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Abstract: The comprehensive and accurate assessment of the indoor air quality (IAQ) in large spaces,
such as offices or multipurpose facilities, is essential for IAQ management. It is widely recognized
that various IAQ factors affect the well-being, health, and productivity of indoor occupants. In
indoor environments, it is important to assess the IAQ in places where it is difficult to install sensors
due to space constraints. Spatial interpolation is a technique that uses sample values of known
points to predict the values of other unknown points. Unlike in outdoor environments, spatial
interpolation is difficult in large indoor spaces due to various constraints, such as being separated
into rooms by walls or having facilities such as air conditioners or heaters installed. Therefore, it is
necessary to identify independent or related regions in indoor spaces and to utilize them for spatial
interpolation. In this paper, we propose a spatial interpolation technique that groups points with
similar characteristics in indoor spaces and utilizes the characteristics of these groups for spatial
interpolation. We integrated the IAQ data collected from multiple locations within an office space and
subsequently conducted a comparative experiment to assess the accuracy of our proposed method
in comparison to commonly used approaches, such as inverse distance weighting (IDW), kriging,
natural neighbor interpolation, and the radial basis function (RBF). Additionally, we performed
experiments using the publicly available Intel Lab dataset. The experimental results demonstrate
that our proposed scheme outperformed the existing methods. The experimental results show that
the proposed method was able to obtain better predictions by reflecting the characteristics of regions
with similar characteristics within the indoor space.

Keywords: spatial interpolation; indoor environment; air quality; IAQ; IDW; kriging; natural
neighbor; RBF

1. Introduction

People spend the majority of their time indoors, accounting for roughly 90% of the
day, which has led to a growing interest in the energy efficiency, indoor air quality (IAQ),
and user comfort of buildings [1]. It is widely recognized that various IAQ factors affect
the well-being, health, and productivity of indoor occupants [2,3]. The effective monitoring
and a comprehensive understanding of the IAQ of indoor spaces are essential for an energy-
saving design and for improving human comfort. There is active research on techniques to
effectively monitor and manage the IAQ utilizing IoT technologies as well as on the impact
of the IAQ on the health of indoor occupants [4–9].

Spatial interpolation is a technique that uses sample values from a known location to
predict values from another unknown location. This is achieved by collecting information
about the environment using sensors or other data sources and then using statistical, de-
terministic, or machine learning techniques to estimate the value of a variable at another
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location [10–13]. Accurately assessing IAQ parameters, such as temperature, humidity,
CO2 concentration, and particulate matter (PM), is critical to optimizing energy use in these
environments as well as maintaining occupant health and comfort [14]. The application of
spatial interpolation techniques has important implications for IAQ management because
this can inform the optimization of ventilation and air conditioning systems, reduce energy
consumption, and maintain a healthy indoor environment for occupants. Therefore, identi-
fying important IAQ parameters in indoor spaces and developing accurate measurement
techniques and data analysis methods have become active research areas.

For large indoor spaces, such as offices, smart buildings, smart factories, schools, etc.,
there is a limit on the number of IAQ sensors that can be installed in the indoor space due
to space constraints or financial limitations [14]. In addition, large indoor spaces are often
divided into multiple rooms by walls or have other constraints, such as the presence of
equipment such as air conditioners, heaters, and other structures [15,16].

Choi [17] proposed a spatial interpolation method to improve the accuracy of PM
estimation based on a weighted correction according to the known importance of each
point. Kaligambe [18] used an extreme gradient boosting (XGBoost) model to estimate the
unmeasured room temperature, humidity, and CO2 concentrations using a limited number
of sensors in a three-story smart building in Japan. Zhou [19] proposed a cross-sample
learning algorithm to obtain a spatial graph model of sensors based on the horizontal
and vertical effects of gravity on humidity and used it to learn the coefficient elements
of labeled locations to predict the state of unlabeled locations. Machine-learning-based
methods are relatively data-intensive and have a high calculation cost [20]. Choi [14]
developed an accurate IAQ distribution map for large spaces using spatial interpolation
methods. In their study, 18 sensors were installed in a library’s reading room, with 14 for
data collection. Their study identified the optimal spatial interpolation method for each
IAQ factor, determined the ideal number and layout of sensors, and confirmed the map’s
effectiveness. In Huang [21], a study was conducted to select the optimal sensor installation
location under the constraints of an indoor space. Their study compared two sampling
methods in indoor air distribution measurement: the gridded method and the slope-based
method. The data collected through each method were interpolated using the usual kriging
method. As a result, the slope-based sampling method had a smaller interpolation error
than the gridded method, and the authors recommended the slope-based sampling method
for indoor air distribution measurement.

Spatial interpolation in indoor environments must carefully consider the spatial struc-
ture of the environment, the distance between the data points, and the characteristics of
the IAQ data. Spatial structures, such as walls or equipment such as air conditioners, can
introduce a significant spatial variation in these parameters, especially in large spaces.
Therefore, when interpolating data from unmeasured points using data obtained from
IAQ sensors installed in indoor environments, it is necessary to consider both the spatial
constraints and the distance between the unmeasured point and the other data points.

