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Abstract: In urban point cloud scenarios, due to the diversity of different feature types, it becomes a
primary challenge to effectively obtain point clouds of building categories from urban point clouds.
Therefore, this paper proposes the Enhanced Local Feature Aggregation Semantic Segmentation
Network (ELFA-RandLA-Net) based on RandLA-Net, which enables ELFA-RandLA-Net to perceive
local details more efficiently by learning geometric and semantic features of urban feature point
clouds to achieve end-to-end building category point cloud acquisition. Then, after extracting a
single building using clustering, this paper utilizes the RANSAC algorithm to segment the single
building point cloud into planes and automatically identifies the roof point cloud planes according
to the point cloud cloth simulation filtering principle. Finally, to solve the problem of building
roof reconstruction failure due to the lack of roof vertical plane data, we introduce the roof vertical
plane inference method to ensure the accuracy of roof topology reconstruction. The experiments
on semantic segmentation and building reconstruction of Dublin data show that the IoU value
of semantic segmentation of buildings for the ELFA-RandLA-Net network is improved by 9.11%
compared to RandLA-Net. Meanwhile, the proposed building reconstruction method outperforms
the classical PolyFit method.

Keywords: lidar point cloud; urban scene; deep learning; semantic segmentation; reconstruction
of buildings

1. Introduction

Three-dimensional city modeling [1–3] is widely used in urban planning, smart city
development, navigation, virtual reality, and other fields. Since LiDAR can directly acquire
dense 3D point clouds of buildings, LiDAR data have become a widely used data source in
3D building model reconstruction.

Current building reconstruction methods are divided into two main categories: model-
driven building reconstruction methods [4–8] and data-driven building reconstruction
methods [9–13]. Model-driven methods generate a 3D model of a building by combining
building primitives through predefined building primitives after selecting the optimal
primitives. Although this method is capable of generating 3D models with correct topology,
it is difficult to define a set of primitives that can effectively represent various building
shapes due to the variety of building structures in a building. Instead of matching pre-
defined building primitives, data-driven methods infer the structure of buildings from
point cloud data, which provides better flexibility than model-driven methods and is
more suitable for reconstructing models of complex buildings in urban scenes. Although
some data-driven methods [14–17] have been developed to automatically generate high-
quality building models using airborne LiDAR point cloud data, data-driven methods still
face the following problems when reconstructing buildings from LiDAR point clouds in
urban scenes:
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Building Instance Segmentation. The complex shape and many types of features in urban
scenes, the significant amount of point cloud data and the sparse distribution make the
recognition and separation of single buildings a great challenge.

Automatic Roof Plane Recognition. Building plane point cloud segmentation and recog-
nition of roof plane primitives are the basis of building roof model reconstruction. The
recognition of the roof plane, although it can be judged by the combined direction and
height of the normal vector of the plane, requires appropriate thresholds to be set for point
cloud buildings of different heights.

The roof point cloud data is incomplete. Due to the restricted scanning direction of the
airborne scanner, some important building structures, such as vertical walls on the roof of
a building, usually cannot be captured completely in the airborne LiDAR point cloud.

In this paper, we solve the above problems by the following strategies. First, we use
the semantic segmentation method to segment the building point cloud from the urban
LiDAR point cloud and then utilize the clustering method to extract single buildings from
the building point cloud to solve the problem of building instance segmentation. Secondly,
the principle of cloth simulation filtering is utilized to automatically identify the roof point
cloud plane. Finally, this paper proposes a building topology reconstruction method based
on roof vertical plane inference to solve the problem of topology reconstruction failure due
to defective roof point cloud data quality. The main contributions of this work include:

• Propose a semantic segmentation network based on enhanced local feature aggrega-
tion. The network enhances the point-by-point local features from both structural
information and semantic information to realize effective semantic segmentation of
building point clouds.

• Propose a roof surface point cloud automatic identification method to extract the roof
point cloud plane.

• Propose a building topology reconstruction method based on roof vertical plane
inference to realize the topology reconstruction of buildings.

