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Abstract: It is important to capture passengers’ public transit behavior and their mobility to create
profiles, which are critical for analyzing human activities, understanding the social and economic
structure of cities, improving public transportation, assisting urban planning, and promoting smart
cities. In this paper, we develop a generative adversarial machine learning network to characterize
the temporal and spatial mobility behavior of public transit passengers, based on massive smart card
data and road network data. The Apriori algorithm is extended with spatio-temporal constraints
to extract frequent transit mobility patterns of individual passengers based on a reconstructed
personal trip dataset. This individual-level pattern information is used to construct personalized
feature vectors. For regular and frequent public transit passengers, we identify similar transit
mobility groups using spatio-temporal constraints to construct a group feature vector. We develop a
generative adversarial network to embed public transit mobility of passengers. The proposed model’s
generator consists of an auto-encoder, which extracts a low-dimensional and compact representation
of passenger behavior, and a pre-trained sub-generator containing generalization features of public
transit passengers. Shenzhen City is taken as the study area in this paper, and experiments were
carried out based on smart card data, road network data, and bus GPS data. Clustering analysis of
embedding vector representation and estimation of the top K transit destinations were conducted,
verifying that the proposed method can profile passenger transit mobility in a comprehensive and
compact manner.

Keywords: transit mobility embedding; generative adversarial network; smart card data; public transit

1. Introduction

Modeling and profiling human mobility is essential to the understanding of travel mo-
bility patterns of individual passengers and urban socio-economic structure [1]. Analyzing
human transit behavior plays a vital role in capturing generic human activity patterns and
the distribution structure of urban functional areas [2,3]. Public transit mobility manifests
a collection of spatially–temporally varying travel patterns [4]. Therefore, it is crucial to
effectively integrate spatio-temporal information to represent transit mobility patterns.
Understanding patterns of transit behaviors is essential for enhancing smart transportation
systems by providing more efficient and personalized services [5]. Prior human mobility
research was primarily based on analytical models such as the gravity model [6] and ra-
diation model [7]. However, these traditional analytical models, which aim to develop a
universal model to capture human mobility, lack the capability to describe heterogeneous
travel behavior [8]. Unlike traditional analytical models, data-driven models based on
transit big data offer a novel approach to studying human mobility [9] and the relationships
between different areas [10] within a city.
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Public transport systems such as subways and buses carry an enormous number of
daily passengers in the city, including not only commuting activities but also tourist activi-
ties [11]. A large amount of smart card data (SCD), generated by smart public transport
systems, has become an important data source for studying human transit mobility and
further profiling passenger transit behavior from a data-driven perspective [12]. Addition-
ally, through comparative studies, it is possible to obtain insights into the explainability of
artificial intelligence concerning human mobility [13]. Unlike traditional statistical models
that describe people’s transit patterns from a group perspective, data-driven models usually
focus on individual transit mobility. Typical data-driven models such as Recurrent Neural
Network (RNN) and Word2Vec have achieved favorable results in practical application
because these models can capture the temporal correlation of individual transit activ-
ity [14–17]. However, these models still have room for improvement, such as: (1) excessive
attention is given to models with large data samples, while the modeling of spatio-temporal
characteristics of transit is insufficient; (2) most studies did not explicitly account for
complete trips, thereby failing to capture comprehensive semantic travelling information.

In recent years, the generative adversarial network (GAN) has become one of the
most promising unsupervised learning models [18]. Compared with typical discriminative
models, GANs have the following advantages: (1) as a generative model, they achieve
good practical benefits in data imputation, data generation, and simulation of specific
data distributions; (2) due to their high scalability, it is convenient to incorporate prior
knowledge into the network to improve stability and accuracy [19]. This paper innovatively
proposes to capture spatio-temporal characteristics of public transit passengers using the
framework of the GAN by constructing high-level compact vector representations that
describe passengers’ transit mobility.

The novelties of this study can be summarized as follows:

1. We propose to profile public transit mobility considering both the personalized and
group characteristics. We extend Apriori algorithm [20] with spatio-temporal con-
straints to extract passenger’s frequent transit mobility, which representing person-
alized characteristics. And the group characteristics are represented by identifying
similar transit group mobility. Additionally, because of the sparsity of public transit
trajectory [21], we design a unified grid-based method to construct transit mobil-
ity vectors.

2. We propose a novel data-driven method for profiling public transit mobility using an
adversarial learning network that integrates personal and group characteristics. The
generator of the network consists of a pre-trained sub-generator and an auto-encoder,
both of which are composed of multiple GRU layers and fully connected layers. We
pre-train sub-generator using similar transit group vectors as labels to add group
characteristics into the network. The discriminator, on the other hand, is composed
of multiple fully connected layers. Within the framework of GAN, frequent transit
mobility vectors are used as the real value to be jointly trained with the fake value
of the generator. Through this adversarial process, a specific public transportation
passenger’s transit mobility embedding can be obtained;

3. The proposed method was evaluated with real SCD in Shenzhen, China. The experi-
mental results show that the proposed approach has the applicability to characterize
transit mobility and assist in understanding passengers’ transit behavior and mobil-
ity patterns.