Due to spatial constraints, sensors installed within an indoor space may be grouped
together where there is a high degree of data correlation between them. Sensors that are
highly correlated with each other can be thought of as having a high degree of similarity
between the data collected from each sensor. When spatial interpolation is performed, it
is possible to predict more accurate values by referring to the data of points with high
similarity to the point to be predicted and utilizing these data for spatial interpolation.
In this paper, we propose a spatial interpolation technique that groups points with sim-
ilar characteristics in an indoor space and utilizes the characteristics of these groups for
spatial interpolation.

2. Related Works

There are several techniques that are commonly used for spatial interpolation, in-
cluding inverse distance weighting (IDW), kriging, natural neighbor interpolation, and
the radial basis function (RBF). These methods have been used primarily for outdoor air
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quality interpolation, and there is little research on IAQ interpolation considering complex
indoor spaces.

IDW is a simple interpolation method that uses a weighted average of the values
of the nearest data points to interpolate the values at new locations [4]. The weights are
determined by the inverse of the distances between the new locations and the data points.
The closer a data point is to the new location, the higher its weight will be. IDW is a fast
and easy-to-implement method, but it can provide inaccurate results when the data have
a strong spatial structure, as it does not take into account the spatial autocorrelation of
the data [22–26].

Kriging is a geostatistical interpolation method that uses spatial autocorrelation to
interpolate the values at new locations based on the values of nearby data points [27]. The
method takes into account the spatial variability of the data and uses a weighted average of
the values of the nearest data points to interpolate the values at new locations [28–31]. The
weights are determined by the spatial autocorrelation structure of the data, which describes
how the values at different locations are related to each other. Kriging is a popular method
for spatial interpolation, as it can provide accurate results, especially when the data have a
strong spatial correlation [25,32,33].

Natural neighbor interpolation is a spatial interpolation method developed by Robin
Sibson [34]. It is based on the Voronoi tessellation of a set of discrete spatial points. The
method uses a weighted average of the values of the nearest data points to interpolate the
values at new locations. The weights are determined based on the geometric relationship
between the data points and the new locations, taking into account the shapes and sizes of
the data clusters. Natural neighbor interpolation is beneficial when there is a high density
of measured values and is particularly reliable in cases where there is limited information
on the distribution of these values [35–40]. However, since natural neighbor interpolation
relies on using Thiessen polygons to estimate values within corners, it is not possible to
interpolate beyond the range of the measured values [14].

RBF interpolation is a method that uses radial basis functions to approximate the
unknown values at new locations [41]. By using radial basis functions, it became possible
to deal with higher dimensional problems in a that is way similar to dealing with two- and
three-dimensional problems [42–44]. RBF interpolation can provide accurate results and is
computationally efficient, but it can be sensitive to the choice of the radial basis functions
and the parameters used in the interpolation process [45].

3. Basic Concepts

All the locations in the space of interest are referred to as points. A point is considered
to be a data point if a sensor is installed to measure a value at that specific location. Points
that do not have associated data sensors are referred to as unmeasured points. A specific
point for which a value is to be predicted is defined as a query point. We denote the
Euclidean distance between two points, p and q, as d(p, q).

A set that contains one or more points is referred to as a group. Given a group g
that contains points p1, . . . , pn, we define the group distance GD(g) of group g as follows
in Equation (1).

GD(g) = max
pi ,pj

d(pi, pj), i, j = 1, . . . , n (1)

The group distance of a group is the maximum distance between any two points
within the group.

Let G(p) denote the group containing point p. The virtual distance VD(p, q) between
two points, p and q, is defined as follows in Equation (2).

VD(p, q) =
{

d(p, q), where G(p) = G(q)
d(p, q) + GD(G(p)), where G(p) 6= G(q)

(2)

The virtual distance can be regarded as a measure of the distance between two points
that reflects the group information.



ISPRS Int. J. Geo-Inf. 2023, 12, 347 4 of 26

4. Indoor Spatial Interpolation Scheme

We propose a spatial interpolation scheme that leverages the spatial constraints in-
herent to indoor environments. Figure 1 shows the flow chart of the proposed spatial
interpolation scheme.
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The proposed scheme consists of two stages: a preprocessing stage and an interpola-
tion stage. In the first preprocessing stage, groups are assigned to all the points in the indoor
space through the group clustering algorithm and the group assignment algorithm. The
second interpolation step uses the group assignment information obtained in the prepro-
cessing step, the query point, and the data values of each data point to predict the value of
the query point. In the interpolation step, the group assignment information obtained in the
preprocessing step is used to select the nearest neighbors to reference during interpolation,
and the prediction is calculated based on the virtual distance between the query point and
each nearest neighbor.

4.1. Group Clustering

Clustering is a popular technique used in unsupervised machine learning to group
similar data points together. K-means is a widely used clustering algorithm that partitions
a set of objects into k clusters such that the within-cluster sum of squared distances (also
known as the within-group sum of squared errors, or WGSS) is minimized [46,47].