2. Related Work

In this section, we focus on methods related to our approach.
Building point cloud semantic segmentation. Currently, some deep learning-based point

cloud semantic segmentation efforts [18–22] have achieved satisfactory results, but due
to their higher model complexity, they usually require a large number of computational
resources, which restricts the application of these methods in urban point cloud scenarios.
RandLA-Net [23] is an efficient and lightweight semantic segmentation network, which
is designed to capture the local geometric information of the point cloud by employing a
random sampling algorithm to downsample each layer of the encoder and introduces an
efficient local feature aggregation unit for capturing the local geometric information of the
point cloud. In order to efficiently handle large-scale point clouds, this paper chooses to
improve the RandLA-Net network and further improve the point-by-point classification
accuracy of buildings by enhancing the local features at each point.

Segmentation of building planes. Random Sample Consistency (RANSAC) [24] and
region growing algorithms [25–27] are currently well-established methods for segmen-
tation of planar primitives. Because the RANSAC method exhibits robustness to noise
and outliers in plane segmentation, we chose it to extract building plane primitives. In
addition, RANSAC targets spatial consistency and segments the planes in the point cloud
sequentially through an iterative approach, which tends to lead to the problem of com-
peting segmentation planes and ultimately obtains suboptimal segmentation results [28].
To improve the method plane segmentation problem, we further refine the extracted
plane primitives.

Building Regularized Contour Extraction. Some methods [29–32] extract a collection of
building contour straight lines through the Alpha Shape [33] algorithm and adjust the
orientation of the contour straight lines by calculating the main direction of the building
so that the building contour conforms to the structural regularity of the building. Some
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methods [34,35] form building boundary polygons by detecting building corner points and
then connecting them. In this paper, regularized roof plane polygons are extracted using
the method described in [31].

Model-driven building reconstruction methods. Model-driven approaches [4–8] recon-
struct building models by combining predefined parameterized building primitives.
Costantino et al. [4], for modeling complex structures, pointed out that by introducing
an interactive editing phase, the model-driven approach can improve the reconstruction
accuracy when reconstructing 3D models and the effects of different building footprint
segmentation methods on the accuracy and precision of model-driven modeling were also
discussed in depth. Xiong et al. [6] found that errors in topological maps will seriously
affect the final model-driven modeling results, so a strategy based on a dictionary of graph
editing operations is proposed to automatically identify and correct errors in the input
graph. Xiong et al. [7] improved the flexibility of model reconstruction by defining basic
building primitives via loose nodes, loose edges, and minimum cycles in the roof topology
graph. Huang et al. [8] proposed a method for model-driven reconstruction of pylons for
tilted UAV images. Li et al. [5] performed primitive segmentation via a two-step RANSAC
strategy and overall primitive fitting to reconstruct topologically consistent 3D building
models. However, this class of methods is still limited by predefined building primitives.

Data-driven building reconstruction methods. Some building topology reconstruction
methods [9,10,12,13,36] focus on constructing closed polygons of roofs by establishing topo-
logical relationships between roof planes [37] and determining the boundaries between
the planes where topological information exists. For example, Chen et al. [9] utilized a
Voronoi subgraph-based to recover topological relationships between roof plane prim-
itives for a watertight and compact reconstruction of the building model. Li et al. [10]
introduced a new elevation-preferred resource formulation to physically balance higher
roofs and other roof planes, constrain the selection of building model planes, and ensure
topological correctness of the reconstructed model. Sampath et al. [12] represented the
topological relationships between roof planes using an adjacency matrix, which is used to
determine the ridges, edges and vertices of the building model for the final reconstruction.
Wang et al. [13] proposed a point-based method for 3D building roof reconstruction. The
core objective of this method is to generate points that are used to represent and connect
the roof layers of the building roof. These points are named layer connectors. Layer con-
nectors serve two purposes, i.e., to represent the roof layers horizontally and to connect the
different roof layers vertically. Recently, some studies [11,38–40] have used deep learning
methods to reconstruct building roof models. For example, Li et al. [11] transformed the
problem of modeling building roofs into a vertex detection and edge prediction problem
for the reconstruction of building roofs. In addition, some studies [14–17] used a spatial
partitioning approach for building reconstruction. The spatial partitioning-based building
reconstruction method divides the 3D space into polyhedral space by extending the plane
primitives and generates the polyhedral model by optimally selecting the optimal subset of
candidate planes. For example, Nan et al. [16] generated a sizable set of candidate planes
by intersecting plane primitives and then selected the optimal subset of candidate planes by
optimization. Liu et al. [15] solved the problem of plane primitive loss in segmentation by
segmenting plane primitives from incomplete point clouds, detecting feature lines in point
clouds and images, and recovering missing planes with the relationship between linear
and plane primitives to avoid triggering topological errors in the reconstruction of complex
building models. Yang et al. [17] proposed a confidence strategy incorporating the graph
structure to generate candidate face sets through the neighbor relationship between plane
primitives. In this paper, we use a building topology reconstruction method for building
reconstruction, with special consideration for the problem of roof topology reconstruction
failure due to missing data. To this end, we will reconstruct the building model by replacing
the data quality-deficient roof vertical plane with the inferred roof vertical plane.

