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Abstract: Iraq, including the investigated watershed, has endured destructive floods and drought due
to precipitation variability in recent years. Protecting susceptible areas from flooding and ensuring
water supply is essential for maintaining basic human needs, agricultural production, and industry
development. Therefore, locating and constructing storage structures is a significant initiative to
alleviate flooding and conserve excessive surface water for future growth. This study aims to identify
suitable locations for Runoff Harvesting (RH) and dam construction in the Hami Qeshan Watershed
(HQW), Slemani Governorate, Iraq. We integrated in situ data, remotely sensed images, and Multi-
Criteria Decision Analysis (MCDA) approaches for site selection within the Geographical Information
Systems (GIS) environment. A total of ten criteria were employed to generate the RH suitability maps,
including topographic position index, lithology, slope, precipitation, soil group, stream width, land
cover, elevation, distance to faults, and distance to town/city. The weights of the utilized factors were
determined via Weighted Linear Combination (WLC) and Analytic Hierarchy Process (AHP). The
resulting RH maps were validated through 16 dam sites preselected by the Ministry of Agriculture
and Water Resources (MAWR). Findings showed that the WLC method slightly outperformed AHP
regarding efficiency and exhibited a higher overall accuracy. WLC achieved a higher average overall
accuracy of 69%; consequently, it was chosen to locate new multipurpose dams for runoff harvesting
in the study area. The overall accuracy of the 10 suggested locations in HQW ranged between 66%
and 87%. Two of these sites align with the 16 locations MAWR has recommended: sites 2 and 5 in the
northwest of HQW. It is noteworthy that all MAWR dam sites were situated in medium to excellent
RH zones; however, they mostly sat on ineffective geological localities. It is concluded that a careful
selection of the predictive factors and their respective weights is far more critical than the applied
methods. This research offers decision-makers a practical and cost-effective tool for screening site
suitability in data-scarce rugged terrains.

Keywords: floods; climate change; sustainable development; QuickBird imagery; WLC; AHP; GIS

1. Introduction

Iraq confronts severe water challenges as a result of internal as well as external factors,
such as ineffective management of its water resources, internal disputes over politics, and
tense ties with its neighbors, particularly Iran, Turkey, and Syria [1]. The average surface
water discharged to Iraq through the Tigris and Euphrates Rivers is anticipated to decline
harshly by 2040 [2]. Moreover, the country experienced fast population growth in the past
few decades, with a considerable expansion from 16.33 million in 1987 to 38.12 million
in 2018 [3,4]. This growing population manifested in increased daily water consumption
to meet the requirements of evolving economies, agriculture, and living standards. The
absence of and non-compliance with regional and international treaties on shared water
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resources among riparian countries is another crucial problem reflected in water shortage
in downstream countries, such as Iraq. Subsequently, the crisis over water resources is an
inevitable threat that humankind will likely pass through in the foreseeable future [1,5,6].
Almost certainly as a result of climate change, variations in quantity and spatial distribution
of precipitation have augmented the frequency and severity of weather extremes (i.e., floods
and droughts), resulting in undesired socioeconomic and environmental repercussions
in the regions concerned [7–10]. This complicated combination requires integrative and
innovative strategies to alleviate flooding and water deficiency and ensure sustainable
freshwater resource management.

Runoff Harvesting (RH) is an ancient practice in Middle East countries to counter
drought seasons by constructing barriers or dams on stream courses to collect and store
runoff water for later usage [11,12]. Dams are natural impediments or built structures that
cross rivers and promote surface water levels by regulating or obstructing normal water
flow. Although dam construction increases emitted greenhouse gases (e.g., CO2 and CH4)
into the atmosphere, destabilizes ecosystems, disturbs runoff and sediment dynamics in
the lower reaches, and traps deposits, it provides multiple benefits and advantages such as
flood protection, secure water supply, crop irrigation, hydropower generation, aquaculture,
groundwater recharge, soil moisture conservation, recreational development, and local
community prosperity [13–22]. In other words, the economic merits of dams compensate
for the construction/operation costs and relevant detriments [23]. However, not all dam
construction procedures (e.g., site selection) are based on a scientific decision-making
method. For instance, political variables could lead to neglecting systematic and technical
aspects of ideal dam site selection. Inappropriate dam siting might cause adverse effects on
processes such as runoff, erosion, and sedimentation, resulting in subsidence (e.g., Mosul
Dam, Iraq) [24], landslides (e.g., Vajont Dam, Italy) [25], and mudflows (e.g., Brumadinho
Tailings Dam, Brazil) [26], which eventually threaten downstream residents and ecosys-
tems [27,28]. Therefore, analyzing and selecting suitable locations to construct new dams
based on detailed scientific techniques are substantial procedures to conserve and manage
water resources safely and efficiently.

Due to the progress and accessibility of computational systems and satellite products,
identifying appropriate sites for dam construction has become an attractive and competitive
practice in recent years [29]. The integrated approach involving Remotely Sensed (RS)
data, Geographical Information Systems (GIS) techniques, and Multi-Criteria Decision
Analysis (MCDA) is currently emerging as a powerful package to handle different terrain
characteristics and hydrologic processes [30–33]. RS images and their advanced charac-
teristics (e.g., spectral resolution) represent an integral tool that enables researchers to
evaluate and monitor various water-related aspects (i.e., availability, quantity, and quality),
as well as environmental concerns at different spatiotemporal scales [34]. GIS is a highly
powered and still-evolving tool to store, visualize, convert, and analyze vast digital datasets
efficiently and quickly. It is a potent and widely used system for generating geological
maps and interpolating groundwater quality [35]. It is noteworthy that GIS also supports
spatial optimization and location models that can find the best solutions to geographic
decision problems under firmly defined circumstances [36,37]. On the other hand, MCDA
techniques, such as Weighted Linear Combination (WLC) [38] and Analytic Hierarchy
Process (AHP) [39], are among the frequently applied approaches to determine the relative
rank of multiple interrelated factors, based on decision-making priorities, for different site
selection projects (e.g., dams, landslides, groundwater recharge zonation, landfills, and
civil defense centers) [4,40–43].

A topical literature review reveals that numerous regional and worldwide studies
have developed and employed various MCDA approaches, combined with in situ mea-
surements, RS data, hydrologic models, and GIS techniques, to identify optimal sites for
runoff harvesting and dam construction (Table 1). In addition, determining suitable cri-
teria is another significant element in effectively implementing MCDA and geospatial
techniques for mapping potential RH zones [44]. According to the Food and Agriculture
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Organization (FAO), six influential factors were identified to categorize RH areas: topog-
raphy, climate, hydrology, soil, agronomy, and socioeconomic criteria [45,46]. The most
prominent criteria used in the reviewed articles to determine suitable locations for RH
and multipurpose dams, as a percentage, were: slope (100%), land use/land cover (82%),
soil (77%), rainfall/precipitation (64%), roads (55%), runoff (50%), drainage density (41%),
geology/lithology, faults, and settlements (36%), elevation as a thematic layer (32%), stream
order and rivers (27%), villages (18%), discharge, lineaments, sediment yield, topographic
wetness index, and wells (14%). The remaining criteria (e.g., geomorphology, distance to
existing dams, hypsometry, cost, temperature, evaporation, and erosion) were cited in less
than 10% of these publications.

Table 1. A literature review on frequently used approaches to identify suitable RH and dam sites.

Reference Year Applied Techniques Country

[47] 2022 WLC, RS, and GIS Australia
[48] 2021 AHP and GIS Morocco
[49] 2021 BO, WLC, and GIS Iraq
[50] 2017 AHP, Fuzzy-AHP, ROM, VI, BO, RS, SWAT, and GIS Iraq
[51] 2021 WLC, BO, RS, and GIS Iraq
[30] 2017 FL, AHP, WLC, and GIS Iraq
[4] 2020 AHP, WSM, RS, and GIS Iraq
[2] 2019 WLC, AHP, RS, and GIS Iraq

[31] 2019 AHP, FL, RS, and GIS Iraq
[52] 2017 WLC, BO, and GIS Jordan
[53] 2016 AHP, WLC, BO, and GIS Jordan
[54] 2022 AHP, WLC, BO, RS, and GIS Yemen
[55] 2014 AHP, FIM, BO, WLC, and GIS Pakistan
[33] 2020 AHP, RS, and GIS Pakistan
[29] 2019 AHP, ML, GIS, and RS UAE
[56] 2019 AHP, SSS, and GIS Iran
[57] 2021 AHP, WLC, and GIS Iran
[23] 2018 AHP, TOPSIS, and GIS Iran
[44] 2021 AHP, WLC, SWAT, RS, and GIS Iran
[20] 2020 BWM, FL, AHP, WOP, BO, and GIS Iran
[8] 2022 AHP, RS, SWAT, RUSLE, and GIS Rwanda

[58] 2021 AHP, RS, and GIS MOZ
WSM—Weighted Sum Method; FL—Fuzzy Logic; BO—Boolean Overlay; ROM—Rank Order Method;
VI—Variance Inverse; BWM—Best-Worst Method; WOP—Weighted Overlay Process; TOPSIS—Technique for
Order of Preference by Similarity to Ideal Solution; SSS—Site Selection Software; FIM—Factor Interaction Method;
SWAT—Soil and Water Assessment Tool; ML—Machine Learning; RUSLE—Revised Universal Soil Loss Equation;
UAE—United Arab Emirates; MOZ—Mozambique.