2. Related Work
2.1. Transit Mobility Pattern Mining

The classical model for studying group transit mobility patterns traces back to the
gravity model proposed in the 1940s [6]. This model suggests that the intensity of human
transit mobility between cities is proportional to the product of the population of the two
cities and inversely proportional to the distance between them. Barabasi et al.’s seminal
article [22] clearly revealed the temporal deviation of human behavior from the Poisson
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process. Since then, there have been numerous studies on human activity patterns. Ref. [23]
analyzed human behavior by studying the flow of banknotes and found evidence for
the spatial scaling law of human behavior. Ref. [24] discovered the high regularity of
human trajectory and the high probability of returning to specific positions. Ref. [25] found
an upper-bound potential predictability rate of individual passengers of 93%. Ref. [26]
proposed a nonparametric model based on Gaussian process regression to model passenger
trajectories. Furthermore, how to extract significant human mobility patterns also attracted
attention. Through a Markov chain [27], 17 significant mobility patterns were extracted by
analyzing daily activity trajectory data. Ref. [28] proposed a complete trajectory pattern
mining framework to extract frequent patterns of individual trips based on the heuristic
detection approach. These studies offer enlightenment for analyzing transit mobility
patterns by establishing classical statistical models, investigate transit data flows, and
aggregating passenger trajectories. However, the aforementioned studies, relatively, lack
spatio-temporal modeling, and they are unable to capture more transit characteristics due
to the lack of substantial transit data.

2.2. Data-Driven Transit Mobility Analysis

Smart Card Data (SCD) recorded by public transportation systems contain rich in-
formation about people’s activities within the city, providing a solid data foundation for
understanding and studying human activities. Some studies systematically analyzed the
application value of SCD and demonstrated how SCD can be used to generate and recon-
struct passenger travel trajectories [29,30]. And several research papers have applied SCD
to study people’s travel activities and explore the relationship between human and cities.
SCD were used to analyze the flow of people between areas and to characterize regional fea-
tures, leading to the extraction of compact vector expression for regional representation [31].
Ref. [12] used one month of Beijing SCD to develop a data mining model for extracting and
modeling passenger commuting patterns, and through comparison analysis of the work
and residence locations of different commuters, verifying the imbalance between work and
residence in the Beijing region. Some SCD cluster algorithms, such as [32], were applied to
mine passenger transit pattern and detect daily transit behavior differences by augmenting
classical algorithms. These studies indicate that SCD has significant value in areas such as
analyzing passenger behavior, optimizing road networks, and adjusting public facilities.

In recent years, many researchers have focused on profiling public transit mobil-
ity from a data-driven perspective using deep learning techniques. These methods aim
to capture the spatio-temporal characteristics of transit mobility and explore individual
and group behavior patterns. By applying deep learning models such as Seq2Seq [33],
Stacked-LSTM [17], Variational Auto-Encoder [34,35], Auto-Encoder [36], Word2Vec [37]
and bidirectional self-attention network [38], these studies embedded passenger transit
mobility and clustered the vector representations to explore mobility patterns, infer trip
purpose, predict passenger activity in the next moment and solve trajectory matching
problems. As human mobility is strongly spatio-temporal, some studies tended to use
mobility graph to capture spatial characteristic. Ref. [39] established a probability pattern
graph to express drivers’ driving behavior and applied the representation results to the
detection of high-risk sections of urban traffic accidents. Ref. [40] divided a passenger’s
trips into passenger, transit mode, and OD triplet structure to construct a behavior graph
with heterogeneous edges. By jointly embedding passenger, transit mode, and OD, the
study can be applied to the recommendation of the passenger’s transit mode. Ref. [41]
profiled individual mobility using location-based graphs and clustered based on different
hyper parameter configurations.

From the perspective of generating models, some studies applied generative adversar-
ial network [16,42] and GPT-2 [43] to embed human transit mobility. Ref. [16] established a
probability pattern graph using transit behavior based on the sub-structure of individual
behavior patterns and embedded passenger transit mobility by generating an adversarial
network, while Ref. [42] proposed a semi-supervised learning model to solve the problem
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of user trajectory matching, in which adversarial networks were used to regularize the
data distribution of user trajectory. In summary, these studies used various deep learning
models to capture spatio-temporal characteristics and explored individual and group be-
havior patterns in public transit mobility. They have addressed various problems, such as
trajectory matching, trip purpose inference, behavioral preference exploration, detection of
high-risk areas of urban traffic accidents, recommendation of transit modes, and prediction
of passenger activities. However, there are still few methods to profile public transit mo-
bility, and existing models seldom take into account the regularity and sparsity of public
transit trips.

3. Methodology
3.1. Problem Formulation

In this study, we reconstruct public transit passenger trips using multi-source data,
including SCD, GPS data of buses, and road network data (details will be further de-
scribed in Section 4.1). Given a duration (5-day weekday or 2-day weekends), a passenger
Pi has generated m trips, which constitute a passenger’s personal trip dataset in the or-
der of trip start time. We convert this personal trip dataset into a vector representation
Pi = {Trip1, Trip2 . . . , Tripm} ∈ Rn×m, where n is the original dimension of each trip, and
m will vary based on different passengers and the set duration. To solve the variable length
problem and make the vector representation more compact and better able to capture high-
level semantic information, we need to find a mapping function P′i = ϕ(Pi) ∈ RN , where
N is a constant value, to embed the original personal trip features into a low-dimensional
RN space.