Reconstruction of building models from lidar point clouds. Reconstruction of building
models from lidar point clouds methods [14,41–43], in general, involves the structured
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reconstruction of the point clouds of each building in order to achieve a complete recon-
struction of the overall building. The differences between the different methods mainly lie
in the way the point cloud of a single building is acquired and the specific reconstruction
method. For example, Zhang et al. [43] proposed a rectified linear unit’s neural network
named ReLu-NN to classify the point clouds and used a 2.5D contouring method [44] to
reconstruct the building model. Sahebdivani et al. [42] used PointNet [45] deep learning
network, and the model reconstructed by Poisson [46] was subsequently simplified using
vertex clustering and edge collapse with quadratic error, and finally, a lightweight building
model was obtained. Huang et al. [14] utilized the existing footprint polygon data to
achieve the extraction of single building point clouds, and also proposed a method to infer
vertical walls directly from the data and achieved the reconstruction of regional build-
ings by using extended assumptions and a selection-based polygon surface reconstruction
framework, but the monolithic footprints of the buildings were limited by the polygonal
data. In this paper, we propose a semantic segmentation network with an encoder–decoder
structure for acquiring point clouds of semantic categories of buildings and accomplish-
ing the reconstruction of roof models of buildings by recovering the roof topology. The
difference with previous methods is that the encoder part of the network in this paper
uses a random sampling algorithm to downsample the point cloud, while the network
structure of [43] uses fully connected linear cells without downsampling the point cloud,
and the PointNet network of [42] uses a coder–decoder structure but uses a farthest-points
sampling algorithm for downsampling. Compared with these two methods, this paper has
higher efficiency in processing large-scale point clouds. In addition, the methods of [42,43]
represent the building model by simplifying the mesh. The mesh model is not suitable for
model storage and may lead to sharp boundaries of the building contours.

3. Methodology
3.1. Overview

In this paper, original LiDAR point clouds of urban scenes were taken as input and
structured models of buildings were output. First, the building point cloud was recognized
and extracted from the original LiDAR point cloud by semantic segmentation, and the single
building was extracted from the building point cloud using clustering. Next, the single
building plane was segmented, and the roof plane was automatically recognized. Finally,
the topological reconstruction of the roof was performed by replacing the corresponding
vertical plane with the inferred vertical plane of the roof, and the outer contour of the roof
was extended to the ground to complete the reconstruction of the 3D building model. The
reconstruction process is shown in Figure 1.ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 5 of 28 
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Figure 1. The proposed building reconstruction pipeline (only one building is selected to illustrate the
workflow). (a) Input point cloud (point colors are rendered by elevation). (b) Semantically segmented
building point cloud. (c) Monolithic building point cloud. (d) Single building point cloud. (e) Roof point
cloud planes. (f) Building wireframe model, where the orange plane is the inferred vertical plane.
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3.2. Semantic Segmentation of Building Point Clouds Based on Enhanced Local
Feature Aggregation