The torrential rainfall and subsequent floods of spring 2019 that hit Iraq and neighbor-
ing countries [56,59] raised water levels in the Tigris River and its tributaries (Figure 1a).
Consequently, water management features such as Dukan Reservoir (DR) reached its max-
imum safe storage capacity. In addition, the excessive flooding considerably damaged
various agricultural fields and infrastructures and caused temporary human displacement
(Figure 1b). These dramatic episodes inspired us to determine potential sites for RH and
dam construction upstream of DR to prevent the adverse impacts of flood waters and
secure aquatic demands for stable development in the Hami Qeshan Watershed (HQW),
a mountainous catchment in the Iraqi Kurdistan Region (IKR) (Figure 2). Hereafter, the
objectives of this study are threefold: (1) to create RH suitability maps based on the WLC
and AHP models, (2) to validate the results attained through 16 preselected dam loca-
tions, and (3) to propose optimal sites for constructing new dams in HQW (Figure 2).
Ten evaluative criteria were implemented to generate the RH maps and assess optimum
dam siting: topographic position index, lithology, slope, stream width, precipitation, soil
group, land cover, elevation, distance to faults, and distance to town/city. Although HQW
has important characteristics for sustainable development, no studies have investigated
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surface runoff harvesting and dam siting based on in situ data, RS images, MCDA, and GIS.
Therefore, our findings are anticipated to fill a significant gap in the scientific literature
on improving surface water management through dam/reservoir site selection and flood
effects mitigation.
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2. Materials and Methods
2.1. Study Area

The mountainous HQW, the largest subbasin of the Little Zab River Basin (LZRB)
within the Kurdistan Region, is situated in the far northeast of Iraq [60]. Geographically, it
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lies in Slemani Governorate between latitudes 35◦27′19′′ N and 35◦57′56′′ N and longitudes
45◦13′32′′ E and 46◦20′57′′ E (Figure 2). The study area covers about 2600 km2, including
Penjwen, Chwarta, Mawat, and 560 villages. Also, this research excludes the eastern portion
(i.e., 396 km2) of the drainage basin that is situated beyond the Iraqi border. The HQW was
selected due to its significance in water resources, agricultural productivity, and recreational
nature. The cultivation of crops, nuts, and fruits (e.g., barley, walnuts, and pomegranates) is
dominant in the plain north of Penjwen and the surrounding mountains [61]. The elevation
in the Hami Qeshan Watershed ranges from 632 m to 2755 m, and the slopes vary between
flat and 76 degrees.

The climate of HQW is characterized by hot-dry summer and wet-humid winter, with
substantial seasonal variability in precipitation, temperature, and potential evapotranspira-
tion. From 2004 to 2018, the study area received average annual precipitation of 1057 mm
through rainfall and snowfall. The precipitation mainly occurs from October to May; the
highest average monthly precipitation of 207 mm was recorded in January. Similarly, the
monthly mean temperature fluctuated between −0.5 ◦C in January and 27.9 ◦C in July.
The Qala Chulan River (QCR), a sixth-order stream, is formed simply by the confluence
of the Awe Gogasur and Awe Shiler Rivers. Further, QCR flows from east to northwest
and joins the Little Zab River near Avcourta village. Rainwater, snowmelt, and springs are
substantial feeding sources of these waterways, resulting in peak discharge in springtime
and declining flow from June through September.

2.2. Conceptual Methodology

This study employs ten factors in addition to the WLC and AHP techniques to identify
suitable sites for RH and dam construction in the GIS environment, as shown in Figure 3.
The utilized criteria are Lithology (LI), Topographic Position Index (TPI), Slope (SP), Stream
Width (SW), Precipitation (PCP), Soil Group (SG), Elevation (EL), Land Cover (LC), Dis-
tance to Faults (DF), and Distance to Town/City (DTC). The methodology consists of nine
essential stages: (1) selection of criteria and preparation of raster layers, (2) reclassification
of thematic maps in GIS, (3) assigning weights to all layers based on WLC and AHP, (4) in-
tegration of thematic layers using the weighted overlay technique in GIS, which eventually
generates RH suitability maps, (5) applying the natural break (Jenks) scheme to classify
the resulting suitability maps into five classes: excellent, high, moderate, low, and unsuit-
able, (6) validation of results through preselected dam sites, (7) choosing the best model,
(8) proposing new dam/reservoir locations, and (9) analyzing proposed dam/reservoir
properties. All the stages are thoroughly explained in Sections 2.3–2.6.

2.3. Data Acquisition

In situ station measurements, RS data, and statistical models (i.e., WLC and AHP)
were integrated into GIS to map potential RH suitability areas and determine optimum
dam sites in the Hami Qeshan Watershed. As described in Section 2.2, ten influential
factors were used to achieve these goals. The lithology and faults maps of HQW were
prepared based on a printout of the geological map attained from Iraq Geological Survey
(GEOSURV) at a 1:250,000 scale [62]. Further, both maps were first scanned at 300 dpi and
then digitized and georeferenced in the GIS environment. The Copernicus Digital Elevation
Model (CDEM), with a 30 m pixel resolution, was downloaded from the OpenTopography
webpage [63]. In addition, CDEM was used to delineate the watershed boundary and
extract the slope, drainage network, topographic position index, and elevation maps. The
land cover map of HQW was obtained from GEOSURV at a 30 m raster resolution [64].

Two administrative layers (i.e., town/city and villages) were obtained in shapefile
format from the Humanitarian Data Exchange platform [65]. As an alternative to discharge
data, QuickBird images were used to generate the stream width layer in the ungauged
HQW. The soil characteristics map was gathered from the Harmonized World Soil Database
(HWSD) in raster format (30 arc-second) [66]. Due to the uneven distribution of rain
gauges in the Hami Qeshan Watershed, the monthly Tropical Rainfall Measuring Mission
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(TRMM) 3B43-V7 dataset [67] was used for developing the precipitation layer. Also, TRMM
possesses a spatial resolution of 0.25◦ × 0.25◦ [68] and has been verified and applied
in different studies [69–72]. Preselected dam site data in HQW were collected from the
Ministry of Agriculture and Water Resources (MAWR), IKR [73]. All thematic layers were
reprojected to zone 38 north of the Universal Transverse Mercator (UTM) and resampled to
30 m spatial resolution.
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2.4. Statistical Model

Although there are a variety of MCDA techniques, none are best suited for all kinds
of decision-making circumstances [74,75]. Moreover, a critical characteristic of MCDA is
that different methodologies might produce different outcomes when applied to a single
problem [76]. As a result, choosing an ideal MCDA approach is challenging, and careful
method selection should be emphasized [77]. Many legitimate examples of comparative
assessments of various MCDA methods are found in the literature (Table 1). In this research,
we utilized WLC and AHP techniques to determine the weighting/ranking of the evaluative
factors for identifying proper RH areas and new dam sites in HQW (Tables A1 and A2
in Appendix A). Accordingly, two RH suitability maps were obtained for the study area.
Each suitability map was categorized based on the Jenks classification into five classes:
unsuitable, low, moderate, high, and excellent. Results were eventually validated using
16 preselected dam locations in the ArcMap environment.

2.4.1. Weighted Linear Combination (WLC)

The WLC model has been previously adopted in several studies [47,49,51,54]. It stan-
dardizes numerous criteria to a comparable numeric range and then combines them based
on a weighted average [78]. WLC is performed in five basic steps: (1) assigning weights to
all criteria based upon their relative significance for locating RH areas; the higher weight,
the more influential the factor, and vice versa, (2) classifying each criterion into five suitabil-
ity classes: 5 = excellent, 4 = high, 3 = moderate, 2 = low, and 1 = unsuitable, (3) multiplying
the weight of each criterion by the respective sub-criterion classes, (4) normalizing all resul-
tant values, and (5) combining all thematic layers in the raster calculator of ArcMap and
generating the final RH suitability map. As shown in Table A1 in Appendix A, weights of
criteria (i.e., column “Criterion Weight%”) and classes of sub-criteria (i.e., column “Class”)
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were essentially defined based on published literature (Table 1) and the authors’ expertise.
Hence, the summation of all criteria, as proposed by Drobne and Lisec [38], is achieved
after Equation (1):

RHS = ∑ wixi (1)

where RHS is the runoff harvesting suitability, wi denotes the weight of criterion i (Table A1,
column “Criterion Weight%”), and xi refers to the class of sub-criterion i (Table A1, col-
umn “Class”).