The K-mode clustering algorithm is a partitional clustering algorithm that aims to
minimize the sum of the dissimilarity between data points and their assigned cluster
modes [48]. The K-mode clustering algorithm is a variation of the K-means algorithm that
is suitable for categorical data. The algorithm starts by randomly selecting K initial cluster
modes, which are vectors that represent the mode of each categorical variable in the cluster.
The distance between a data point and a cluster mode is measured using the Hamming
distance, which is defined as the number of variables that differ between the two vectors.
The K-means algorithm selects a centroid, which can be a virtual data point that may not
correspond to any actual data point in the dataset. In contrast to K-means, the K-mode
algorithm selects one of the data points in the cluster as the centroid. This is achieved by
finding the mode, which is the most common value, of each of the categorical variables in
the cluster.

Group clustering is defined as the process of partitioning all the data points within an
indoor space into multiple clusters with the objective of ensuring that each cluster comprises
points that exhibit similar spatial characteristics. The objective of group clustering is to
create homogeneous groups in which the points within each group have characteristics
that are more similar to each other than to the points in other groups. In this paper, the
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K-mode clustering algorithm is used to cluster data points. This is because the K-means
algorithm may select a centroid that does not correspond to an actual data point in the
dataset, whereas the K-mode algorithm always selects one of the actual data points in the
cluster as the centroid. Assuming that data values collected from data points with similar
spatial characteristics have similar values, this paper uses the mean squared difference
(MSD) as a dissimilarity measure for the K-mode clustering algorithm. Assuming that n
data points p1, . . . , pn are given and that each data point pi has m data values, yi

1, . . . yi
m

for i = 1, . . . , n. The MSD for two data points pi and pj is defined as follows in Equation (3).

MSD
(

pi, pj

)
=

1
m

m

∑
k=1

(
yk

i − yk
j

)2
. (3)

4.2. Group Assignment

Group assignment refers to the process of assigning each unmeasured point in an
indoor space to one of the groups created during the group clustering process. For every
unmeasured point, the process involves identifying the nearest data point and assigning
the same group as that of the found data point to the unmeasured point. By carrying out
the group assignment process, each data point in the indoor space is assigned to a specific
group. Algorithm 1 outlines the algorithm for the group assignment process.

Algorithm 1. Assign a group to an unmeasured point

procedure Group Assignment (q: unmeasured point)
Let p1, . . . , pn be all the data points in an indoor space
p = argmin

pi

d(pi, q), i = 1, . . . , n

G(q) = G(p)
end procedure

4.3. Group-Preferred K-Nearest Neighbor (GPKNN)

Let q be a query point and n be the number of all the data points in the same group
as q. The proposed group-preferred K-nearest neighbor algorithm prioritizes data points
belonging to the same group as q in contrast to the K-nearest neighbor (KNN) algorithm for
q, which simply finds the K nearest data points. This group-preferred algorithm identifies
K data points with a smaller virtual distance from q. Replacing the Euclidean distance
function in the K-nearest neighbor algorithm with the virtual distance function proposed
in this paper yields results equivalent to those of the group’s preferred K-nearest neighbor
algorithm. Algorithm 2 presents the group-preferred K-nearest neighbor algorithm.

Algorithm 2. Find group-preferred K nearest neighbors

procedure GPKNN (q: query point, K: integer)
Let DPSet = {p1, . . . , pn} be a set of all the data points in an indoor space
TSet = DPSet
KSet = {}
while size(KSet) != K and TSet != {}

p = argmin
pi

VD(pi, q), pi ∈ TSet

KSet = KSet ∪ {p}
TSet = TSet− {p}

end while
return KSet

end procedure
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4.4. Spatial Interpolation

We propose two types of indoor spatial interpolation methods modified from the
existing IDW and kriging algorithms.

4.4.1. Spatial Structure IDW (SSI) Method

The SSI method modifies IDW to consider the spatial constraints of the indoor en-
vironments. IDW is one of the most widely used deterministic interpolation techniques.
This method assumes that values measured at closer distances have a greater weight than
values measured at greater distances. Since the influence of a known value is inversely
proportional to its distance from an unknown data point, this method gives greater weight
to the values closest to the predicted location, with the weight decreasing with distance [10].
Let q be a given query point in an indoor space. IDW estimates the data value of the given
query point as a weighted sum of the data values measured at the surrounding data points
as in Equation (4) [17].

ŷ(q) =
K

∑
i=1

wiy(pi), (4)

where K is the number of data points used for the estimation, pi is the data point that is the
i-th nearest data point to q, y(pi) is the measured value at pi, ωi is the weight value assigned
to y(pi), and ŷ(q) is the estimated value at q. This method selects neighboring data points
close to the query point and gives greater weight to the measured values of the points
closer to the query point. Let λ(p, q) be the inverse of d(p, q) as in Equation (5) [17].

λ(p, q) =
1

d(p, q)
, (5)

The weights of the IDW method are computed using Equation (6) [17].

wi =
λ(q, pi)

∑K
j=1 λ

(
q, pj

) , i = 1, . . . , K, (6)

The SSI method uses Equation (7) to compute the weights of the selected K points.

wi =
µ(q, pi)

∑K
j=1 µ

(
q, pj

) , i = 1, . . . , K, (7)

where µ(p, q) is defined as the inverse of the virtual distance between p and q as shown in
Equation (8).