In this paper, we design a semantic segmentation network based on Enhanced Local
Feature Aggregation, hereinafter referred to as ELFA-RandLA-Net. The network structure is
shown in Figure 2. The proposed network uses an encoder–decoder structure. The encoder
progressively extracts high-level, abstract features of the point cloud, and the decoder
propagates these features to each point for point-by-point prediction. Both the encoder
and decoder are four-layer structures. Each layer of the encoder includes a local feature
aggregation module and point cloud downsampling, and each layer of the decoder includes
an inverse convolution module and point cloud upsampling. In the encoding stage, the
proposed enhanced local feature aggregation module extracts point-by-point local features,
randomly samples for point cloud downsampling, and obtains global features of the point
cloud through layer-by-layer feature extraction and downsampling. In the decoding stage,
the inverse convolution [23] maps the global features to the low-dimensional feature space,
and linear interpolation [23] recovers the number of point clouds. Finally, the network
outputs the probabilistic predicted value of each point.
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The Enhanced Local Feature Aggregation (ELFA) module is the key module of the
proposed network, and the basic idea is to characterize each point using enhanced local
features. ELFA consists of a local feature coding and hybrid pooling unit, which enhances
the local features by using geometric coding and semantic coding and aggregates the
local features of each point by maximal pooling and attention pooling. The inputs to
the enhanced local feature aggregation module are the 3D coordinates of each point and
the corresponding features. First, the module collects the nearest neighboring points of
each location and constructs the neighborhood by KNN algorithm. Next, the positional
coding submodule is used to extract the geometric information of the neighborhood, while
the semantic coding submodule is used to extract the semantic information within the
neighborhood, and the geometric features are concatenated with the semantic features
to obtain the enhanced local features. Finally, the hybrid pooling submodule aggregates
the maximum and attention features within the neighborhood and outputs the summed
neighborhood features to accurately aggregate the neighborhood features. The details of
ELFA module are shown in Figure 3, and its principle is as follows:

Given an input point set Xin ∈ RN×3 and its corresponding feature Fin ∈ RN×Din .
For simplicity, only one spatial location is subjected to local feature aggregation in this
section, while the enhanced local feature aggregation method can be applied to local
feature extraction for the entire point set. x denotes a spatial location in the point set (3D
coordinates, x ∈ R3).
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(1) Local feature coding.

Neighbor point query. The K Nearest Neighbors (KNN) algorithm [47] is a neighbor
point search method that computes the K nearest points around a point in Euclidean space
and is suitable for constructing point-by-point neighborhoods. The KNN algorithm collects
the K nearest neighbors of each point in a point cloud to form a radius neighborhood. In
the concrete implementation, for each location x, it is used as a query point to find the
K nearest neighbors in the point set Xin, these nearest neighbors are called the neighbor
points of x, and their set is denoted as N (x).

Position Encoding (PE). For the ith neighbor point at each location x, the input features
of the ith neighbor point are explicitly encoded using geometric information such as the
spatial location of the neighbor point, the spatial location of the query point, the relative
position of the neighbor point to the query point, and the distance between them:

li = x
⊕

xi
⊕

(x − xi)
⊕

∥x − xi∥ (1)

where xi ∈ N (x) is the spatial location of the neighboring points, x − xi is the relative
position of the neighboring points to the query point, and ∥·∥ is the computed Euclidean
distance. ⊕ is the vector concatenation.

Semantic Encoding (SE). For the ith neighbor point at each location x, the input features
of the ith neighbor point are implicitly encoded using semantic information such as the
features of the neighbor point, the features of the query point, and the relative features of
the neighbor point and the query point:

fi = f in ⊕
f in
i

⊕(
f in − f in

i

)
(2)

where f in is the input feature corresponding to position x, f in
i is the feature corresponding

to neighbor point xi, and f in − f in
i is the relative feature (edge feature).

Feature Enhancement. The multilayer perceptron (MLP) [45], consists of multiple 1 × 1
convolutions that can be used to extract abstract features of a point cloud and to implement
dimensional transformations of the feature vectors. By aligning the spatial location and
semantically encoded vector dimensions in a concatenation via MLP, the ith augmented
neighbor point feature representation for each location x can be obtained:

.
f i = li

⊕
fi (3)
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Finally, the set of enhanced features corresponding to the set N (x) of neighboring
points at any position x is

.
F =

{ .
f 1 · · ·

.
f 2 · · ·

.
f K

}
∈ RK×D′

.

(2) Mixed Pooling.