2.4.2. Analytic Hierarchy Process (AHP)

Saaty published many articles and books on the AHP method and its applica-
tions [39,79–82]. AHP is the most frequently applied mathematical technique for analyzing
and organizing complex multi-criteria decisions in a hierarchical structure. It empowers
decision-makers to intuitively incorporate subjective knowledge and practice through pair-
wise comparisons to define parameters’ standard weights [81,83,84]. The AHP approach
calculates each criterion weight and assigns distinct rankings to the range of sub-criteria in
a given thematic layer based on the relative importance among all elements [85]. In this
study, we identified potential RH areas in HQW by applying the AHP approach to ten
thematic layers (i.e., Section 2.2). According to the fundamental scale of Saaty (Table 2),
each variable was assigned a score for the pairwise comparisons between 1 and 9 based on
its significance in comparison to the remaining variables.

Table 2. The ranking scale of the AHP approach [86].

Rank Level of Importance

9 EXI
7 VSI
5 SI
3 MI
1 EQI

2, 4, 6, 8 IVS
EXI—Extremely Important; VSI—Very Strongly Important; SI—Strongly Important; MI—Moderately Important;
EQI—Equally Important; and IVS—Intermediate Values.

To sum up, the AHP technique consists of five stages [87]: (1) defining a multi-criteria
problem, (2) structuring a hierarchy (a literature review, field research, and expert judgment
help determine the criteria of the hierarchy), (3) building pairwise comparison matrices
(Table 3), (4) normalizing pairwise comparison matrices (Table 4), and (5) calculating the
Consistency Ratio (CR). The consistency of the decision-makers’ assessments is accepted
if the CR is below 0.1 [88]. Also, the Consistency Index (CI) was utilized to evaluate
the matrix’s consistency. Hence, the CI and CR were computed following Equations (2)
and (3) [89]:

CI =
λmax−n

n− 1
(2)

CR =
CI
RI

(3)

where CI indicates the consistency index, n represents the number of criteria, λmax denotes
the maximum eigenvalue of a matrix, CR refers to the consistency ratio, and RI symbolizes
the random index value that differs as per the number of criteria used. The RI utilized
(Table 4) was based on the classification of Saaty [90].

As shown in Table 4, the eigenvalues of each matrix element were normalized; sub-
sequently, the relative weight of each criterion was determined. Also, each sub-criterion
of a thematic map was assigned a rank of 1–9 based on its impact on identifying ap-
propriate RH zones [4,15,20,29,31]. The rankings of a sub-criterion indicated the follow-
ing RH capabilities: 9 = excellent, 7 = high, 5 = moderate, 3 = low, and 1 = unsuitable.
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Thus, all criteria and sub-criteria were given weights and ranks, respectively (Table A2 in
Appendix A). Lastly, the RH suitability map was generated in the ArcMap environment
using Equation (4) [48,53]:

RHS = (TPIc TPIsc) + (LIc LIsc) + (SWc SWsc) + (SPc SPsc)
+ (PCPc PCPsc) + (SGc SGsc) + (ELc ELsc) + (LCc LCsc)
+ (DFc DFsc) + (DTCc DTCsc)

(4)

where RHS is the runoff harvesting suitability, TPI denotes the topographic position index,
LI indicates the lithology, SW represents the stream width, SP refers to the slope, PCP stands
for the precipitation, SG symbolizes the soil group, EL signalizes the elevation, LC refers to
the land cover, DF marks the distance to faults, and DTC refers to the distance to town/city.
In addition, c and sc are a criterion’s weight and a sub-criterion’s rank, respectively.

Table 3. Pairwise comparison matrix for the used criteria.

Criterion TPI SW LI SP PCP SG EL LC DF DTC

TPI 1 1 2 2 2 2 2 3 9 9
SW 1 1 2 2 2 2 2 3 9 9
LI 1/2 1/2 1 1 2 2 2 2 7 7
SP 1/2 1/2 1 1 2 2 2 2 7 7

PCP 1/2 1/2 1/2 1/2 1 1 1 2 5 5
SG 1/2 1/2 1/2 1/2 1 1 1 2 5 5
EL 1/2 1/2 1/2 1/2 1 1 1 2 5 5
LC 1/3 1/3 1/2 1/2 1/2 1/2 1/2 1 3 3
DF 1/9 1/9 1/7 1/7 1/5 1/5 1/5 1/3 1 1

DTC 1/9 1/9 1/7 1/7 1/5 1/5 1/5 1/3 1 1

SUM 5.06 5.06 8.28 8.28 11.9 11.9 11.9 17.7 52 52

Table 4. Normalized weights for the applied criteria.

Criterion TPI SW LI SP PCP SG EL LC DF DTC Weight Weight%

TPI 0.20 0.20 0.24 0.24 0.17 0.17 0.17 0.17 0.17 0.17 0.19 19
SW 0.20 0.20 0.24 0.24 0.17 0.17 0.17 0.17 0.17 0.17 0.19 19
LI 0.10 0.10 0.12 0.12 0.17 0.17 0.17 0.11 0.13 0.13 0.13 13
SP 0.10 0.10 0.12 0.12 0.17 0.17 0.17 0.11 0.13 0.13 0.13 13

PCP 0.10 0.10 0.06 0.06 0.08 0.08 0.08 0.11 0.10 0.10 0.09 9
SG 0.10 0.10 0.06 0.06 0.08 0.08 0.08 0.11 0.10 0.10 0.09 9
EL 0.10 0.10 0.06 0.06 0.08 0.08 0.08 0.11 0.10 0.10 0.09 9
LC 0.06 0.06 0.06 0.06 0.04 0.04 0.04 0.07 0.06 0.06 0.05 5
DF 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2

DTC 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 2

SUM 1 1 1 1 1 1 1 1 1 1 1 100

n 1 2 3 4 5 6 7 8 9 10 11 12
RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 1.52 1.54

n = 10, λmax = 10.131, RI = 1.49, CI = 0.0146, CR = 0.01 (<0.1).

2.5. Evaluative Criteria
2.5.1. Geological Criteria

Geological characteristics in a particular region affect the stability and capability of
dams to store water [4,91]. Therefore, we used two essential geological factors for this study
to identify the best runoff harvesting areas: lithology and distance to faults [62]. Figure 4a
shows 19 lithological units in the Hami Qeshan Watershed, encompassing diverse rock
types. Tectonically, HQW is situated in the Zagros Suture Zone and part of the High Folded
Zone [92,93]. All lithological units and their suitability for RH are described in Table 5 [94].
The WLC classes of a sub-criteria ranged from 1 to 5, whereas the AHP ranks ranged from
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1 to 9. In addition, the lithology criterion was assigned a weight of 13 in both models
(i.e., WLC and AHP). The weightage and class/rank of the lithology layer are illustrated in
Tables A1 and A2 of Appendix A.
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Table 5. A concise description of all lithological units and geological formations in HQW [94].

No. Lithologic Unit Suitability Description

1 Flood Plain (FP) US Sand, silt, and clay
2 Alluvial Fan (AF) US Gravel, sand, and silt
3 Red Beds (Upper) (RBU) MS Mudstone, conglomerate, sandstone, shale, and siltstone
4 Red Beds (Lower) (RBL) MS Limestone, conglomerate, siltstone, shale, chert, and sandstone
5 Shiranish (SH) LS Argillaceous limestone and marl
6 Aqra, Bekhme, and Tanjero (ABT) ES Limestone, marl, siltstone, sandstone, and conglomerate
7 Katar Rash Group (KRG) ES Andesite, dacite, and rhyolite
8 Sirginil (Phyllite) Group (SPG) ES Metasedimentary rocks and volcanic flows
9 Qulqula Radiolarian (QR) ES Chert and limestone

10 Qulqula Conglomerate (QC) MS Conglomerate, shale, chert, limestone, and breccia
11 Plutonic Complex (PC) ES Gabbro, dunite, and pyroxenite
12 Gimo Group (GG) ES Marble, basalt, schist, phyllite, and amphibolite
13 Balambo and Kometan (BK) HS Limestone, marl, and shale
14 Shalair Group (SG) ES Phyllite, schist, metamorphosed limestones, tuffaceous slate
15 Mawat Group (MG) ES Basalt, greenschist, and amphibolite
16 Jurassic (JU) ES Limestone, dolostone, shale, marl, and breccia
17 Undifferentiated Jurassic (UJ) ES Limestone, dolostone, shale, marl, and breccia
18 Darokhan Limestone (DL) ES Limestone and phyllite

19 Naopurdan and Walash Group (NWG) HS
Shale, greywacke, conglomerate, limestone, volcanic sills,

mudstone, jasper, siltstone, radiolarite, slate, basalt, andesite,
pyroclastic, grit, sandstone, and marl

US—Unsuitable; LS—Low Suitability; MS—Moderate Suitability; HS—High Suitability; and ES—Excellent
Suitability for RH.