µ(p, q) =
1

VD(p, q)
, (8)

The IDW method utilizes a weighted average of the measurements of closer data
points to estimate the value at a query point. The weights are determined by the reciprocal
of the distance between the query point and the data points. Data points that are closer to
the query point have higher weights. The SSI method calculates weights using a virtual
distance. The closer the virtual distance between the data point and the query point, the
higher the weight assigned to that data point is. Algorithm 3 presents the algorithm for the
SSI method.
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Algorithm 3. Spatial Structure IDW (SSI) Method

procedure SSI(q: query point, K: integer)
Let DPSet = {p1, . . . , pn} be a set of all the data points in an indoor space
Let y(pi) be the data value of pi for i = 1, . . . , n.

{q1, . . . , qK} = GPKNN(q, K) where qi ∈ DPSet, i = 1, . . . , K
µ(qi, q) = 1

VD(qi , q)

wi =
µ(q,qi)

∑K
j=1 µ(q,qj)

, i = 1, . . . , K,

ŷ(q) =
K
∑

i=1
wiy(qi),

return ŷ(q)
end procedure

4.4.2. Spatial Structure Kriging (SSK) Method

The SSK method modifies the kriging method to reflect the spatial constraints of the
indoor environments. Kriging is also a weighted combination of monitor values; however,
this approach uses spatial autocorrelation among data to determine the weights rather
than assuming a function of the inverse distance. The first step in kriging analysis is to
fit a function to the empirical variogram, which is the degree of dissimilarity between
two observations separated by a given distance. In general, semivariance increases as
the distance between points increases, indicating that points closer together tend to have
more similar values than those farther apart [10]. The kriging method is the best linear
unbiased estimator (BLUE) that specifies not only the estimated values but also the error in
the estimation of each point [27]. The basic form of the method is shown in Equation (9) [27].

ŷ(p0) = m(p0) +
K

∑
i=1

wi[y(pi)−m(pi)], (9)

where m(pi) is the expected value of y(pi) and where ωi is the kriging weight that is
determined in a way that minimizes the variance of the error, ŷ(p0)− ŷ(p0). y(p) is a random
field over a point p consisting of a trend m(p) and residual R(p), with the residual as a
random field with a zero mean. The covariance of the residuals that is used to determine
the weights of the method is assumed to be isotropic, which means that the covariance
between two points depends only on their distance as in Equation (10) [27].

cov(R(p), R(p + h)) = E[R(p) R(p + h)] = CR(h), (10)

where h is the distance between p and p + h, cov(R(p), R(p + h)) is the covariance of the
random variables R(p) and R(p + h), E[R(p)R(p + h)] is the expectation of R(p)R(p + h),
and CR(h) is the isotropic covariance that depends only on h. Various models, such as
the spherical model, exponential model, and wave model, can be used for calculating the
isotropic covariance CR(h). There are three main kriging variants, (i) simple, (ii) ordinary,
and (iii) kriging with a trend, which depend on the treatment of the trend component m(p).

The SSK method calculates the covariance of the residuals as in Equation (11).

cov(R(p), R(q)) = CR(VD(p, q)), (11)

In the SSK method, the virtual distance is used instead of the actual distance between
two points, so that the interpolation takes into account the spatial similarity between the
two points. In the kriging method, the weights are determined by the spatial autocorre-
lation structure of the data, which describes how values at different locations are related
to each other. The SSK method utilizes the virtual distance to consider the group infor-
mation between a query point and a data point when determining spatial autocorrelation.
Algorithm 4 presents the algorithm for the SSK method.



ISPRS Int. J. Geo-Inf. 2023, 12, 347 8 of 26

Algorithm 4. Spatial Structure Kriging (SSK) Method

procedure SSK (q: query point, K: integer)
Let DPSet = {p1, . . . , pn} be a set of all the data points in an indoor space
Let y(pi) be the data value of pi for i = 1, . . . , n.
{q1, . . . , qK} = GPKNN(q, K) where qi ∈ DPSet, i = 1, . . . , K
ŷ(q) = kriging(q, {q1, . . . , qK}) with cov(R(p), R(q)) = CR(VD(p, q))

return ŷ(q)
end procedure

5. Experimental Results and Discussion

We now evaluate our methods using two datasets, an office dataset and the Intel
Lab dataset. The performance of the six methods, including our proposed methods (IDW,
ordinary kriging, natural neighbor interpolation, RBF, SSI, and SSK), was assessed by
comparing their root mean square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and R2 as shown in Equation (12), Equation (13), Equation (14),
and Equation (15), respectively [49].

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2, (12)

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (13)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣, (14)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 , (15)

where n is the total number of points, yi is the actual value of the i-th point, yi is the mean
of the true values, and ŷi is the estimated value of the i-th point. A spherical covariance
model is used in the kriging and SSK methods. In this paper, to evaluate the performance
of the dataset, each data point in the dataset is considered to be an unmeasured point. The
estimation of the unmeasured point is calculated using other data points within the dataset,
and the error value of the unmeasured point is computed as the difference between the
estimated value and the actual value. By utilizing the obtained error values, the final RMSE
(root mean square error) is calculated.