Max pooling can effectively summarize the neighborhood information, and attention
pooling can distinguish the neighborhood features and retain more details. Therefore, the
combination of both can more accurately represent the local features of a point.

Max pooling is the selection of the most salient feature about a given location x to
summarize the local context at that location, which is formally defined as follows:

..
f max = max

( .
f 1 · · ·

.
f 2 · · ·

.
f K

)
(4)

Attention pooling computes attention weights to weight local features
.
Fi by the score

function σ( ), and applies the attention weights to neighboring point features and sums
them to achieve weighted aggregation of local features. It is defined as:

..
f att = sum

(
σ
(

W,
.
Fi

)
·

.
Fi

)
(5)

where W is the learnable parameter matrix, σ( ) is composed of the shared MLP and the
normalization function [45], · denotes the corresponding element multiplication (Hadamard
product), and the dimensions of the attention weight vector W and the input

.
Fi need to

be matched.
The features of the max pooling feature and the attention pooling feature in concatena-

tion as the features after aggregation at any position x:

∼
f =

..
f max ⊕

..
f att (6)

where
∼
f ∈ RD is the output feature after mixed pooling at location x.

In summary, given a location x, ELFA module can effectively aggregate the local
geometric and semantic information of the spatial location x and finally generate a feature

vector
∼
f ∈ RD after neighbor point query, location and semantic encoding of neighbor

point feature enhancement and mixed pooling of local feature aggregation.

3.3. Building Point Cloud Plane Segmentation and Roof Plane Identification

For different roof planes with a small height difference and a gentle transition (e.g.,
the roof planes indicated by the arrows in Figure 4a), the RANSAC plane segmentation
may suffer from the problem of different roof planes being incorrectly classified into the
same plane since the height difference between the two roof planes is smaller than the
point-to-plane distance threshold preset by the RANSAC algorithm. Therefore, we utilize
the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [48] algorithm
to resegment the RANSAC misclassified planes. In addition, in order to automatically
identify the roof planes, we use the Cloth Simulation Filter (CSF) [49] principle to simulate
the shape of the roof and the building planes to which the shape of the roof is less than a
certain threshold are considered roof planes.

The building point cloud plane segmentation and roof plane recognition process, as
shown in Figure 4, has the following steps:

(1) Building plane segmentation. In this paper, the RANSAC [24] algorithm is used to
detect the plane of the building point cloud as the initial plane primitive.

(2) Initial plane primitive’s refinement. The DBSCAN algorithm is a density clustering
algorithm that divides the point cloud into different clusters by calculating the density
around each point. Therefore, this paper uses the DBSCAN algorithm to optimize the
initial plane primitives that contain multiple initial plane primitives of different point cloud
planes of the building are resegmented. The RANSAC-segmented planes may contain
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some small plane primitives that are not meaningful for the reconstruction of the building,
and in this paper, we will filter out the small plane primitives that have less point support.

(3) Automatic recognition of roof plane point cloud. Point cloud Cloth Simulation
Filter (CSF) [49] is a method that uses a cloth model to simulate the surface of inverted
terrain (terrain is turned upside down) to extract ground point clouds. In this paper, we
use the principle of extracting ground point cloud by the CSF method and we extract the
building roof plane point cloud by inverting the building point cloud and simulating the
roof shape by using the cloth model.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 28 
 

 

the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [48] 

algorithm to resegment the RANSAC misclassified planes. In addition, in order to 

automatically identify the roof planes, we use the Cloth Simulation Filter (CSF) [49] 

principle to simulate the shape of the roof and the building planes to which the shape of 

the roof is less than a certain threshold are considered roof planes. 

The building point cloud plane segmentation and roof plane recognition process, as 

shown in Figure 4, has the following steps: 

(1) Building plane segmentation. In this paper, the RANSAC [24] algorithm is used 

to detect the plane of the building point cloud as the initial plane primitive. 

(2) Initial plane primitive’s refinement. The DBSCAN algorithm is a density 

clustering algorithm that divides the point cloud into different clusters by calculating the 

density around each point. Therefore, this paper uses the DBSCAN algorithm to optimize 

the initial plane primitives that contain multiple initial plane primitives of different point 

cloud planes of the building are resegmented. The RANSAC-segmented planes may 

contain some small plane primitives that are not meaningful for the reconstruction of the 

building, and in this paper, we will filter out the small plane primitives that have less point 

support. 