3.2. Methodology Overview

From the perspective of individual public transit passengers, we propose a novel
data-driven method to extract the low-dimensional and compact vector representation
of public transit behavior using GAN, based on the frequency, regularity, and sparsity of
public transit trips. The proposed method consists of the following four steps (as shown
in Figure 1): (1) reconstructing passenger trips and building a personal trip dataset using
transit network data, smart card data and GPS data; (2) representing personal trips as raw
features and constructing grid-based transit mobility vector; (3) transit mobility embedding
using a generative adversarial model that contains a pre-trained sub-generator and an
auto-encoder; (4) application of the embedding results, including transit spatio-temporal
pattern clustering analysis, transit mobility visual analysis and estimating top K transit
destinations. Experiments were performed on a real-world dataset collected in Shenzhen
City, China, indicating that the proposed method can effectively capture the high-level
semantic information of public transit behavior and provide a more compact and low-
dimensional representation to enhance the understanding of passenger transit behavior
and mobility patterns.

3.3. Constructing Transit Mobility Vector
3.3.1. Representing Personal Trips as Raw Features

Suppose that a trip of a passenger starts from location o at time to, and arrives at
location d at time td, we use a quadruple defined in Equation (1) to describe the transit trip.

Tripj = (o, to, d, td) (1)

In this paper, we consider trip feature engineering from three main aspects: time,
space, and semantics, and the mapped dimensions are 4, 4, and 3, relatively. Firstly, we map
to and td onto a two-dimensional circle respectively, using the idea of projection to reflect
the continuity and periodicity of time. This enables the time feature to be represented by
the (x, y) coordinates on the circle, which is defined in Equations (2) and (3), which Time
indicates departure time or arrival time and T (T = 24) indicates the time frame is a full 24 h
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day. Secondly, we use the origin and destination positions in the geographical coordinate
system as the space feature. Thirdly, we extract trip duration and the number of passed
stops to encode time distance and space distance, respectively. Additionally, we extract
the number of transfers to describe the passenger’s transfer behavior. Through these three
parts, we can construct the raw transit mobility vector as Tripj ∈ Rn(n = 11). To accelerate
the convergence of the deep learning model and keep the data at the same scale, we
normalize each column of features and keep the data in the standard normal distribution,
as defined Equation (4), which µ and σ represents the mean and the variance respectively.
The normalization improves the performance of the model and ensures consistency of the
data. However, for the personal trip dataset, this raw transit mobility vector representation
can be high-dimensional and unable to capture the correlation among trips, making it
challenging to be practically used. To address this issue, we propose to utilize this raw
vector as the input of the GAN, which generates a more compact and low-dimensional
transit mobility vector.

x = cos
(

2π × Time
T

)
(2)

y = sin
(

2π × Time
T

)
(3)

x′ =
x− µ

σ
(4)
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3.3.2. Extracting Frequent Transit Mobility

Public transit mobility exhibits several key characteristics that distinguish it from
other modes of transportation. These include: (1) regularity and frequent transit mobility:
public transit users tend to exhibit regular commuting patterns, often traveling to and
from work or school at similar times each day or week. This results in a high frequency of
certain transit behaviors; (2) co-occurrence: transit trajectories of different passengers tend
to occur together in time and space, meaning that a user’s trip may be influenced by other
passengers and their transit behavior; (3) spatio-temporal constraints: transit mobility is
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subject to certain spatio-temporal constraints, such as the schedule of transit routes or the
layout of the transit network.

Due to the frequency and regularity of public transit behavior, frequent trips can indi-
cate personalized characteristics for individual transit patterns. When someone consistently
takes specific trips on public transit, it suggests that those trips are tailored to their specific
needs or preferences. It is natural to apply association analysis algorithms to mine frequent
patterns in the personal trip dataset. In this study, we extend the Apriori algorithm [20],
the classical association analysis algorithm, to extract frequent transit mobility by adding
spatio-temporal constraints to the calculation of support. That is, the frequent transit
mobility indicates the most frequent transit sequences set of this passenger (e.g., {[O1, D1],
[O2, D2, O3, D3]}). If a passenger Pi consists of m trips (sorted in ascending order according
to start time), and his personal trip dataset can be expressed in Equation (5), in which Oi,
Di, and di means the origin, destination, and transit time cost of the i-th trip, respectively.
Trip datasets for all passengers can be expressed as the set {P1, P2 . . . , Pm}. Referring to the
definitions of association analysis, trip datasets for all passengers can be treated as original
input dataset, Pi can be considered as an event, and Oi and Di can be considered as the
items of the event.