In the following experiments, N denotes the number of groups, and K denotes the
number of neighbors. The IDW, kriging, natural neighbor, and RBF methods are inde-
pendent of N and depend only on K, whereas the SSI and SSK methods proposed in this
paper depend on both N and K. For each method, we used a subset of the given dataset
to explore the combination of N and K that yields the minimum RMSE. The values of N
and K obtained through this exploration were utilized for performance validation on the
remaining data. For our experiments, we utilized the following software libraries: numpy
1.23.5, pandas 1.5.3, matplotlib 3.7.1, scikit-learn 1.2.2, PyKrige 1.7.0, and MetPy 1.4.1.

5.1. Experimental Results on an Office Dataset

For the evaluation, we set up 14 IAQ data points in an office space labeled from IAQ01
to IAQ14 as shown in Figure 2.
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Figure 2. Experimental testbed composed of 14 air quality data points labeled from IAQ01 to IAQ14.

There is an IAQ sensor installed at each data point. In the figure, the lines represent the
walls that segregate the rooms, the bottom left is defined as the origin, and the horizontal
and the vertical arrows are the x- and the y-axes, respectively. Table 1 shows the specification
of the CO2 and temperature sensors used in the office space.

Table 1. Specification of CO2 and temperature sensors used in the office space.

Sensor CO2 Temperature

Model E + E Sensirion
Range 0~2000 ppm −4~125 ◦C

Accuracy <±50 ppm + 2% ±0.3 ◦C ± 2%
Interface I2C I2C

Country of manufacture Austria Switzerland

Table 2 represents the coordinate values of the x-axis and y-axis of the 14 data points.

Table 2. Coordinate values of each data point.

Data Point X Location (cm) Y Location (cm)

IAQ01 100 243
IAQ02 126 354
IAQ03 187 335
IAQ04 265 249
IAQ05 392 335
IAQ06 511 283
IAQ07 637 384
IAQ08 387 178
IAQ09 507 111
IAQ10 603 176
IAQ11 325 8
IAQ12 386 15
IAQ13 591 19
IAQ14 62 354

We developed a data collection system to collect the air quality data from the IAQ
sensors. Figure 3 shows the architecture of the system.
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Figure 3. Data collection system used to collect air quality data from IAQ sensors.

Each sensor sends a packet, including the air quality data, every minute to the packet
processing module of the system through the Transmission Control Protocol (TCP). The
packet processing module parses the received packets and validates them. When the
packets are valid, the data storing module stores them in the data repository. The stored
data can be searched using the data searching module and displayed on the web in chart or
table form.

In this experiment, we collected the CO2 concentration and temperature data every
minute over a 5-day period from 29 June 2020 to 3 July 2020. For each of the 14 data points,
we collected an average of 530 data points per day, totaling 37,086 data points for the CO2
concentration and temperature data, respectively. Using the June 29 data, we varied N
from 2 to 7 and K between 3, 6, 9, 12, and 14 to find the N and K values with the minimum
RMSE. Using the found N and K values, we performed interpolation experiments on the
data from 30 June to 3 July to verify the performance.

5.1.1. Experimental Results for CO2 Data

The color-coded representation of the groups assigned to each point in the office space
through the group allocation and group assignment processes is shown in Figure 4. The
number of groups varies from two to seven.
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Table 3 presents the calculated RMSE values for each method as the number of groups
N and the number of neighbors K for each N vary.

Table 3. RMSE values by the number of groups and number of neighbors for CO2 data.

N K IDW Kriging Natural Neighbor RBF SSI SSK

2

3 43.26 41.42 59.62 241.94 31.04 29.96
6 39.80 38.50 41.66 177.38 29.71 30.47
9 38.93 39.91 41.86 159.08 30.07 32.06

12 38.11 38.36 47.18 156.94 30.69 32.83
14 38.00 39.10 47.18 155.20 31.05 34.74

3

3 43.26 41.42 59.62 241.94 25.79 26.54
6 39.80 38.50 41.66 177.38 26.37 27.22
9 38.93 39.91 41.86 159.08 26.97 29.65

12 38.11 38.36 47.18 156.94 28.56 33.79
14 38.00 39.10 47.18 155.20 28.87 38.17

4

3 43.26 41.42 59.62 241.94 26.03 24.00
6 39.80 38.50 41.66 177.38 26.54 26.12
9 38.93 39.91 41.86 159.08 26.80 33.52

12 38.11 38.36 47.18 156.94 28.30 40.42
14 38.00 39.10 47.18 155.20 28.60 43.37

5

3 43.26 41.42 59.62 241.94 26.59 24.36
6 39.80 38.50 41.66 177.38 28.32 28.94
9 38.93 39.91 41.86 159.08 29.12 34.86

12 38.11 38.36 47.18 156.94 29.56 42.54
14 38.00 39.10 47.18 155.20 29.93 46.72

6

3 43.26 41.42 59.62 241.94 22.82 22.51
6 39.80 38.50 41.66 177.38 23.97 20.90
9 38.93 39.91 41.86 159.08 25.85 21.13

12 38.11 38.36 47.18 156.94 27.09 21.11
14 38.00 39.10 47.18 155.20 27.91 21.43

7

3 43.26 41.42 59.62 241.94 25.79 25.54
6 39.80 38.50 41.66 177.38 25.44 23.41
9 38.93 39.91 41.86 159.08 26.86 22.86

12 38.11 38.36 47.18 156.94 27.71 22.52
14 38.00 39.10 47.18 155.20 28.55 22.96

The IDW method had its minimum RMSE value when K = 14, the kriging method had
its minimum RMSE value when K = 12, the natural neighbor method had its minimum
RMSE value when K = 6, and the RBF method had its minimum RMSE value when
K = 14. The SSI method had its minimum RMSE value when N = 6 and K = 3, and the SSK
method had its minimum RMSE value when N = 6 and K = 6. Table 4 shows the results of a
performance experiment using the optimal values of N and K for each method based on
four days of data from 30 June to 3 July. As shown in Table 4, the proposed SSI and SSK
methods show better performance metrics compared to the other methods.