(3) Automatic recognition of roof plane point cloud. Point cloud Cloth Simulation 

Filter (CSF) [49] is a method that uses a cloth model to simulate the surface of inverted 

terrain (terrain is turned upside down) to extract ground point clouds. In this paper, we 

use the principle of extracting ground point cloud by the CSF method and we extract the 

building roof plane point cloud by inverting the building point cloud and simulating the 

roof shape by using the cloth model. 

CSF is a method for extracting ground point clouds by using a cloth model to 

simulate the surface of inverted terrain. The CSF method of extracting ground point 

clouds works by inverting the building point cloud (i.e., reversing the orientation of the 

building point cloud) and simulating the shape of the ground using a cloth model to 

extract the building ground point cloud. Without inverting the building point cloud, the 

CSF method can simulate the shape of the building roof. After obtaining the roof shape 

using the CSF method, the distance between the segmented building planes and the roof 

shape can be calculated, and the plane whose distance is less than a certain threshold can 

be selected as the roof plane. This process realizes the automatic identification and 

extraction of the roof plane. 

(b) Refined plane primitives(a) Initialized plane primitives (c)  Simulated roof shape (d) Building roof plane

 

Figure 4. Building point cloud plane segmentation and roof plane recognition process. (a) The initial 

building plane primitive obtained by the RANSAC algorithm, where the plane pointed by the arrow 

in (a) is the incorrectly segmented plane; (b) the plane after resegmentation; (c) the shape of the roof 

of the building obtained by using the cloth simulation filtering algorithm, and the shape is 

represented by a mesh; (d) the automatically recognized roof plane. 

  

Figure 4. Building point cloud plane segmentation and roof plane recognition process. (a) The initial
building plane primitive obtained by the RANSAC algorithm, where the plane pointed by the arrow
in (a) is the incorrectly segmented plane; (b) the plane after resegmentation; (c) the shape of the roof of
the building obtained by using the cloth simulation filtering algorithm, and the shape is represented
by a mesh; (d) the automatically recognized roof plane.

CSF is a method for extracting ground point clouds by using a cloth model to simulate
the surface of inverted terrain. The CSF method of extracting ground point clouds works by
inverting the building point cloud (i.e., reversing the orientation of the building point cloud)
and simulating the shape of the ground using a cloth model to extract the building ground
point cloud. Without inverting the building point cloud, the CSF method can simulate
the shape of the building roof. After obtaining the roof shape using the CSF method, the
distance between the segmented building planes and the roof shape can be calculated, and
the plane whose distance is less than a certain threshold can be selected as the roof plane.
This process realizes the automatic identification and extraction of the roof plane.

3.4. Structured Reconstruction of Buildings Based on Roof Vertical Plane Inference

Due to the quality of the point cloud data of the vertical plane of the roof, the extracted
vertical plane polygons are usually difficult to completely express the basic structure of the
vertical plane of the roof. Incomplete roof vertical plane polygons will affect the judgment
of roof plane adjacencies as well as the correction of building corner points. Therefore,
this paper proposes a building topology reconstruction method based on vertical plane
inference. The building reconstruction process of this paper’s method, shown in Figure 5,
consists of five steps: (1) Determining the initial boundary vertices of the roof plane using
the method in [31]; (2) inference of vertical planes in the roof; (3) judgment of adjacencies
between the roof plane polygons, and construction of the roof topology map; (4) roof
modeling topology reconstruction; (5) stretching the outer contour of the roof model to the
ground to reconstruct the 3D model of the building.
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Figure 5. Building structured reconstruction pipeline. In subgraph (d), the light blue dots indicate
the corresponding roof planes, while the straight lines between the dots indicate the existence of a
neighboring relationship between the corresponding two roof planes. Different colors in the figure
represent distinct planes of the buildings.