It is recommended to locate a dam site at least 100 m from tectonic fractures and
faults [29,95]. Therefore, an area with faults along a river course must be omitted from
probable dam sites [96]. For this study, the map of active faults (i.e., distance to faults)
was first converted from vector to raster format. After that, the Euclidean distance to the
nearest faults was computed for each cell. HQW contains 47 fault segments, of which
ten are normal faults, 15 are thrust faults, and the remainder are uncategorized. The
length of faults ranges from 0.4 to 106 km, totaling 437.6 km. Remarkably, most of these
faults are oriented in the NW-SE direction (Figure 4b) due to the collision of the Arabian
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and Iranian plates that ultimately formed the Zagros Mountains chain [93]. As shown
in Tables A1 and A2 of Appendix A, the distance to faults exceeds 12,110 m; the farther a
site is from faults, the more suitable for constructing a dam, and vice versa.

2.5.2. Topographic Criteria

We used CDEM, with a 30 m pixel resolution, to derive three topographic aspects: TPI,
slope, and elevation. As a landform indicator, TPI calculates the difference between the
elevation at a central pixel (Ec) in CDEM and the average elevation in specific neighboring
pixels (Ea) within a predefined radius [97,98]. The topographic features of a watershed
significantly affect flow velocity, runoff generation, and sediment transport [99]. TPI is
frequently applied in various research fields, such as hydrology, geomorphology, ground-
water recharge, agriculture, wildlife management, and archaeology. Equations (5) and (6)
illustrate the mathematical statements for computing TPI [100]:

TPI = Ec− Ea (5)

Ea =
1

nM ∑
i∈M

Ei (6)

where Ei is the elevation of the cell (i) within the kernel-matrix (M), which comprises the
total number of cells (n).

According to [15,101], a positive TPI shows that the central pixel possesses a higher
elevation than its average neighboring pixels (e.g., hill). In contrast, a negative value
indicates that the central pixel has a lower elevation than its average surrounding neighbors
(e.g., valley). Also, a zero TPI value could denote a flat or mid-slope terrain. We calculated
TPI for HQW in ArcMap using a kernel of 9 × 9 pixels. TPI values in the investigated
watershed ranged from −113 to 116, as revealed in Figure 5a.
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While selecting and establishing dam sites, slope gradient is another crucial factor in
determining water flow direction and optimal RH locations [102–104]. The slope is the
steepness of the earth’s surface, which can be measured in percentage or degrees from
horizontal [35]. Terrains with gentle slopes are preferable for accumulating surface water
and identifying dam sites; consequently, areas with slopes higher than 15 degrees are
improper for constructing dams [45,105]. In this mountainous basin, the slope ranged
from 0 to 76 degrees. The 30 m CDEM was used to create the slope map, and HQW was
then categorized into five classes (Figure 5b). We characterized slopes between 0◦ and
3◦ as having excellent RH suitability and slopes greater than 30◦ as unsuitable for runoff
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harvesting and freshwater management structures. The overall ranks and classes of the
slope criteria are listed in Tables A1 and A2 within Appendix A.

For this study, CDEM itself is regarded as the elevation map, which is then arranged
into five divisions (Figure 6). A low elevation provides more potential for surface water
accumulation and infiltration, where water ultimately flows toward a lower altitude [106].
Therefore, such areas are best suited for siting and constructing dams [29]. The eleva-
tion raster of HQW ranged from 632 m to 2755 m a.s.l. (above sea level). As illustrated
in Tables A1 and A2, the highest RH suitability class/rank is given to the lowest eleva-
tion territories.
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2.5.3. Hydrologic/Meteorologic Criteria

We employed for this study two substantial hydrological factors that influence water
storage capacity in a reservoir: stream width and precipitation. Since HQW is an ungauged
mountainous basin, we calculated the stream width of the drainage system as a substitute
for in situ streamflow measurements [4]. The TecDEM software was applied to extract the
drainage network for the study area. TecDEM analyzes topography and derives numerous
geomorphologic parameters from digital elevation models (e.g., drainage density and
watershed delineation) [107,108]. Several publications utilized stream order to assess the
storage capacity of hydrologic basins [47,48,56]. Stream order describes the hierarchical
connectivity of the stream system and enables size-based classification of drainage basins [2].
As implemented by an earlier investigation in the same region [4], we adopted streams
that belong to 3rd–6th orders in this study because of their vast water accommodation
capacity (Figure 7a). First, the streams were divided into 5 km segments to facilitate
the measurement of stream width. Then, QuickBird images were used to calculate the
stream width of each section. Due to the unavailability of recent QuickBird data, 30 scenes
from 24 to 28 July 2005 were used for this study. Areas without streams were deemed
inappropriate for the construction of dams. As dams are built on river courses, we applied
a 1000 m buffer zone along the HQW stream channels to identify prospective dam locations,
as illustrated in Figure 7b.

Although a few rain gauges are installed in HQW, they are unevenly distributed and
might only represent the meteorological conditions over part of the study area. Therefore,
monthly TRMM data were applied to generate the mean annual precipitation map for
the entire watershed. Deus and Gloaguen [109] stated that TRMM 3B43-V7 is a valuable
product that exhibits robust agreement with rain gauge measurements, particularly for
water resources studies. TRMM data, as pixel-based data, were initially converted to points
using the inverse distance weighting scheme to attain continuous coverage. Later, the
reliability of TRMM in the Hami Qeshan Watershed was assessed via observed precipitation
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data from Penjwen meteorological station. The observed precipitation (i.e., 180 monthly
readings) covered the period from January 2004 to December 2018. Evaluation results
revealed a good correlation between TRMM and rain gauge data with a coefficient of
determination (R2) and p-value of 0.79 and <0.05, respectively (Figure 8a). The highest
precipitation of 709 mm.yr−1 was recorded in the center of HQW, whereas precipitation
remarkably declined towards the east and west of the watershed (Figure 8b).
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2.5.4. Environmental Criteria

Land cover and soil were chosen as environmental parameters that affect RH suitability
in the study area. The land cover pattern substantially impacts the hydrological components
of the basin. For instance, vegetation cover influences various water cycle processes: runoff,
evapotranspiration, and infiltration [110,111]. Alrawi [112] reported that agricultural
lands decelerate surface runoff and increase water infiltration. The LC map of HQW was
provided by GEOSURV (Figure 9a). Moreover, it was generated from 2014 Landsat 8 OLI
data, in which supervised classification through the maximum likelihood algorithm was
applied at a 30 m pixel resolution [64]. Hami Qeshan Watershed was classified into ten
LC classes: carbonate rocks, igneous/metamorphic rocks, clastic rocks, natural vegetation,
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mixed barren land, burned land, harvested land, cropland and pasture, cultivated land, and
built-up land. Based on WLC and AHP models, seven LC classes were categorized under
moderate suitability for runoff harvesting, while two showed excellent appropriateness.
Unsurprisingly, built-up land was the only unsuitable class for RH.
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The soil map of HQW was obtained in raster format from HWSD [66]. Soil texture
represents an efficient indicator of infiltration rate and water-holding capacity in soil
layers [113]. Therefore, soil characteristics are vital for identifying potential RH locations.
Sand, silt, and clay percentages regulate the soil textural group. Fine and medium soil
classes are more suited for RH because of their high water-retention capability; as a result,
clay-predominant soil can hold harvested water for a long time. In contrast, soil with
high sand content reveals a relatively higher infiltration ratio and lower runoff [114]. The
study area (Figure 9b) includes three different soil groups: leptosols, vertisols (A and B),
and calcisols. Leptosols prevail in most HQW parts, where sand and silt constitute major
proportions. In addition, calcisols form an insignificant fraction of the soil groups south of
Penjwen city. Vertisols comprise two sub-groups, A and B, of which the clay content in A
(55%) is higher than in B (39%). Tables A1 and A2 in Appendix A show the rank/class of
soil groups for mapping runoff harvesting zones.

2.5.5. Socioeconomic Criteria

The existence of settlements and highways close to potential dam locations mini-
mizes the cost of water transportation [4]. We applied distance to towns/cities as the
chief socioeconomic criterion for identifying optimal RH and dam sites (Figure 10a). In
comparison, the map of villages was utilized to determine the number of villages that
could be adversely affected by the proposed dam/reservoir locations (Figure 10b). The
shapefile layers of towns/cities and villages were acquired from the Humanitarian Data
Exchange platform [65]. Buffer zones around Penjwen, Chwarta, and Mawat were applied
to measure the distance to towns/cities. In the Hami Qeshan Watershed, the farthest pixel
from towns/cities is greater than 15 km.

2.6. Model Validation

We adopted the Segmentation Accuracy Assessment (SAA) method [4] to evaluate the
outcomes from the WLC and AHP models for RH and dam siting. The SAA approach uses
the distinguished number of segments to compute the sum of distances from a reference
point to appropriate pixels [31]. The preselected dam locations by MAWR were considered
reference points [73]. Later, we produced three buffer zones of 1000 m, 500 m, and 250 m
around the reference points. ArcMap tools were utilized to determine the statistics of
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relevant pixels inside each buffer zone, precisely the number of proper pixels (NP) and the
total number of pixels (TP). Then, Equations (7)–(9) were utilized to compute the overall
accuracy (OA) of the suitable pixels as follows:

APn =
NP
TP

(7)

APw =
∑ PW

TP
(8)

OA =
APn + APw

2
(9)

where APn indicates the accuracy of the appropriate pixels by number, APw refers to the
accuracy of the appropriate pixels by weight, and ∑PW denotes the sum of weights of
all pixels.