Figure 6 shows the RMSE values for each method when the number of neighbors
varies from 3 to 14.

Figure 5 shows the RMSE values for each method when the number of groups in the
CO2 data varies from two to seven. The RBF method is excluded from Figure 5 and the
subsequent figures due to its large RMSE value compared to the other methods.
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Table 4. Performance metrics for each method implemented with optimal N and K for CO2 data
collected from 30 June to 3 July.

Method IDW Kriging Natural Neighbor RBF SSI SSK

RMSE 45.44 46.04 43.98 175.42 28.84 26.66
MAE 38.84 37.96 38.78 166.43 23.35 21.71

MAPE 10.21 9.94 10.97 39.12 10.13 8.00
R2 0.40 0.42 0.34 0.07 0.51 0.57

Figure 7 shows the heatmaps for each method, displaying the estimated values for
all the points when N = 5 and K = 6. In the case of the natural neighbor method, the areas
outside the sensor range were not interpolated, so they are not displayed in the figure.
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Figure 7. Heatmap plots for CO2 data when N = 5 and K = 6.

5.1.2. Experimental Results for Temperature Data

The color-coded representation of the groups assigned to each point in the office space
through the group allocation and group assignment processes is shown in Figure 8. The
number of groups varies from two to seven.
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Figure 8. Color-coded representation of groups for temperature, with the number of groups
being 2 to 7.

Table 5 presents the calculated RMSE values for each method as the number of groups
N and the number of neighbors K for each N vary.



ISPRS Int. J. Geo-Inf. 2023, 12, 347 14 of 26

Table 5. RMSE values by the number of groups and the number of neighbors for temperature data.

N K IDW Kriging Natural Neighbor RBF SSI SSK

2

3 0.98 0.99 0.96 12.86 0.88 0.94
6 0.99 1.02 0.95 10.21 0.83 0.88
9 0.99 1.03 0.96 8.15 0.83 0.99
12 1.02 1.03 0.95 7.90 0.85 0.95
14 1.05 1.02 0.95 8.09 0.85 1.00

3

3 0.98 0.99 0.96 12.86 0.78 0.86
6 0.99 1.02 0.95 10.21 0.75 0.81
9 0.99 1.03 0.96 8.15 0.77 0.83
12 1.02 1.03 0.95 7.90 0.84 0.81
14 1.05 1.02 0.95 8.09 0.87 0.83

4

3 0.98 0.99 0.96 12.86 0.81 0.88
6 0.99 1.02 0.95 10.21 0.77 0.81
9 0.99 1.03 0.96 8.15 0.78 0.84
12 1.02 1.03 0.95 7.90 0.85 0.82
14 1.05 1.02 0.95 8.09 0.89 0.83

5

3 0.98 0.99 0.96 12.86 0.91 0.99
6 0.99 1.02 0.95 10.21 0.83 0.90
9 0.99 1.03 0.96 8.15 0.85 0.97
12 1.02 1.03 0.95 7.90 0.94 0.90
14 1.05 1.02 0.95 8.09 0.98 0.92

6

3 0.98 0.99 0.96 12.86 0.69 0.73
6 0.99 1.02 0.95 10.21 0.66 0.72
9 0.99 1.03 0.96 8.15 0.72 0.72
12 1.02 1.03 0.95 7.90 0.81 0.71
14 1.05 1.02 0.95 8.09 0.86 0.72

7

3 0.98 0.99 0.96 12.86 0.71 0.74
6 0.99 1.02 0.95 10.21 0.71 0.71
9 0.99 1.03 0.96 8.15 0.76 0.76
12 1.02 1.03 0.95 7.90 0.88 0.76
14 1.05 1.02 0.95 8.09 0.94 0.78

Figure 9 shows the RMSE values for each method as the number of groups in the
temperature data varies from two to seven.
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Figure 10 shows the RMSE values for each method when the number of neighbors in
the temperature data varies from 3 to 14.
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The IDW method had its minimum RMSE value when K = 3, the kriging method had
its minimum RMSE value when K = 3, the natural neighbor method had its minimum
RMSE value when K = 14, and the RBF method had its minimum RMSE value when
K = 12. The SSI method had its minimum RMSE value when N = 6 and K = 6, and the SSK
method had its minimum RMSE value when N = 6 and K = 12. Table 6 shows the results of
a performance experiment using the optimal values of N and K for each method based on
four days of data from 30 June to 3 July. As shown in Table 6, the proposed SSI and SSK
methods show slightly better performance metrics compared to the other methods.

Table 6. Performance metrics for each method implemented with optimal N and K for temperature
data collected from 30 June to 3 July.