Pi =

O1
d1→ D1︸ ︷︷ ︸

trip1

d2→ O2
d3→ D2︸ ︷︷ ︸

trip2

→ . . .→ Om
d2m−1→ Dm︸ ︷︷ ︸
tripm

 (5)

The proposed algorithm for mining frequent patterns in passenger transit behavior
consists of three steps (as shown in Algorithm 1). Firstly, as shown in lines 1–6, a triplet set
Q = (O, D, aveTime) is defined to represent the average time cost from O to D. The whole
dataset is traversed to obtain the candidate set R1 and set Q. Then the frequent set L1 is
obtained by applying a support threshold to the set R1. Secondly, as shown in lines 7–12, a
loop for extending the candidate set Rk and the frequent set Lk is executed (where k repre-
sents the length of the item). A set Lall is defined to store all the extracted frequent patterns
if Lk satisfies the minimum length restriction. Then we generate Rk+1 by connecting Rk
with itself and pruning with spatio-temporal constraints. According to the set Q, we retain
the candidates whose time costs satisfy the range of [aveDur ∗ (1− σ), aveDur ∗ (1 + σ)]
with the corresponding O and D. Similarly, we can generate Lk+1 by Rk+1 and the support.
Finally, we reconstruct the personal trip dataset using frequent mobility pattern set Lall.
For a personal trip dataset, we determine whether its transit mobility contains frequent
patterns. If the count of frequent patterns is greater than threshold δ, these frequent patterns
are kept and the rest of trips are abandoned. If the count of frequent patterns is less than
the threshold δ, these kinds of passengers can be considered as random or having strong
personalized characteristics. In this case, these passengers lack frequent mobility patterns
and all their trips are retained.

Due to the frequency and regularity of public transportation, passenger’s frequent
transit mobility is a key indicator of their transit behavior. We propose a grid-based method
(as described in Section 3.3.4) to transform this mobility into a vector form, which can then
be used as the real value to train a GAN.
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Algorithm 1: Extracting Frequent Mobility Pattern.

Input: Trip datasets of all passengers in M days: totalTripDatasets = {P1, P2, P3, . . ., Pm−1, Pm};
trip time threshold: σ; support threshold: θ; minimum frequent pattern length: γ; frequent
pattern count threshold: δ

Output: Collection of frequent trips for all passenger in M days: ETrips = {ET1, ET2, ET3,. . .,
ETn−1, ETn}
1: Initialize Q← ∅, Lall← ∅, k←1, j←1
2: for each tripDataset in totalTripDatasets do//Initializing data
3: Rj.append(tripDataset.places)
4: Q←UpdateQ(tripDataset)
5: end for
6: Lj←ExtractFrequentPattern(Rj, θ)//Extracting L1 pattern
7: while len(Lk) > γ do//Loop for expanding patterns
8: Lall.append(Lk)
9: k←k + 1
10: Rk←ExpandRSet(Lj, Lk, Q, σ)
11: Lk←ExtractFrequentPattern(Rk, θ)
12: End while
13: ETrips = ReconstructTripDataset(Lall, totalTripDatasets)

3.3.3. Identifying Similar Transit Groups

Public transit passengers are often regular commuters who have daily traveling habits.
Therefore, identifying similar transit groups to which these passengers belong can provide
valuable insights into their group characteristics. That is, we aim to identify a similar transit
group which a passenger belongs to. And we propose to use these trips of the transit
group to represent the group characteristics for individual transit. We propose three soft
constraints to extract similar transit groups for a passenger: (1) soft space constraint: the
trips should be in close proximity, such as within 1 km, for both the origin and destination;
(2) soft time constraint: the departure time, arrival time, and trip duration should be
within a certain range, such as 1 h; (3) soft semantic constraint: the transit frequency,
numbers of transfer, and whether a passenger is a commuter should exhibit some degree of
similarity. In this study, by means of the grid-based method (as described in Section 3.3.4),
we transform passenger’s similar transit group mobility into the vector form, which can be
used to pre-train the sub-generator of the GAN.

3.3.4. Generating Grid-Based Transit Mobility Vectors

Given the sparsity of public transit trajectories, we need a unified data structure
to construct transit mobility vectors. We propose to use a regular grid to profile public
transit mobility, and recursive quad-division of the study area is performed based on the
popularity of transit trips, as shown in Algorithm 2. Firstly, we determine the study area
scope by defining its lower left coordinates and upper right coordinates. These coordinates
define the minimum bounding rectangle of the study area. Secondly, we quad-divide
the study area into smaller grids based on certain criteria, such as meeting a maximum
popularity limit and a minimum length limit. The popularity of a grid can be calculated
by the number of trips that occur within it. After dividing the study area into grids,
we evaluate each grid to determine if it satisfies the partition condition. If it meets the
criteria, we further split it into smaller grids. This process is performed recursively until
the partition condition is no longer satisfied. Finally, we collect all the split grids to form
the result set, which represents the subdivided grids that meet the specified criteria within
the study area.
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Algorithm 2: Constructing grids based on trip popularity.