ISPRS Int. J. Geo-Inf. 2023, 12, 312 14 of 32 
 

 

layers [113]. Therefore, soil characteristics are vital for identifying potential RH locations. 
Sand, silt, and clay percentages regulate the soil textural group. Fine and medium soil 
classes are more suited for RH because of their high water-retention capability; as a result, 
clay-predominant soil can hold harvested water for a long time. In contrast, soil with high 
sand content reveals a relatively higher infiltration ratio and lower runoff [114]. The study 
area (Figure 9b) includes three different soil groups: leptosols, vertisols (A and B), and 
calcisols. Leptosols prevail in most HQW parts, where sand and silt constitute major pro-
portions. In addition, calcisols form an insignificant fraction of the soil groups south of 
Penjwen city. Vertisols comprise two sub-groups, A and B, of which the clay content in A 
(55%) is higher than in B (39%). Tables A1 and A2 in Appendix A show the rank/class of 
soil groups for mapping runoff harvesting zones.  

2.5.5. Socioeconomic Criteria 
The existence of settlements and highways close to potential dam locations mini-

mizes the cost of water transportation [4]. We applied distance to towns/cities as the chief 
socioeconomic criterion for identifying optimal RH and dam sites (Figure 10a). In com-
parison, the map of villages was utilized to determine the number of villages that could 
be adversely affected by the proposed dam/reservoir locations (Figure 10b). The shapefile 
layers of towns/cities and villages were acquired from the Humanitarian Data Exchange 
platform [65]. Buffer zones around Penjwen, Chwarta, and Mawat were applied to meas-
ure the distance to towns/cities. In the Hami Qeshan Watershed, the farthest pixel from 
towns/cities is greater than 15 km. 

(a) (b) 

Figure 10. Thematic maps: (a) Distance to towns/cities; (b) Villages in Hami Qeshan Watershed. 

2.6. Model Validation 
We adopted the Segmentation Accuracy Assessment (SAA) method [4] to evaluate 

the outcomes from the WLC and AHP models for RH and dam siting. The SAA approach 
uses the distinguished number of segments to compute the sum of distances from a refer-
ence point to appropriate pixels [31]. The preselected dam locations by MAWR were con-
sidered reference points [73]. Later, we produced three buffer zones of 1000 m, 500 m, and 
250 m around the reference points. ArcMap tools were utilized to determine the statistics 
of relevant pixels inside each buffer zone, precisely the number of proper pixels (NP) and 
the total number of pixels (TP). Then, Equations (7)–(9) were utilized to compute the over-
all accuracy (OA) of the suitable pixels as follows: 𝐴𝑃𝑛 =  𝑁𝑃𝑇𝑃 (7)

Figure 10. Thematic maps: (a) Distance to towns/cities; (b) Villages in Hami Qeshan Watershed.

The resulting maps based on the WLC and AHP approaches were grouped into five
suitability classes: excellent, high, moderate, low, and unsuitable for harvesting surface
runoff. We additionally used the threshold operation to refine our technique. Also, ex-
perimental analysis was applied to choose the threshold values for the best method. The
pixels representing prospective dam sites were then located using the ultimate thresholded
raster of the optimal approach. Thus, ideal dam locations have been established through
point-type shapefiles.

3. Results
3.1. Generation of Runoff Harvesting Suitability Maps

Many insightful studies have revealed that integrating the WLC and AHP approaches
with GIS is an effective and competent RH suitability technique [2,44,54]. The WLC and
AHP models have been utilized to determine suitable RH locations by identifying the
weights of various criteria and their sub-criteria [4,47,48,53]. WLC was used in this research
because of its flexibility and efficiency in combining the normalized weights of factors
and the reclassified thematic layers to create the RH suitability map. In contrast, AHP
was employed due to its widely recognized capabilities in decision-making, which can be
detected via pairwise comparisons. Thus, the RH maps of HQW were generated using
a combined technique of MCDA, in situ/RS data, and GIS. First, the weights of the ten
criteria and classes/ranks of each sub-criterion were calculated based on expert judgment
and our literature review (Table 1). The weight and classes/ranks of each factor were
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then multiplied and allocated to the relevant raster file. Finally, the weighted overlay
technique in ArcMap was utilized to combine all thematic layers and generate the ultimate
RH suitability maps.

Since gorges and valleys represent ideal locations to collect and harvest surface runoff,
a buffer zone of 1000 m has been applied along the drainage network to disregard inconse-
quential terrains, as shown in Figure 11. The WLC model grouped the RH suitability of the
investigated watershed as follows: excellent (11%); high (23%); moderate (27%); low (25%);
and unsuitable (14%). In contrast, AHP classified HQW as follows: excellent (12%); high
(24%); moderate (27%); low (24%); and unsuitable (13%). The resulting RH maps show that
most downstream territories across QCR, Awe Gogasur, and Awe Shiler possess competent
aptitudes for runoff water harvesting (Figure 11). Even though the plain north of Penjwen
city was situated in the moderate RH zone, many upstream and uplifted lands of the study
area were categorized under low and unsuitable classes due to their high slope gradient.
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Some researchers [47,49,78] have considered the WLC technique a reliable decision-
making system for detecting suitable RH areas and dam site selection. Nevertheless, others
have found satisfactory results can be attained using AHP [4,33,48,58]. Although, in this
study, both models produced homogenous results, we determined that the quality of the
RH suitability maps generated using the WLC and AHP approaches depends mainly on the
criteria implemented and the weights given in previous literature (Table 1). After examining
different weightage scenarios, we found that minor adjustments to the layer weightings
can considerably impact the results. In MCDA, the individual judgment of researchers
while selecting the weights and effects of various parameters influences the development
of the models. Therefore, the significance of the predictive factors and their impact on RH
suitability should be prioritized over the applied methodology. Weight estimates can be
derived from earlier research that explored regions with comparable climatic circumstances.
Nevertheless, researchers must neglect outliers, illogical criteria, and weights applied in
certain studies.

3.2. Validation of the WLC and AHP Models

One of the essential procedures in evaluating the accuracy of any model is the vali-
dation of results, where models might not be advantageous from a scientific perspective
without verification [112]. In reviewing the literature, different methodologies are utilized
to validate the RH maps, such as correlation analysis, segmentation accuracy assessment,
receiver operating characteristic curve, and sensitivity analysis [4,20,31,44,56]. To examine
the robustness and viability of the implemented models, WLC and AHP, the SAA method
was performed by correlating the resulting suitability maps with the locations of 16 dams
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suggested by MAWR (Table A3 and Figure A1 in Appendix A). It should be clarified that
selecting a dam site involves thorough investigation and testing; therefore, we supposed
that MAWR dam sites are ideal for assessing and comparing the RH results. Simply put,
the preselected dam locations in the study area were used to validate the outcomes of
the models.

Figure 12 presents the OA for four buffer zones (i.e., 1000 m, 500 m, 250 m, mean
of all buffer zones), as detailed for the two techniques in Table A4 of Appendix A. The
accuracy of suitable pixels in terms of number and weight is implemented to evaluate
the OA. The average overall accuracy for the WLC model is slightly higher than that for
AHP, 69% and 66%, respectively. Thus, we chose the WLC model for this study to propose
optimal locations for constructing new dams in HQW. The adopted model demonstrates
that the best MAWR-preselected dams are at sites sorted: 1, 2, 3, 4, 5, 6, 7, 9, 11, 15, and 16.
Concurrently, the preselected dams numbered 8, 10, 12, 13, and 14 are within the moderate
RH suitability area. Significantly, none of the MAWR sites were situated in the low and
unsuitable zones (Figure A1 of Appendix A and Figure 11a). Hence, a significant positive
correlation between our model (i.e., WLC) and the preselected dam locations shows that
about 70% of MAWR-proposed sites fall inside high and excellent runoff harvesting zones,
which validates our methodology and research.
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3.3. Identification of New Sites for Dam Construction

An optimum dam site is where a broad valley with towering walls leads the way to
a narrow canyon with massive cliffs [114]. After the accuracy assessment of the models,
the threshold operation was used on the WLC raster with a suitable selected value of
0.8, which was determined experimentally for this study. Consequently, ten groupings of
pixels made up the ultimate thresholded WLC layer; later, these zones were utilized to
locate potential water management structures. The proposed dam locations in HQW have
been selected in narrow gorges with steep slopes, where such geomorphological features
considerably minimize dam establishment costs. Moreover, this research employed the
CDEM data and drainage network to distinguish the preferred tight valleys for dam site
selection. As revealed in Figure 13, a total of 10 positions have been characterized for
constructing dams. Many of these suggested sites are scattered in the valleys between
Mawat and Chwarta towns.
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Figure 13. Locations of the proposed dams/reservoirs in HQW based upon the WLC model.