3.4.1. Roof Vertical Plane Inference

The vertical plane in the roof of a building refers to the roof plane whose normal
vector is approximately perpendicular to the principal axis direction NZ = (0, 0, 1). The
point cloud data of the vertical plane of a building’s roof usually have missing or defective
quality, as shown in the plane pointed by the red line in Figure 6a. It makes the polygon
of the vertical plane of the roof unable to accurately represent the basic structure of the
building, resulting in the topological error of the roof plane, which affects the reconstruction
of the building. Therefore, in this paper, the original vertical plane is replaced by the fitted
vertical plane to ensure the accuracy of the topological reconstruction of the building.

The basic idea of roof vertical plane fitting is based on a structural feature, namely, a
large height difference between the pairs of roof planes connected by the roof vertical plane
and the adjacency of the 2D projection planes of the connected planes. Firstly, the pairs of
planes used to fit the vertical plane are determined, and then the vertical planes are fitted
by using the adjacency edges of the pairs of planes. The methods are shown in Figure 6b–d.
The specific methods are as follows:

(1) Determine the paired planes used to fit the vertical plane. If the distance between
the paired roof planes projected onto the XOY plane is less than a set distance threshold
and the height difference between the roof planes is less than a set height threshold, then it
is determined that there exists a vertical plane for the paired planes.

(2) Fitting the roof vertical plane. First, determine the adjacent straight lines lab and
lcd between the paired neighboring planes, calculate the coordinates of the midpoints
of the straight lines lbc and lad, mbc and mad, and use Equation (9) to calculate the unit
direction vector

→
e of the straight line lmadmbc . Then, the 2D coordinates of the endpoints

of the adjacent lines lab and lcd are projected onto the line lmadmbc using Equations (10) and
(11), and the elevation values of the projected endpoints are kept the same as those before
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projection, to obtain the projection points a′, b′, c′, d′, which are the boundary vertices of the
vertical plane.

mad = (a + b)/2 (7)

mbc = (b + c)/2 (8)
→
e = (mbc − mad)/|mbc − mad| (9)

dist = (pi − mad) ·
→
e (10)

p′i = mad + dist ∗→
e (11)

where a, b, c, d denote the coordinate vectors of the corresponding points, and mbc and
mad denote the coordinate vectors of the midpoints of the lines lbc and lad, respectively; |·|
denotes the distance,

→
e is the normalized unit-direction vector, and

→
e denotes the direction

of the projection; dist is the distance between the vector pi − mad and the vector
→
e after

dot-multiplication operation, which represents the distance from the point pi to mad in the
direction of vector

→
e ; p′i is the coordinate after moving a certain distance dist along the

direction of
→
e with mad as the starting point, and p′i denotes the relative position to m_ad

in the projected direction. the position of mad in the projection direction.
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Figure 6. Roof vertical plane inference, where the properties of the edges in (c) indicate the pres-
ence of vertical planes between plane nodes; the dark green plane in (d) is the inferred vertical
plane. Different colors in the figure represent distinct planes of the buildings. In (a), the arrow
points to the plane indicating the quality defects. In (b), the numbers represent the identification
of building planes.



ISPRS Int. J. Geo-Inf. 2024, 13, 19 11 of 26

3.4.2. Roof Plane Topology Map Construction

A roof topology graph is a representation consisting of roof planes (as nodes of the
graph) and adjacencies between the planes (as edges of the graph). Each node represents a
roof plane, and an edge represents an adjacency between two roof planes. When there is an
adjacency between two roof planes, the corresponding nodes are connected to each other
by edges.

The key to constructing a roof topology is to determine the adjacency between roof
planes, which is determined by determining whether the expanded polygons of the roof
planes intersect. The method of determining the adjacency between planes is shown in
Figure 7 as follows:
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Figure 7. A method for judging the adjacency of a plane, where the black lines in (b,c) are the adjacent
sides of the polygon and the red lines are the polygon intersections.

(1) Polygon outward expansion. Since there is usually an error between the regularized
boundary and the real roof plane boundary (usually shrinking to the inside of the roof
plane), it is necessary to externally expand the boundary of the polygon. The outward
expansion process will take the midpoint of the edge to be expanded as the starting point
and expand a certain distance along the direction of each of the two endpoints, and the
size of the distance is usually three times the average point cloud spacing, as shown in
Figure 7a.