Input: Area scope: G = [lowerLeftLng, lowerLeftLat, upperRightLng, upperRightLat]; minimum
grid length: γ; maximum flow: θ

Output: A regular grid: FG={fgrid1, fgrid2,. . ., fgridn}
1: Initialize FG← ∅, SG←G//SG means the collection of split grids
2: for each sg in SG do
3: CalculateTransitPopularity(sg)//Calculating transit popularity for each grid
4: if sg.flow > θ and sg.width > γ and sg.height > γ then
5: gTmp = SplitGrid(sg)//Quad-dividing grids
6: FilterByQuatree(gTmp)//Recursive function
7: else then
8: FG.append(sg)//Appending grids that meet the requirements
9: end if
10: end for

We represent a trip as a pair of associated grid units, based on its origin and destina-
tion. We construct a two-dimensional matrix for calculating trip probability according to
the count of split grid. Then passenger’s transit mobility vector can be represented as the
joint trip probability of each grid cell. To be specific, we can obtain k grids by applying Al-
gorithm 2 to the study region. A two-dimensional matrix M ∈ Rk∗k is established with each
element m(i, j) in M representing the count of trip which starts from i and arrives at j. It can
be seen that the i _th row of M represents all the trips starting from i, while the j _th column
represents all the trips arriving at j. For each row in M, we can calculate the probability
which starts from i and arrives at j, namely m′(i, j) = m(i,j)

∑j m(i,j) . We utilize the maximum of

these probabilities to represent the mobility of i _th row, then a vector of length k is obtained
to express the departure feature of the passenger, namely mm′i = max(m′(i, 1), . . . , m′(i, k)).
Similarly, at the view of column, we can also obtain a vector of length k to express the ar-
rival feature of this passenger, namely mm′j = max(m′(1, j), . . . , m′(k, j)). These two vectors
above are stacked to obtain a vector with a length of 2*k, which is the vector representation
of passenger transit mobility (Figure 2). By this grid-based method, we can vectorize the
frequent mobility (as described in Section 3.3.2) and similar group mobility (as described in
Section 3.3.3).
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3.4. Transit Mobility Embedding
3.4.1. Pre-Training Sub-Generator

Due to the regularity of public transit passengers, passengers with similar spatiotem-
poral characteristic can form transit similarity groups. The group characteristics of public
transit passenger are reflected by these similar transit groups. To model passenger tran-
sit mobility, it is important to consider the individual’s group characteristics. Using a
vanilla GAN may result in unstable training and performance degradation. To address
these issues, we propose using a pre-trained sub-generator (shown in Figure 3) to enhance
the stability of the training process and comprehensively profile group characteristics of
individual passengers.
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After performing feature engineering (as described in Section 3.3.1), we can represent
personal trip dataset as a matrix of M× N dimension, where M represents the count of trips
and N represents the count of extracted trip features. Since adjacent trips may have strong
temporal correlations, we use a multi-layer GRU (Gated Recurrent Unit) to capture the
temporal correlation of the trips. The purpose of using a multi-layer GRU is to enable the
network to further capture trip features and strengthen the deep learning model’s ability
to obtain temporal correlations among trip. Following the three-layer GRU, four fully
connected (FC) layers, with sizes of 44, 80, 160, and 2 × k (where k is the count of grids),
reshape the dimension to fit the target label which is the similar transit group mobility
vector (as described in Sections 3.3.3 and 3.3.4).

3.4.2. Embedding Mobility Using Adversarial Learning

Based on the two-player game idea introduced by [18], we propose a novel GAN for
modeling passenger transit mobility. The input of the model is individual trip dataset
vector, which obtained in Section 3.3.1. The generator comprises of an auto-encoder and a
pre-trained sub-generator. The auto-encoder compresses and embeds the trips into a low-
dimensional vector representation using GRU and FC structures, capturing the temporal
dependencies between adjacent trips. After the encoding, the dimension of the trip vector
remains unchanged, and the result is passed forward into the pre-trained sub-generator,
which generates fake values to mislead the discriminator. The real value of the model is
represented as the vector of individual frequent transit mobility, extracted in Section 3.3.2
and vectorized in Section 3.3.4. The discriminator is constructed with a 4-layer FC layer,
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and a sigmoid function maps the output to a probability within (0, 1). The closer the
probability is to 1, the higher the probability that the sample produced by generator is
considered to be real, and vice versa. The cross-entropy function is used to calculate the
loss and backpropagation is performed accordingly (Figure 4).
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After training the GAN model to convergence, we retain its network parameters and
use the encoder of the auto-encoder to obtain the embedding of the personal trip dataset
(Figure 5). This embedding is a compact and low-dimensional vector with comprehensive
semantic information, which contains the personalized and group characteristics of a
passenger’s transit mobility. This vector representation plays a crucial role in analyzing
public transit behavior, profiling public transit mobility, and supporting further studies
of human transit patterns. In this paper, we utilize this compact vector representation
to conduct experiments, such as visual analysis, cluster analysis, and estimating top K
transit destinations.
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4. Results and Discussion
4.1. Study Area and Data

The study area is located in Shenzhen City, China. Shenzhen is a populous city with
approximately 17.5 million residents and encompasses an area of approximately 2000 km2.
The city boasts an extensive public transportation network. We collected SCD which
includes data from both the bus and subway systems of Shenzhen’s public transportation.
Additionally, we obtained GPS data from buses and transportation network data of the
city. The public transportation system in Shenzhen consists of 8 subway lines, 199 subway
stations, 808 bus routes, and 6226 bus stops, as detailed in Figure 6. This comprehensive
system provides a range of options for commuters and travelers navigating the city.
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Figure 6. Shenzhen City and its public transit network.

We used one week of data for the evaluation, where the amount of SCD is about 7.8 G.
On weekdays, the amount of SCD is about 1.2 G per day and the number of records is about
8.6 million. On weekends, the amount of daily SCD volume is about 0.9 G and the number
of records is about 7.2 million. The details of SCD can be seen in Table 1, where the card
type field “21” represents subway entry, “22” represents subway exit, and “31” represents
bus boarding. And the swiping times vary between different bus lines and subway stops.