Table 6 illustrates the attributes of the candidate dams and reservoirs in the investi-
gated watershed. The maximum height and length of the proposed dams, as well as the
cross-sectional profile of the suggested sites, were defined based on the CDEM layer, which
was also utilized to calculate the storage capacity, surface area, and catchment area of the
respective reservoirs through the tools of ArcMap. Eventually, the estimated number of
inundated villages was extracted for each waterbody.

Table 6. Characteristics of the proposed dams/reservoirs in HQW using the WLC model.

Site
No.

Dam Catchment
Area (km2)

Dam Profile (UTM) Reservoir
Area (km2)

Reservoir
Volume (m3)

Nv
Length (m) Height (m) X Start Y Start X End Y End

1 924 247 2996 534,146 397,774 534,947 397,728 1.82 84,990,488 0
2 420 131 2946 535,451 396,957 535,782 396,982 3.09 64,985,592 1
3 625 95 1543 541,015 395,760 540,768 395,817 1.77 25,636,552 1
4 515 60 510 568,630 395,459 569,032 395,491 1.76 49,195,354 0
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Table 6. Cont.

Site
No.

Dam Catchment
Area (km2)

Dam Profile (UTM) Reservoir
Area (km2)

Reservoir
Volume (m3)

Nv
Length (m) Height (m) X Start Y Start X End Y End

5 835 210 2774 538,805 396,345 538,869 396,262 2.60 33,801,950 3
6 523 88 501 556,669 395,002 556,906 395,048 2.49 100,715,685 1
7 886 88 113 540,424 396,190 540,801 396,271 1.49 45,342,722 2
8 419 60 369 567,130 394,365 567,492 394,386 2.41 55,517,400 1
9 776 98 1359 558,966 395,778 559,567 395,827 1.76 45,234,931 1
10 502 141 1518 546,870 395,786 546,747 395,835 2.25 102,752,086 3

Nv denotes how many villages will be flooded due to dam construction.

4. Discussion

Several studies have revealed that Iraq, including HQW, has undergone devastating
floods and drought episodes in recent years [10,59,115–118]. However, despite receiving a
substantial volume of precipitation, the surface water in HQW has not been adequately
exploited due to a lack of runoff harvesting structures (e.g., dams), where most runoff
waters are lost to drainage. Therefore, growing population and expansion schemes in
areas susceptible to flooding necessitate a quick and effective response to alleviate overflow
risks and guarantee water demands for dry periods. Within this framework, the current
research applied the WLC and AHP approaches to generate two RH suitability maps
for the Hami Qeshan Watershed and identify the best dam sites using ArcMap. The
applied criteria/factors (i.e., TPI, LI, SW, SP, PCP, SG, EL, LC, DF, and DTC) for planning,
implementing, and developing such techniques are described in Section 2.5. Ultimately, the
present methodology was validated with preselected dam locations that MAWR determined
to efficiently manage the surface water in Kurdistan Region.

RH and dam siting through GIS techniques are laborious and challenging due to the
involvement of multiple variables that govern the outcomes. Therefore, a comprehensive
analysis of predictive criteria is indispensable to accurately evaluate the weights of factors
under particular geographical circumstances. According to published studies, as mentioned
in Table 1, selecting dam sites requires considering several key factors such as slope,
geology, streamflow, land cover, precipitation, soil, and socioeconomic concerns. Most
earlier criteria were applied in regions with similar morphological, climatic, geological, and
environmental characteristics, such as Duhok [2] and Erbil [31] governorates in northern
Iraq. Few studies utilized TPI for dam site suitability assessment [48,56]; nonetheless, we
assigned a significance weighting to this topographic criterion in which concave landform
signifies ideal positions for surface water accumulation. The discharge of a river can
be estimated by multiplying the water velocity by the average depth and width of the
channel [119]. Because HQW is an ungauged basin, we used stream width measurements
as an alternative to streamflow data to strengthen the efficacy of the employed methodology.
Othman [4] reported that utilizing high-resolution satellite imagery (e.g., QuickBird) to
measure stream width is a feasible mechanism to estimate streamflow for dam site selection.
Furthermore, it outperforms other adopted criteria like stream density, which combines all
drainages in a region irrespective of whether they are continual, seasonal, or dry outlets.

In this research, we created RH suitability maps for the mountainous Hami Qeshan
Watershed using in situ data, RS imagery, and MCDA in ArcMap. The WLC model was em-
ployed herein due to its adaptability and effectiveness in merging the reclassified thematic
layers and the normalized weights of factors to generate the RH map [47]. At the same time,
AHP was applied because it represents a powerful technique for solving and decomposing
complex decision problems into pairwise comparisons [23]. Both models, WLC and AHP,
were further assessed and validated via the SAA method (Figures 11 and 12). The trun-
cated violin plot (Figure 14) demonstrates that the WLC model achieved, to some extent,
a better result than AHP. The correctness of the WLC approach is attested through the
dispersion of its weighted criteria, which is above 75% of the overall accuracy (Figure 14;
green), as compared to that of AHP, whose percentage is fractionally below 75% (Figure 14;
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beige). Thus, the current investigation selected WLC as the best model to spot proba-
ble sites for constructing new dams in HQW. Based on our literature review (Table 1),
most studies either applied the WLC approach as a primary and individual weighting
methodology [47] or considered WLC as an overlay technique in GIS [2,44]. In other
words, according to our knowledge, no controlled studies have compared the two methods
(i.e., WLC and AHP) as independent weightage schemes for mapping runoff harvesting
zones. Consequently, the findings should meaningfully contribute to understanding the
remarkable differences between WLC and AHP as two different weighting methods for
site suitability determination.
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According to the adopted WLC model, 10 locations were distinguished as appropriate
for dam construction in the Hami Qeshan Watershed (Figure 13). Two of these sites
(i.e., numbers 2 and 5), which are located northwest of HQW, are compatible with those
preselected by MAWR (i.e., numbers 15 and 11). In addition, the overall accuracy of
these ten scheduled dam locations in HQW ranges between 66% and 87%, as revealed in
Table 7. Each potential dam position was additionally evaluated by analyzing relevant
characteristics, such as dam profile, maximum dam height, crest length, and reservoir
storage capacity (Figure A2, Table 6). The reservoir volume was calculated by multiplying
the mean elevation of the water column at each pixel by the reservoir’s surface area.
Concurrently, the dam profile (i.e., height and length) was determined using CDEM and
ArcMap tools. It is worthy of mention that evaporation loss might be very substantial
in this semi-arid region, where it increases as the surface area of the waterbody expands.
Therefore, optimum reservoirs with minimum surface area and maximum storage capacity
are preferred to mitigate water loss through evaporation [11]. Ranking the proposed
reservoirs in compliance with their maximum storage capacity, highest to lowest, puts them
in the following order: 10, 6, 1, 2, 8, 4, 7, 9, 5, and 3 (Table 6).

Based on Figure 4 and Table 6, some dam sites might not be feasible in practice due
to their closeness to fault zones, namely locality numbers 4, 9, and 10. In contrast, the
proposed dam number 1 can store a significant water quantity of 84,990,488 m3, and its
construction will not adversely impact adjoining villages. The 924 m length of this dam
could be its only drawback, which would raise the construction cost compared to the other
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nine structures. Geologically, dam 1 is situated on vigorous rock units of ABT formations,
and the nearest fault line is located 2.3 km eastwards. Even though dam number 2 can
collect a high amount of surface runoff (i.e., 64,985,592 m3), the large surface area of its
potential reservoir (i.e., 3.09 km2) might lead to a high evaporation rate. This site has
advantageous lithologic and structural features similar to dam site 1. Another important
location is number 6, which has the second-largest reservoir volume of 100,715,685 m3

with a promising dam length (i.e., 523 m). Diverse and tolerable rock types of RBL, FP,
and ABT crop out at site 6; nonetheless, the construction of dam number 6 will inundate
minor settlements. Compared to the other sites, locations 7 and 8 could be categorized as
intermediate reservoirs capable of holding runoff waters of 45,342,722 m3 and 55,517,400 m3

with a dam height of 88 m and 60 m, respectively. Water management features 3 and 5 have
the lowest storage capacity of 25,636,552 m3 and 33,801,950 m3, respectively. In the future,
strategic planners and policymakers could benefit enormously from this storage capacity
evaluation of the recommended reservoirs at the designed dam sites. Such quantitative
assessments will provide insight into the amount of water held in each reservoir with
respect to the dam height. Consequently, it will assist in regulating water demand and
supply for neighboring communities and imminent development.

Table 7. Accuracy assessment of the proposed dam sites in HQW via the WLC model.

Dam
No.

