bureau of Transportation Statistics (https://data-

usdot.opendata.arcgis.com/datasets/major-ports/data). Airports data is also available 

from the Bureau of Transportation Statistics (http://osav-usdot.opendata.arcgis.com/da-

tasets/831853ab8b714a81b6a3e21d0b164a4e_0). All ports and airports within the US are 

used in the calculation of point source contributions. NPL data is available from US Envi-

ronmental Protection Agency (USEPA) 

(https://epa.maps.arcgis.com/home/item.html?id=c2b7cdff579c41bbba4898400aa38815#o

verview). We only use the NPL sites within Alameda County to prepare the point source 

contribution variables. TRI data is also available from USEPA (https://www.epa.gov/tox-

ics-release-inventory-tri-program/tri-basic-data-files-calendar-years-1987-2018). We use 

the TRI sites within the surrounding 10 counties to prepare the corresponding variables. 

Meanwhile, we also calculate the inverse distance of the nearest point sources for 

each road segment with respect to all the 4 abovementioned point sources. 

2. RF model tuning parameters 

We are using the scikit-learn package in Python to train the Random Forest (RF) re-

gression model[10]. Within this package, the RF regression model has multiple hyper-pa-

rameters, and we are tuning five free parameters with the rest parameters using the de-

fault values, which are max_depth, max_features, n_estimators, min_samples_split, and 

min_samples_leaf. To achieve better performance, we introduce the Hyperopt optimiza-

tion algorithm, which uses a form of Bayesian optimization methods to consider infor-

mation from previous iterations. Figure S1 shows the general steps to use Bayesian opti-

mization in model tuning with the Hyperopt algorithm. To apply the Hyperopt optimiza-

tion algorithm, we need to first pre-define the search space, which limits the hyper-
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parameters range. The pre-defined search space for the RF regression model is shown in 

Table S1. 

 

Figure S1. General procedure for using Hyperopt optimization algorithm to tune machine learn-

ing models (TPE is Tree of Parzen Estimators, which is a widely used optimization algorithm in 

Hyperopt algorithm). 

Table S1. Search space for RF model hyper-parameters. 

Hyper-parameters Values 

max_features 'auto', 'sqrt', 'log2', 1, 0.5, 0.1, 0.05, 0.01 

 

 Minimum value Maximum value Increment 
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max_depth 10 50 1 

n_estimators 450 1000 1 

min_samples_split 2 10 1 

min_samples_leaf 2 10 1 

 

With the Hyperopt optimization algorithm, the optimized hyper-parameters for the 

RF regression model are listed in Table S2 below. Based on these hyper-parameters’ value, 

we train the RF model over the train set and predict BC concentrations over the validation 

set, which is then used to calculate the RF model’s performance. 

Table S2. Tuned values of RF model hyper-parameters. 

Hyper-parameters Optimized value 

max_features 0.5 

max_depth 24 

n_estimators 781 

min_samples_split 5 

min_samples_leaf 2 

3. SVR model feature selection, dimension reduction, and model tuning 

3.1 FOCI feature selection 

The FOCI method selects 13 features out of the 108 input features and the 13 selected 

features are listed in Table S3. Based on the FOCI selected features, we use the Hyperopt 

optimization algorithm to train the SVR model over the train set and make predictions 

over the validation set, which is used to evaluate SVR model performance. 

Table S3. The FOCI method selected 13 features for the SVR model. 

NDVI_1000 port_5000 residential_2500 residential_land_type  

Truck_prob port_500 population_1000 Commercial_land_type  

Truck_route airport_100 Mixed_forest_2500 Industrial_land_type  

Developed_open_2500     

3.2 Genetic Algorithm (GA) parameter setup 

In the GA model, the “chromosome” is set to have two sections. The first section con-

tains three hyper-parameters of the SVR model, which are regularization parameter C, 

kernel coefficient gamma, and the loss function penalty parameter epsilon; the second 

section contains the selected features, which are the ID numbers of the corresponding fea-

tures. Given the different nature of these two sections, the mating and mutation processes 

are calculated separately. The detailed mating and mutation processes are available in 

Zhang et al. (2015)[11]. In our GA model, the initial population size is set to be 100, a 

mating cross rate of 0.8, a mutation rate of 0.1, elite size 2, and offspring number 8. The 

GA-optimized hyper-parameters of the SVR model are listed in Table S4 and the corre-

sponding features are given in Table S5. 