Table 1. Smart card data examples.

ID Card
Type

Swiping
Time

Bus Companies
(Subway Lines)

Bus Lines
(Subway Stops)

Bus Number
(Subway Gate)

1000051 22 17 April 2017
14:31:53 Subway 2 Yannan

Station OGT-122

200044 21 17 April 2017
09:01:08 Subway 6 Buxin

Station OGT-242

2000341 31 7 April 2017
17:21:12

East bus
company 203 BS20001

1000976 31 17 April 2017
11:51:43

West bus
company M409 BS30001



ISPRS Int. J. Geo-Inf. 2023, 12, 338 12 of 19

The amount of daily bus GPS data is approximately 9 GB, and there is not much
variation in the volume of daily GPS data. The total GPS data volume for a week is
approximately 63 GB. The details of GPS data are illustrated in Table 2.

Table 2. GPS data examples.

Sampling
Time Bus Number Bus Line Bus Companies Longitude Latitude

17 April 2017
18:21:56 BS20008 M443 East bus company 113.825 22.749

17 April 2017
08:09:08 BS20005 M201 East bus company 113.997 22.778

17 April 2017
14:41:43 BS40005 17 West bus company 114.002 22.801

17 April 2017
19:51:53 BS40014 201 West bus company 114.103 22.765

We applied a transit-trip reconstruction approach [44] to reconstruct transit trips based
on the aforementioned multi-source data. On weekdays, 3.6 million passenger trips can
be recovered per weekday with a volume of 0.67 G. On weekends, 3.1 million trips can be
recovered per day with a volume of 0.6 G. The details of the data used can be seen in Table 3,
where “#” in transfer field represents the transfer station (“Null” if no transfer happened).

Table 3. Passenger trip examples.

ID Start
Time

Origin
Station

Arrival
Time Terminal Transfer

20001 17 April 2017
10:01:13

Laojie
Station

17 April 2017
10:31:23

Luohu
Station Null

20001 17 April 2017
12:21:53

Hongling
Road

17 April 2017
13:01:11

Huanggang
Station Null

20005 17 April 2017
17:31:33

Yannan
Station

17 April 2017
18:24:47

Meijing
Staion Jingtian Station #

20011 17 April 2017
11:23:44

Laojie
Station

17 April 2017
12:44:13

Kanglin
Hospital

Museum Station #
News Building #

4.2. Transit Mobility Cluster Analysis

The trips at the weekday and weekend were analyzed separately. By using the
proposed model, we obtain a compact five-dimensional vector to embed transit mobility
for each passenger. Aggregation hierarchy clustering [45] was carried out to extract the
transit mobility patterns of passengers. According to the purpose of trips, passengers can
be divided into four categories [46]: (1) random: There is only one trip for the passenger;
(2) commuting: passengers have two trips a day. The departure time of the first trip should
not be later than t1 (e.g., 10:00 a.m.), while the departure time of the last trip should not
be earlier than t2 (e.g., 6:00 p.m.). It should be noted that t1 and t2 should be dynamically
adjusted according to different morning and evening peak-hours of different cities. In
addition, the origin of the first trip must be same as the destination of the last trip, and
the duration between the arrival time of the first trip and the departure time of the last
trip must be greater than t3 (e.g., 8 h); (3) temporary: there are two trips in a day, and the
origin of the first trip must be same as the destination of the last trip; and (4) unknown:
passengers do not have any of the above three trip patterns. For example, we examined
the data of a typical weekday. After trip reconstruction, there are 3,429,852 trips and
1,967,784 passengers. In order to facilitate clustering, we randomly selected 20,000 trips
involving 11,851 passengers for cluster analysis. We applied Sum of Squares for Error (SSE)
to determine the number of clusters, and set the number of clusters to 5 (Table 2).
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As can be seen from the Table 4, cluster 1 contains more commuters making short trips,
with a relatively longer average transit duration (exceeds by 5 min), more stops passed, and
fewer transfers. Passengers of cluster 1 are characterized as relatively well scheduled, which
results in few transfers and long trip times during the morning and evening peak-hours.
Cluster 2 has the longest average time, and correspondingly, the highest average number
of stops passed and average numbers of transfers. From the perspective of passenger
categorization, it has more random passengers. This type of passenger tends to travel long
distances and has weak regularity. They are not sensitive to long-distance costs. Cluster
3 and cluster 4 have a lower-than-average time cost and numbers of stops passed, and a
slightly high percentage of random passengers than the overall average. Passengers of
these two clusters are mainly random passengers who tend to make short-distance trips.
Cluster 5 has the fewest passengers with strong randomness and irregular transit patterns.
We visualized the transit mobility patterns of the passengers, as depicted in Figure 7. The
roads were categorized into three levels based on transit flow volume: high, medium, and
low. Additionally, the regions were divided into six levels based on GDP data, with a
higher level indicating a higher GDP for that region. In cluster 1, the majority of passengers
were found to engage in commuting activities between Luohu and Yantian, as well as
between Luohu and Futian. These trips predominantly involved short-distance round
trips. During these commutes, frequent transfers were observed at Shiminzhongxin Station
and Hongling Station. This commuting behavior often occurred between regions with
notable disparities in GDP, such as commercial areas (higher GDP area of Yantian) and
residential areas (lower GDP area of Luohu). In cluster 2, approximately 30% of the long-
distance passengers showed transit mobility patterns related to Shenzhen North Station.
For this group, their transit behavior involved departing from Shenzhen North Station and
dispersing to various districts within Shenzhen through typical transfer stations such as
Xili Station, Shangmeilin Station, or Buji Station. Due to the prevalence of long-distance
journeys, as seen in Figure 7, heavy traffic was observed from Shenzhen North Station until
the next transfer station, where transportation pressure was relieved. The visual analysis
conducted in this study demonstrates the model’s capability to extract deep-lying semantic
features related to passenger transit behavior. By analyzing these visual representations,
we can gain insights into the dynamics of transit patterns, key transfer stations, and the
impact of factors such as GDP disparities on commuting behavior.