Coordinates Buffer 1000 m Buffer 500 m Buffer 250 m

Latitude Longitude APn APw OA APn APw OA APn APw OA

1 35.9417473 45.38232216 90.77 63.28 77.02 90.95 62.60 76.77 90.83 60.28 75.55
2 35.87125439 45.3951251 94.64 66.50 80.57 96.68 69.51 83.09 94.04 72.34 83.19
3 35.76361479 45.4526547 88.36 65.50 76.93 81.44 66.46 73.95 89.91 68.78 79.34
4 35.73424375 45.76093709 100 66.50 83.25 100 67.33 83.66 100 68.01 84.00
5 35.81049214 45.42993321 92.11 65.45 78.78 89.00 68.03 78.52 100 74.45 87.23
6 35.69440519 45.62756002 91.74 61.96 76.85 82.36 58.22 70.29 75.34 56.52 65.93
7 35.80365931 45.44926382 93.41 61.89 77.65 96.79 66.74 81.77 100 71.59 85.79
8 35.63545387 45.74358888 86.84 62.05 74.44 88.55 62.87 75.71 80.73 62.07 71.40
9 35.76429905 45.65525126 96.44 65.33 80.89 94.62 66.25 80.43 100 69.12 84.56

10 35.76578605 45.51786872 97.45 62.51 79.98 100 64.87 82.43 100 67.93 83.97

Since MAWR dam sites are based on scanty field exploration and superficial GIS
analysis that neglected vital aspects such as geology and streamflow [4], our study was
intended to consider all essential criteria (i.e., Section 2.2) for dam site selection through
systematic MCDA approaches and ArcMap techniques. This investigation identifies op-
timal dam locations and their respective reservoirs that might further be considered for
in-depth site assessments. Unlike sites with critical constraints, investing resources in
more appropriate places could result in substantial expense savings. These multipurpose
dams have constructive implications for HQW, such as flood protection, crop irrigation, hy-
dropower generation, aquaculture, developing the granite and marble industry, expanding
recreational activities, and securing water supply for the local communities. Correspond-
ingly, the quality of life for locals and the environment around the proposed dams can
be improved. As sedimentation constantly and adversely affects the capacity limit of
reservoirs [16], some of the proposed dams can be specified mainly to trap and prevent
foreseeable sediments from entering Dukan Reservoir (Figure 2), thus increasing its lifetime.

Nevertheless, the findings of this research should be cautiously interpreted as there
are limitations that should be considered in upcoming studies. For instance, this study
was limited by the lack of river discharge gauges on the HQW drainage network. The
insufficiency and absence of accurate and continuous streamflow measurements could lead
to an erroneous estimation of the actual surface water quantity. Also, a factor that was not
addressed in this investigation was the electrical grid infrastructure at the potential dam
sites, which is a critical aspect of developing a hydropower project [120].
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The adopted methodology, while preliminary, can be used as a scientific roadmap
for a broader water management framework in mountainous regions. However, a de-
tailed geological investigation of the recommended dam sites must be carried out before
implementing any constructive action to shed light on the local geotechnical conditions
and avoid potential failures [121]. Interestingly, this mountainous region has geological
evidence of landslide-induced dammed lake(s) during the Quaternary Period [122], in-
dicating mass-wasting hazards that could adversely affect the proposed dam/reservoir
sites. Therefore, a supplementary study with more focus on landslides (i.e., frequency
and magnitude) in HQW is suggested. As per global climate change, if the intensity and
frequency of extreme events per year dramatically rise, it is crucial to develop flood sus-
ceptibility maps and scenarios for protective measures against disastrous phenomena. In
future investigations, it might be possible to integrate the spatial optimization models
recommended by Tong and Murray [36] into dam site selection. Another probable area
of future research would be to estimate the annual soil loss that negatively impacts the
functionality and lifespan of the proposed dams [70]. Decision-makers must also con-
sider the additional greenhouse gases emitted due to dam construction that could result
in human-induced climate change complications. Further research must be undertaken,
which accounts for surface runoff volume generated within HQW. More studies can also
compare the findings of the applied methodology with those of other approaches, such as
machine learning [29,123,124] and TOPSIS [23], to strengthen the accuracy of the imple-
mented model. All previous recommendations aim to improve the reliability and predictive
capability of the proposed methodology and establish a practical framework for developing
a sustainable and comprehensive water resource management scheme.

5. Conclusions

Even though surface runoff within a basin is one of the most crucial water resources,
no previous researchers have attempted to determine optimal locations for harvesting this
decent freshwater asset in the Hami Qeshan Watershed. In this study, we implemented
an integrated methodology of in situ data, RS images, WLC, AHP, and GIS to determine
feasible spots for harvesting surface runoff and constructing new multipurpose dams in
the hilly HQW. The site assessment involved several vital factors, including geology, TPI,
slope, precipitation, stream width, land cover, elevation, soil group, distance to faults, and
distance to town/city. Attentively estimated criteria weights were assigned and evaluated
for each MCDA method (i.e., WLC and AHP). After that, overlay analysis combined all
the thematic layers into raster maps to provide the final RH suitability maps. The SAA
method was used to validate the overall accuracy of the resulting maps based on 16 dam
sites preselected by MAWR. The WLC model achieved, to a certain extent, higher overall
accuracy than AHP. Consequently, based on the superior model (i.e., WLC), ten potential
sites were identified for harvesting surface runoff and building new dams in HQW. The
accuracy of these ten sites ranged between 66% and 87%.

Altogether, this study strengthens the idea that a thorough selection of the evaluative
factors and their respective weights, which are far more critical than the employed methods,
should be the main focus of future research. Despite the scarcity of on-site data, the current
study provided insights into integrating satellite images, MCDA approaches, and GIS to
delineate ideal RH areas and locate optimum dam sites in the ungauged HQW. Likewise, it
is essential to note that the findings of the approach described herein can be continuously
improved as the reliability of the data adopted increases. Developing countries like Iraq
severely need such initiatives where large amounts of freshwater are drained during wet
seasons, resulting in socioeconomic and environmental disasters. Although this research
proposed ten runoff harvesting structures to control flooding and secure water supply,
further studies are recommended to consider additional parameters, such as water quality,
organic pollutants, and heavy metals within the relevant catchments. Ultimately, exten-
sive fieldwork, including geophysical surveys and geotechnical investigations, must be
conducted at the proposed dam sites before implementing any RH system.
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Appendix A

Table A1. Assigned and normalized weights of RH factors using the WLC approach.

Criterion Sub-Criterion Class RH Suitability
WLC

Criterion Weight% Normalized Weight

Lithology

River 1 US

13

0.537
FP 1 US 0.537
AF 1 US 0.537

RBU 3 MS 1.611
RBL 3 MS 1.611

NWG 4 HS 2.148
SH 2 LS 1.074

ABT 5 ES 2.685
KRG 5 ES 2.685
SPG 5 ES 2.685
QR 5 ES 2.685
QC 3 MS 1.611
PC 5 ES 2.685
GG 5 ES 2.685
BK 4 HS 2.148
SG 5 ES 2.685
MG 5 ES 2.685
JU 5 ES 2.685
UJ 5 ES 2.685
DL 5 ES 2.685

−113 to −50 5 ES 3.356
−50 to −25 4 HS 2.685

TPI −25 to −10 3 MS 16 2.013
−10 to 0 2 LS 1.342
0 to 116 1 US 0.671

0–3 5 ES 2.685
3–8 4 HS 2.148

Slope (degree) 8–15 3 MS 13 1.611
15–30 2 LS 1.074
>30 1 US 0.537
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Table A1. Cont.

Criterion Sub-Criterion Class RH Suitability
WLC

Criterion Weight% Normalized Weight

<605 1 US 0.403
605–625 2 LS 0.805

Precipitation (mm/yr.) 625–650 3 MS 10 1.208
650–675 4 HS 1.611

>675 5 ES 2.013

<1 1 US 0.671
1–5 2 LS 1.342

Stream Width (m) 5–10 3 MS 16 2.013
10–30 4 HS 2.685
>30 5 ES 3.356

Leptosols 1 US 0.403
Soil Group Calcisols 3 MS 10 0.805

Vertisols B 4 HS 1.611
Vertisols A 5 ES 2.013

632–900 5 ES 2.013
900–1100 4 HS 1.611

Elevation (m) 1100–1300 3 MS 10 1.208
1300–1500 2 LS 0.805

>1500 1 US 0.403

Built-up Land 1 US 0.268
Cropland and Pasture 3 MS 0.805

Cultivated Land 3 MS 0.805
Harvested Land 3 MS 0.805

Land Cover Mixed Barren Land 3 MS 6 0.805
Natural Vegetation 3 MS 0.805

Clastic Rocks 3 MS 0.805
Burned Land 3 MS 0.805

Carbonate Rocks 5 ES 1.342
Igneous/Metamorphic

Rocks 5 ES 1.342

0–1770 1 US 0.134
1770–4460 2 LS 0.268

Distance to Faults (m) 4460–8140 3 MS 3 0.403
8140–12,110 4 HS 0.537

>12,110 5 ES 0.671

0–250 1 US 0.134
250–2500 5 ES 0.671

Distance to Town/City 2500–5000 4 HS 3 0.537
5000–10,000 3 MS 0.403

10,000–15,000 2 LS 0.268
>15,000 1 US 0.134
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Table A2. Assigned and normalized weights of RH factors using the AHP approach.