Method IDW Kriging Natural Neighbor RBF SSI SSK

RMSE 1.07 1.09 1.06 7.64 0.81 0.88
MAE 0.91 0.90 0.93 7.25 0.66 0.72

MAPE 4.66 4.78 4.13 35.25 4.02 4.37
R2 0.36 0.35 0.36 0.02 0.43 0.41

Figure 11 shows the heatmaps of the predicted values for each point when N = 5
and K = 6. For the natural neighbor method, the areas outside the sensor range were not
interpolated and are not shown in the figure.
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Figure 11. Heatmap plots for temperature data when N = 5 and K = 6.

Figure 12 shows the CO2 values for IAQ01, IAQ02, and IAQ03 measured on 29 June.
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From Figure 12, we can observe that the distance between IAQ02 and IAQ01 is greater
than the distance between IAQ02 and IAQ03, but the data from IAQ02 and IAQ01 are
much more similar than the data from IAQ02 and IAQ03. It is known that CO2 is highly
correlated within an independent room separated by walls. Figure 13 shows the result of
dividing the sensors into three groups based on the CO2 data using the group allocation
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and group assignment algorithms proposed in this paper. As shown in Figure 11, IAQ02
belongs to Group 1, the same group as IAQ01, while IAQ03 belongs to Group 3, a different
group from IAQ01 and IAQ02.
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Figure 13. Color-coded representation of groups for CO2 with a group number of 3. Group 1 includes
IAQ01, IAQ02, IAQ06, IAQ07, and IAQ09; Group 2 includes IAQ04, IAQ05, IAQ11, IAQ13, and
IAQ14; and Group 3 includes IAQ03, IAQ10, IAQ08, and IAQ12.

Figure 14 shows the temperature values of IAQ03, IAQ10, and IAQ11 measured
on 29 June.
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From Figure 14, we can observe that the distance between IAQ11 and IAQ03 is greater
than the distance between IAQ11 and IAQ10, but the data from IAQ11 and IAQ03 are
much more similar than the data from IAQ11 and IAQ10. We think that this is likely
due to the influence of various conditions, such as air conditioning and structure, in the
office. Figure 15 shows the result of dividing the sensors into three groups based on the
temperature data using the group allocation and group assignment algorithms proposed in
this paper. As shown in Figure 11, IAQ11 belongs to Group 1, the same group as IAQ03,
while IAQ10 belongs to Group3, a different group from IAQ11 and IAQ03.
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Figure 15. Color-coded representation of groups for temperature with a group number of 3. Group 1
includes IAQ01, IAQ02, IAQ03, IAQ04, IAQ11, IAQ12, IAQ13, and IAQ14; Group 2 includes IAQ05
and IAQ06; and Group 3 includes IAQ07, IAQ08, IAQ09, and IAQ10.

Various IAQ parameters, including CO2, temperature, relative humidity, and light
intensity, have distinct physics, and IAQ parameters are influenced not only by the layout
of indoor spaces but also by these underlying physical properties. We assume that even if
the physics of the IAQ parameters are different, the physics also would be reflected in the
collected data. Therefore, we believe that the sensor grouping algorithm proposed in this
paper partially reflects the spatial constraints on IAQ parameters.

5.2. Experimental Results Based on the Intel Lab Dataset

We evaluated our methods using the sensing data collected and made publicly avail-
able from Intel labs in 2004 [50,51]. This dataset provides the x and y coordinates of
54 sensors deployed in the Intel Berkeley Research lab between February 28th and
April 5th, 2004. In the dataset, the temperature, humidity, light, and voltage data were col-
lected at intervals of 31 s. The sensors were arranged in the lab according to Figure 16 [51].
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For this experiment, we used five days of data from 28 February 2004 to 3 March 2004
averaged in minutes. Missing data were imputed using a linear method. Sensors 5 and 28
were excluded from the experiment due to a significant amount of missing data, resulting
in a total of 52 sensors being used. We utilized the 28 February data for validation, meaning
that we changed N to 3, 6, 9, 12, 15, 18, and 21 and K to 1, 10, 15, 20, 25, 30, 35, 40, 45, and 52
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while utilizing the February 28 data to find the N and K values with the minimum RMSE.
Using the found N and K values, we performed an interpolation experiment on the data
from February 29 to March 3 to validate the performance.

5.2.1. Experimental Results for Temperature Data

Figure 17 shows the RMSE values for the experiment with the number of groups
set to 3, 6, 9, 12, 15, 18, and 21 for the temperature data. The RBF method is excluded
from the figure and the subsequent figures due to its large RMSE value compared to the
other methods.
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Figure 18 shows the RMSE values for the experiment with the number of neighbors
set to 5, 10, 15, 20, 25, 30, 35, 40, 45, and 52 for the temperature data.
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Figure 18. RMSE plot for Intel Lab temperature data by number of neighbors.