Table 4. Passenger transit mobility cluster analysis of a weekday.

Cluster
ID

Passenger
Count

Ave.
Time (min)

Ave.
Stops

Ave.
Tranfer

Proportion of Passenger Type
Random Commute Temporary Unknown

1 2288 40.123 9.877 0.448 0.240 0.307 0.352 0.101
2 1839 42.516 11.183 0.662 0.557 0.214 0.141 0.088
3 5041 33.955 9.137 0.546 0.434 0.196 0.286 0.084
4 2002 34.208 9.266 0.531 0.433 0.202 0.262 0.103
5 681 35.169 9.488 0.543 0.423 0.206 0.268 0.103

Total 11,851 36.587 9.639 0.542 0.415 0.222 0.271 0.092

For comparison, these 11,851 passengers in a weekday were clustered using the origi-
nal vector representation (as described in Section 3.3.1), as shown in Table 5. There is no
significant difference between the clusters. This is because the transit patterns of passen-
gers are too complicated for the original features. While the proposed model targets the
characteristics of passengers’ public transit mobility, it incorporates more spatio-temporal
information, and makes the vector representation more compact. This encourages the repre-
sentation of passengers with similar transit patterns to be closer together in the latent space.
Nevertheless, there is still room for improvement in the absolute accuracy of the results.
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Table 5. Original vector cluster analysis of weekday.

Cluster
ID

Passenger
Count

Ave.
Time (min)

Ave.
Stops

Ave.
Tranfer

Proportion of Passenger Type
Random Commute Temporary Unknown

1 6001 36.395 9.568 0.523 0.414 0.233 0.263 0.089
2 1787 36.945 9.722 0.562 0.432 0.206 0.268 0.094
3 2277 36.917 9.773 0.561 0.416 0.196 0.286 0.102
4 768 35.499 9.351 0.541 0.393 0.243 0.274 0.089
5 1018 37.169 9.829 0.573 0.407 0.224 0.288 0.081

Total 11,851 36.587 9.639 0.542 0.415 0.222 0.271 0.092

During the weekend experiment, 3,093,202 trips were used, and 20,000 trips were ran-
domly selected for clustering, consisting of 11,661 passengers (Table 6). The proportion of
commuters decreased by about 8% over weekends. Moreover, the proportion of unknown
passengers increased by 5%, indicating that weekend passengers have more freedom in
their transit behavior, with more trips and higher randomness. There are also passengers
with long-distance transit behavior on weekends, as shown in Cluster 1. However, unlike
weekdays, such passengers make up a smaller proportion of commuters and short-distance
passengers, and a larger proportion of random passengers, indicating that the weekend
transit patterns are freer and more complex. In addition, as shown in cluster 2, the distribu-
tion of short-distance trip passengers is more concentrated, so this cluster is more compact,
indicating that the short-distance transit pattern is more significant on weekends.
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Table 6. Passenger transit mobility cluster analysis of weekend.

Cluster
ID

Passenger
Count

Ave.
Time (min)

Ave.
Stops

Ave.
Tranfer

Proportion of Passenger Type
Random Commute Temporary Unknown

1 3506 42.327 11.971 0.632 0.492 0.103 0.172 0.223
2 4233 30.387 8.812 0.491 0.371 0.172 0.349 0.108
3 3015 34.835 9.712 0.552 0.432 0.227 0.212 0.129
4 857 35.208 9.466 0.551 0.411 0.213 0.258 0.118

Total 11,611 35.503 10.047 0.554 0.426 0.168 0.253 0.149

4.3. Estimate Top K Transit Destinations

In this paper, the experiment of estimating the top K transit destinations was also
conducted. As shown in Equation (6). Given trips features x ∈ X and the destination
set Q, we solve a subset Y ⊆ Q containing K elements (K < count(Q)) that satisfies the
probability that every element y in Y is larger than every element s in S (S is the complement
set of Y for Q).