Criterion Sub-Criterion Rank RH Suitability
AHP

Criterion Weight% Normalized Weight

River 1 US 0.015
FP 1 US 0.015
AF 1 US 0.015

RBU 5 MS 0.074
RBL 5 MS 0.074

NWG 7 HS 0.104
SH 3 LS 0.044

ABT 9 ES 0.133
KRG 9 ES 0.133

Lithology SPG 9 ES 13 0.133
QR 9 ES 0.133
QC 5 MS 0.074
PC 9 ES 0.133
GG 9 ES 0.133
BK 7 HS 0.104
SG 9 ES 0.133
MG 9 ES 0.133
JU 9 ES 0.133
UJ 9 ES 0.133
DL 9 ES 0.133

−113 to −50 9 ES 0.190
−50 to −25 7 HS 0.148

TPI −25 to −10 5 MS 19 0.106
−10 to 0 3 LS 0.063
0 to 116 1 US 0.021

0–3 9 ES 0.133
3–8 7 HS 0.104

Slope (degree) 8–15 5 MS 13 0.074
15–30 3 LS 0.044
>30 1 US 0.015

<1 1 US 0.021
1–5 3 LS 0.063

Stream Width (m) 5–10 5 MS 19 0.106
10–30 7 HS 0.148
>30 9 ES 0.190

<605 1 US 0.010
605–625 3 LS 0.029

Precipitation (mm/yr.) 625–650 5 MS 9 0.048
650–675 7 HS 0.068

>675 9 ES 0.087

Soil Group

Leptosols 1 US

9

0.010
Calcisols 5 MS 0.048

Vertisols B 7 HS 0.068
Vertisols A 9 ES 0.087

632–900 9 ES 0.087
900–1100 7 HS 0.068

Elevation (m) 1100–1300 5 MS 9 0.048
1300–1500 3 LS 0.029

>1500 1 US 0.010
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Table A2. Cont.

Criterion Sub-Criterion Rank RH Suitability
AHP

Criterion Weight% Normalized Weight

Built-up Land 1 US 0.006
Cropland and Pasture 5 MS 0.031

Cultivated Land 5 MS 0.031
Harvested Land 5 MS 0.031

Land Cover Mixed barren Land 5 MS 5 0.031
Natural Vegetation 5 MS 0.031

Clastic Rocks 5 MS 0.031
Burned Land 5 MS 0.031

Carbonate Rocks 9 ES 0.055
Igneous/Metamorphic

Rocks 9 ES 0.055

0–1770 1 US 0.002
1770–4460 3 LS 0.006

Distance to Faults (m) 4460–8140 5 MS 2 0.010
8140–12,110 7 HS 0.014

>12,110 9 ES 0.019

0–250 1 US 0.002
250–2500 9 ES 0.019

Distance to Town/City 2500–5000 7 HS 2 0.014
5000–10,000 5 MS 0.010

10,000–15,000 3 LS 0.006
>15,000 1 US 0.002

Table A3. Characteristics of MAWR dams/reservoirs used for model validation [70].

Site River Order Latitude Longitude Main Purpose Dam Height Storage Capacity Catchment
No. (m) (Million m3) Area (km2)

1 Qala Chulan 2 35.5736 45.9236 Irrigation, Energy 30 8 178.4
2 Qala Chulan 2 35.6830 45.6534 Irrigation, Energy 25 1.45 313.6
3 Unk 4 35.7241 45.9424 Irrigation 17 2 8.8
4 Siway 3 35.7555 45.7240 Irrigation, Energy 50 40 1152.3
5 Siway 3 35.7500 45.6667 Irrigation, Energy 43 29 1202.5
6 Siway 3 35.7667 45.5350 Energy 50 40 1480.7
7 Siway 3 35.7634 45.5081 Irrigation, Energy 23 11 1509.9
8 Qala Chulan 2 35.7595 45.4284 Irrigation, Energy 56 300 2425.8
9 Unk 4 35.8037 45.3094 Irrigation 20 2 23.4
10 Capelon 3 35.7903 45.3806 Irrigation 28 6 152.3
11 Qala Chulan 2 35.8097 45.4280 Irrigation, Energy 12 11 2642
12 Mawat 3 35.8615 45.4756 Irrigation 44 2 48
13 Mawat 3 35.7925 45.4648 Irrigation, Energy 39 3 104.3
14 Mawat 3 35.8085 45.4430 Energy 75 18 114.3
15 Qala Chulan 2 35.8679 45.3983 Energy 29 50 2828.3
16 Qala Chulan 2 35.9661 45.3974 Energy 34 10 2875.7
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Table A4. Accuracy assessment of dam site selection via the WLC and AHP techniques.

Buffer Method-Scenario Suitability Measure
MAWR Dam Site

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1000 m

TP 3487 3488 3488 3487 3488 3487 3490 3488 3490 3488 3487 3487 3487 3488 3487 1896
NP 1948 3084 1584 3487 3004 3487 3144 3108 205 534 3197 834 1700 3147 3402 1884

AHP APn 55.86 88.42 45.41 100 86.12 100 90.09 89.11 5.87 15.31 91.68 23.92 48.75 90.22 97.56 99.37
APw 52.29 63.68 47.40 64.73 62.93 64.26 58.94 61.89 37.01 42.20 64.74 45.50 49.77 64.50 69.06 73.00
OA 54.08 76.05 46.41 82.37 74.53 82.13 74.51 75.50 21.44 28.75 78.21 34.71 49.26 77.36 83.31 86.18

TP 3487 3487 3487 3487 3487 3488 3487 3487 3488 3488 3488 3488 3487 3487 3487 1896
NP 1948 3179 1820 3487 3130 3488 3336 3121 283 858 3208 974 1989 3308 3419 1893

WLC APn 55.86 91.17 52.19 100 89.76 100 95.67 89.50 8.11 24.60 91.97 27.92 57.04 94.87 98.05 99.84
APw 52.36 64.81 49.74 65.73 64.28 65.21 59.84 62.89 38.67 44.03 65.15 47.66 51.45 65.04 69.84 73.82
OA 54.11 77.99 50.97 82.87 77.02 82.60 77.76 76.20 23.39 34.31 78.56 37.79 54.25 79.95 83.95 86.83

500 m

TP 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 626
NP 518 725 702 873 873 873 768 760 81 133 781 282 556 780 851 626

AHP APn 59.34 83.05 80.41 100 100 100 87.97 87.06 9.28 15.23 89.46 32.30 63.69 89.35 97.48 100
APw 52.85 61.45 55.64 64.91 66.43 64.78 59.77 63.11 39.46 42.26 65.66 46.86 51.77 64.09 71.62 73.43
OA 56.09 72.25 68.03 82.45 83.21 82.39 73.87 75.08 24.37 28.75 77.56 39.58 57.73 76.72 84.55 86.71

TP 873 873 873 873 873 873 873 873 873 873 873 873 873 873 873 626
NP 518 759 736 873 873 873 843 768 106 205 784 310 631 858 851 626

WLC APn 59.34 86.94 84.31 100 100 100 96.56 88.07 12.16 23.48 89.81 35.51 72.28 98.28 97.48 100
APw 52.94 62.51 58.14 65.84 67.47 65.73 60.67 64.19 41.19 44.00 66.05 49.02 53.50 64.62 72.23 74.16
OA 56.14 74.72 71.22 82.92 83.74 82.87 78.62 76.13 26.67 33.74 77.93 42.26 62.89 81.45 84.86 87.08

250 m

TP 218 218 218 218 218 218 218 218 218 219 219 220 218 218 218 197
NP 161 186 215 218 218 218 208 186 41 47 218 80 149 183 208 197

AHP APn 73.85 85.32 98.62 100 100 100 95.41 85.32 18.81 21.46 99.54 36.36 68.35 83.94 95.41 100
APw 54.98 62.74 61.03 66.64 65.50 65.49 62.44 59.66 41.87 44.10 73.22 47.01 52.37 59.13 72.27 71.87
OA 64.42 74.03 79.83 83.32 82.75 82.74 78.93 72.49 30.34 32.78 86.38 41.69 60.36 71.54 83.84 85.93

TP 218 218 218 218 218 218 218 218 219 218 218 218 218 218 218 197
NP 161 190 218 218 218 218 214 186 44 57 217 85 150 217 208 197

WLC APn 73.85 87.16 100 100 100 100 98.17 85.32 20.09 26.15 99.54 38.99 68.81 99.54 95.41 100
APw 55.06 63.63 63.50 67.51 66.53 66.42 63.33 60.71 43.60 45.85 73.65 49.25 54.05 59.45 72.79 72.55
OA 64.46 75.39 81.75 83.76 83.27 83.21 80.75 73.02 31.85 36.00 86.60 44.12 61.43 79.49 84.10 86.28

Mean
OA (AHP) 58.20 74.11 64.76 82.71 80.16 82.42 75.77 74.36 25.38 30.09 80.72 38.66 55.78 75.21 83.90 86.28
OA (WLC) 58.23 76.04 67.98 83.18 81.34 82.89 79.04 75.12 27.30 34.68 81.03 41.39 59.52 80.30 84.30 86.73
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Figure A1. Location map of preselected dam sites in HQW by MAWR [70]. 
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Figure A2. Cross-sectional profile of the proposed dam sites based on the WLC model. 
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