The IDW method had its minimum RMSE value when K = 5, the kriging method had
its minimum RMSE value when K = 5, the natural neighbor method had its minimum
RMSE value when K = 5, and the RBF method had its minimum RMSE value when
K = 25. The SSI method had its minimum RMSE value when N = 6 and K = 5, and the SSK
method had its minimum RMSE value when N = 6 and K = 30. Table 7 shows the results of
performance experiments based on 4 days of data from February 29 to March 3 using the
optimal values of N and K for each method. As shown in Table 7, the proposed SSI method
provides slightly better performance metrics compared to the other methods, while the SSK
method performs slightly worse in this case.
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Table 7. Performance metrics values for each method implemented with optimal N and K for Intel
Lab temperature data collected from 29 February to 3 March.

Method IDW Kriging Natural Neighbor RBF SSI SSK

RMSE 2.38 2.45 2.44 5.90 1.86 2.90
MAE 1.92 2.13 2.11 4.66 1.78 2.43

MAPE 10.19 12.20 10.77 35.09 9.01 14.93
R2 0.72 0.67 0.74 0.19 0.77 0.73

Figure 19 shows the heatmap of the predicted values for temperature.
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5.2.2. Experimental Results for Humidity Data

Figure 20 shows the RMSE values for the experiment with the number of groups set to
3, 6, 9, 12, 15, 18, and 21 for the humidity data.
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Figure 21 shows the RMSE values for the experiment with the number of neighbors
set to 5, 10, 15, 20, 25, 30, 35, 40, 45, and 52 for the humidity data.
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The IDW method had its minimum RMSE value when K = 5, the kriging method had
its minimum RMSE value when K = 5, the natural neighbor method had its minimum
RMSE value when K = 5, and the RBF method had its minimum RMSE value when
K = 25. The SSI method had its minimum RMSE value when N = 6 and K = 5, and the SSK
method had its minimum RMSE value when N = 9 and K = 15. Table 8 shows the results of
performance experiments based on 4 days of data from 29 February to 3 March using the
optimal values of N and K for each method. As shown in Table 8, the proposed SSI and
SSK methods show slightly better performance metrics compared to the other methods.

Table 8. Performance metrics for each method implemented with optimal N and K for Intel Lab
humidity data collected from 29 February to 3 March.

Method IDW Kriging Natural Neighbor RBF SSI SSK

RMSE 1.85 1.85 1.77 7.57 1.55 1.60
MAE 1.52 1.39 1.43 5.57 1.23 1.26

MAPE 6.21 6.13 4.72 12.83 4.19 4.25
R2 0.86 0.88 0.89 0.32 0.93 0.93

Figure 22 shows the heatmap of the predicted values for humidity.
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5.2.3. Experimental Results for Light Data

Figure 23 shows the RMSE values for the experiment with the number of groups set to
3, 6, 9, 12, 15, 18, and 21 for the light data.
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Figure 24 shows the RMSE values for the experiment with the number of neighbors
set to 5, 10, 15, 20, 25, 30, 35, 40, 45, and 52 for the light data.

The IDW method had its minimum RMSE value when K = 5, the kriging method had
its minimum RMSE value when K = 5, the natural neighbor method had its minimum
RMSE value when K = 5, and the RBF method had its minimum RMSE value when
K = 25. The SSI method had its minimum RMSE value when N = 6 and K = 5, and the SSK
method had its minimum RMSE value when N = 9 and K = 15. Table 9 shows the results of
performance experiments based on 4 days of data from 29 February to 3 March using the
optimal values of N and K for each method. As shown in Table 9, the proposed SSI and
SSK methods show better performance metrics compared to the other methods.
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Table 9. Performance metrics for each method implemented with optimal N and K for Intel Lab light
data collected from 29 February to 3 March.

Method IDW Kriging Natural Neighbor RBF SSI SSK

RMSE 170.22 161.47 139.71 175.88 84.46 90.47
MAE 137.10 122.95 112.15 132.32 64.72 68.41

MAPE 17.08 15.75 14.65 18.24 8.64 9.35
R2 0.49 0.50 0.69 0.44 0.75 0.72

Figure 25 shows the heatmap of the predicted values for light.
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6. Conclusions

In this paper, we proposed an interpolation scheme for IAQ data that considers the
spatial constraints of indoor environments. The proposed scheme was compared with
commonly used methods, such as IDW, kriging, natural neighbor interpolation, and RBF,
and was found to be more accurate in terms of the RMSE. The results of the experiment
demonstrate that our proposed scheme could improve the accuracy of air quality estimation
in indoor environments.

Our findings have important implications for IAQ management in various settings,
including smart buildings, smart factories, schools, offices, and other similar environments.
The accurate measurement and estimation of air quality parameters are crucial for maintain-
ing occupant health and comfort and optimizing energy use in indoor spaces. Our proposed
interpolation scheme can provide more accurate estimates of air quality parameters, which
can inform the optimization of ventilation and air conditioning systems and ultimately lead
to a healthier indoor environment for occupants. The integration of IAQ estimation with
energy management and occupant behavior modeling can lead to more comprehensive
and effective IAQ management strategies. In this paper, a DCP-based k-mode clustering
method is used to group sensors with similar characteristics. However, the performance of
the proposed spatial interpolation method may be affected when the internal structure of
the indoor space is changed. To address this, further research is needed on how to regroup
sensors when the performance is degraded or the indoor space is changed. Additionally,
this study does not include an analysis of important factors related to indoor air quality,
such as particulate matter (PM) and volatile organic compounds (VOCs), which presents
an area for future research.
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