P(∀y ∈ Y|x) > P(∀s ∈ S|x) (6)

The following four models were designed for comparison: (1) the proposed model
(Ours); (2) the proposed model without the pre-trained sub-generator (OursD) to experi-
ment the impact of the sub-generator; (3) the classical auto-encoder (AE), whose encoder
and decoder are composed of GRU and FC, to experiment the impact of the GAN; (4) aver-
age aggregation (Raw), which is obtained by average aggregation of personal trip dataset
(as described in Section 3.3.1), to compare with the raw features. These four models, as
shown in Figure 8, capture different aspects of passenger transit behavior, resulting in
differences when used as input features for estimating transit destinations.
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To estimate the top K transit destinations, we build a model consisting of four FC
layers with sigmoid activation functions, as shown in Figure 8. The dimension of each FC
layer is 20, 40, and 70, respectively, and the multi-class cross-entropy loss in Equation (7) is
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used as the loss function for this model, which x means training data and y means label.
K training samples are created for the same passenger to represent the most common K
transit destinations. At the same time, in order to reflect the difference in the frequency of
the top K transit destinations, the training data set is constructed according to the ratio K:K
− 1:K − 2:. . .:2:1 during the training process. That is, for the destinations with a higher
transit probability, the proportion of the training samples also increases accordingly.

CEL(x, y) = −log
yex

∑n
j=1 exj

(7)

The average relevancy (AR) and average precision (AP), according to the relevant
index of the ranking models, are adopted to evaluate the results by Equations (8)–(10),
where N is the total number of passengers, K is the count of top transit destinations, y
means the real value and y’ means the predictive value. Iy(x) function is an indicator
function to determine whether a certain element x exists in a set y.

AR =
∑N

i=1
∑k

j=1 Iy

(
y′j
)

K
N

(8)

AP =
∑N

i=1
∑k

j=1 Iyj

(
y′j
)

K
N

(9)

Iy(x) =
{

1, x ∈ y
0, x /∈ y

(10)

As shown in Table 7, we evaluated the models with parameter K = 3 and K = 5 for
comparison. The results show that there is little difference between Raw and AE. The model
without a pre-trained sub-generator (OursD) performs relatively better. The proposed
model (Ours) performs the best and has a slight improvement over OursD. Further analysis
reveals that the effect of the auto-encoder is mainly in the compression of features. Without
spatio-temporal information, the performance of the model is almost the same as using the
original features. The proposed model uses a generative adversarial network to fit the real
distribution of the data and incorporates spatio-temporal constraints into the model. For
this reason, Ours and OursD perform better than Raw and AE.

Table 7. Estimating top K transit destinations.

Model
Count of Transit Destinations

K = 3 K = 5
AR AP AR AP

Raw 0.626 0.553 0.595 0.527
AE 0.637 0.551 0.609 0.531

OursD 0.707 0.594 0.674 0.562
Ours 0.723 0.637 0.709 0.581

5. Conclusions

We have proposed a novel deep learning model that utilizes a generative adversarial
network to analyze and understand public passenger transit patterns based on real-world
SCD and public transportation network data. Our approach constructs a low-dimensional
and compact transit mobility embedding, capturing both frequent transit mobility (repre-
senting personal transit characteristics) and similar transit group mobility (representing
group transit characteristics). These two characteristics effectively reflect the frequent and
regular nature of public transit behavior.

To extract significant mobility patterns for specific public transit passengers, we ex-
tended the classic Apriori algorithm by incorporating spatio-temporal constraints. And we
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have identified similar transit groups among passengers by considering the constraints of
time, space, and semantics. Additionally, given the sparsity of public transit trajectories, we
have designed a quad-divided grid strategy based on popularity and area. This approach
uses split grids as the basic statistical unit of transit mobility, enabling the conversion of
variable-length trips into a unified vector representation and reflecting the flow between
different regions.

We utilize a generative adversarial network to aggregate personal transit character-
istics and group transit characteristics through an adversarial process, thus embedding
a specific public transportation passenger’s transit mobility. Through clustering analysis
and visual analysis, we confirmed that this embedding captures more transit mobility
differences between weekdays and weekends and can detect transit mobility patterns with
semantic information, outperforming raw features of individual trips. We also conducted
an experiment to estimate the top K transit destinations, which demonstrated the appli-
cability of our proposed method to other human mobility models and yielded favorable
results in comparison experiments.

The proposed transit mobility embedding provides a compact representation that
enables urban decision-makers and residents to gain insights into the mobility patterns of
individuals within a city and the daily operation of the urban transportation system. No-
tably, we observed a significant number of long-distance travelers moving from Shenzhen
North Station to various districts in Shenzhen City. This movement during peak hours
in the morning and evening substantially increases the operational pressure on relevant
subway lines. Transit decision-makers can use the insights gained from our research to
evaluate the current transit systems and develop optimization strategies for the transit
network to alleviate the burden on public transportation.

Our research findings also contribute to public transit planning and smart public
transportation systems. By leveraging the proposed approach, we can better understand
public transit behaviors and inter-urban migration patterns across space and time. Transit
planners can gain a deeper understanding of daily transit flow within the city, facilitating
the evaluation of system performance and equity. Furthermore, the proposed method
aids in the detection of urban functional areas, enabling the improvement of public transit
services by adjusting schedules to meet the significant mobility demand in different urban
functional areas. However, there is room for improvement in our deep learning model.
Future work will focus on model optimization and the incorporation of additional socio-
economic data, such as housing prices and land use, to enhance the modeling and feature
engineering processes. These enhancements will contribute to improving the accuracy and
completeness of the model’s results.
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