Table S4. GA optimized hyper-parameters of the SVR model. 

Hyper-parameter GA optimized value 

C 2.35478 

gamma 0.0831661 

epsilon 0.129904 
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Table S5. GA selected 45 features for the SVR model. 

Developed_open_250 NDVI_100 npl_50 Population_250 

Developed_open_500 NDVI_250 npl_100 Population_500 

Developed_open_1000 NDVI_500 npl_500 Population_1000 

Developed_open_2500 NDVI_1000 npl_1000 Population_2500 

Developed_low_250 tri_50 npl_2500 port_500 

Developed_low_1000 tri_2500 npl_5000 port_1000 

Developed_low_2500 tri_10000 highway_100 port_5000 

Developed_medium_250 residential_50 highway_1000 port_50000 

Developed_medium_2500 residential_500 Elevation_100 port_inverse_dist 

Developed_high_100 airport_1000 Index_Hwy Latitude 

Developed_high_250 npl_10000 truck_route Speed_Med 

Developed_high_1000    

4. LASSO model regression coefficients 

The LASSO model gives 77 non-zero features. These features and the coefficients are 

listed in Table S6. 

Table S6. LASSO selected features and the coefficients. 

Feature Coefficient Feature Coefficient 

intercept -0.5849 Developed_low_50 0.0108 

Road_Type -0.0548 Developed_low_100 0.0130 

Index_Hwy 0.1299 Developed_low_500 -0.0429 

truck_route 0.1655 Developed_low_1000 -0.0067 

truck_prob -0.0281 Developed_low_2500 0.0897 

commercial 0.0177 Developed_medium_50 0.0012 

industrial 0.0659 Developed_medium_100 0.1765 

Speed_Med 0.0993 Developed_medium_250 0.0694 

highway_50 -0.0145 Developed_medium_500 0.0265 

highway_100 0.1065 Developed_medium_1000 -0.0041 

highway_250 -0.0182 Developed_high_50 0.0089 

highway_500 -0.0114 Developed_high_100 0.2376 

highway_1000 -0.0796 Developed_high_250 0.0941 

highway_2500 -0.0593 Developed_high_1000 0.0695 

arterial_50 0.0289 Developed_high_2500 -0.2894 

arterial_100 -0.0316 Mixed_forest_2500 0.0041 

arterial_250 -0.0199 Population_100 0.0269 

arterial_500 -0.0247 Population_250 0.0356 

arterial_1000 0.0225 Population_500 -0.0537 

arterial_2500 0.0678 Population_1000 -0.0623 

residential_50 -0.0507 Population_2500 -0.1372 

residential_100 -0.0026 port_100 -0.0036 

residential_250 -0.0168 port_500 -0.0484 

residential_500 -0.0584 port_1000 0.1377 

residential_2500 0.5946 airport_50 0.0018 

NDVI_50 0.0034 airport_100 -0.0034 

NDVI_100 0.0272 airport_500 -0.1449 

NDVI_2500 0.0697 airport_1000 0.3026 
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Elevation_50 -0.0978 airport_10000 -0.2506 

Elevation_100 -0.0919 npl_500 0.0004 

Elevation_250 -0.0523 npl_1000 -0.1053 

Developed_open_50 -0.0051 npl_5000 0.0220 

Developed_open_250 0.0090 npl_10000 0.2574 

Developed_open_500 0.0568 npl_50000 0.1345 

Developed_open_1000 0.0069 tri_50 0.0571 

Developed_open_2500 -0.1301 tri_100 -0.0266 

tri_inverse_dist -0.0370 tri_1000 0.0734 

npl_inverse_dist 0.0095 tri_5000 -0.0984 

tri_10000 -0.0013 tri_50000 -0.0530 

5. Sensitivity analysis with the five most sensitive features 

The top 5 most sensitive features for all four models based on the OAT sensitivity 

analysis are shown in Figure S2. For each column from top to bottom, it shows the five 

most sensitive features (most sensitive to least sensitive) for a specific model. 
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Figure S2. Top 5 most sensitive features for each model and how their variations influence model performance in BC prediction 

(box shows 25th, 50th, and 75th percentiles; dot means mean value). 
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