(2) Polygon intersection relationship judgment. By judging whether the outward
expanding polygons are intersecting, the potential adjacency relationship between the
planes is initially determined.

(3) Overlap check. The intersection in Figure 7b can be determined as the adjacency
relationship between two planes, but there may be cases where the planes intersect and
are not actually adjacent, as shown in Figure 7c. For this reason, it is necessary to calculate
the ratio of the length of the intersecting straight line to the length of the shorter of the
neighboring edges, to determine the degree of overlap of the intersecting parts of the
polygon, and ultimately to determine the adjacency of the pairs of planes.

3.4.3. Roof Polygon Reconstruction

Roof corners can be divided into two categories: roof corners whose inner points are
inside the roof contour lines and inner points that are intersections with at least three roof
planes. The inner points can be determined by intersecting the planes corresponding to
the smallest link points in the topological map. The outer points of a roof are roof vertices
other than the inner points, which consist of two or fewer roof planes.

A roof polygon is a polygon constructed by using the coordinates of the building
corner points to correct the vertex coordinates of the roof plane polygons and merging
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the corrected roof plane polygons. This section describes the building corner point search
method and calculation method in the topological map, as well as the roof polygon method.

(1) Roof inner points detection and computation. The minimum ring base of the roof
topology graph can be obtained by the Dijkstra algorithm [50], and the intersection point
of the minimum ring base node corresponding to the roof plane is the inner points. In most
cases, it is often difficult to find an exact solution for the intersection of roof planes, so it is
necessary to solve the intersection using the least squares method of the plane intersection
equation and the formulas for solving the intersection by the three plane least squares
methods are (12), (13), and (14). The outer points of the roof are shown as yellow points in
Figure 8a. 

A1 ∗ x + B1 ∗ y + C1 ∗ z + D1 = 0
A2 ∗ x + B2 ∗ y + C2 ∗ z + D2 = 0
A3 ∗ x + B3 ∗ y + C3 ∗ z + D3 = 0

(12)

AT Ax = ATb (13)

AT =

A1 A2 A3
B1 B2 B3
C1 C2 C3

, A =

A1 B1 C1
A2 B2 C2
A3 B3 C3

, b =

−D1
−D2
−D3

 (14)

where (A1, B1, C1, D1), (A2, B2, C2, D2) and, (A3, B3, C3, D3) are the three plane equation
coefficients, respectively.
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Figure 8. Roof closed polygon, cyan lines are plane intersections in (a) and red lines are the
edges of the roof polygon in (b), the orange and green points in (a,b) indicate inner and outer
points, respectively.

(2) Roof outer points detection and computation. The outer points of a roof can be
categorized into two types: one is the endpoints located on the intersecting lines of the roof
plane and the other is the intersecting points located on the straight lines of the individual
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roof boundaries. They correspond to edges and loose nodes in the topological graph,
respectively. As shown in Figure 8a, D, E, F, G, K, O, and P are located on roof plane
intersection lines, and they are the endpoints of the roof plane polygon intersection lines.
The endpoints of the intersection lines are the points after the endpoints of the longest
of the adjacent sides of the intersecting polygons are projected onto the intersection lines.
Also, H, I, J, L, M, and N are the intersection points on the boundary lines of the roof planes
R1 and R2. The detailed formulas for plane intersection to solve the intersection line can be
found in (15) to (17), and the formulas for projection of points to the intersection line can be
seen in (9) to (11). The outer points of the roof are shown as cyan points in Figure 8a.{

A1 ∗ x + B1 ∗ y + C1 ∗ z + D1 = 0
A2 ∗ x + B2 ∗ y + C2 ∗ z + D2 = 0

(15)

p =

∣∣∣∣B1 C1
B2 C2

∣∣∣∣, q =

∣∣∣∣C1 A1
C2 A2

∣∣∣∣, r =
∣∣∣∣A1 B1
A2 B2

∣∣∣∣ (16)
x = x0 + p ∗ t
y = y0 + q ∗ t
z = z0 + r ∗ t

(−∞ < t < ∞) (17)

where (A1, B1, C1, D1), (A2, B2, C2, D2) are the coefficients of the two plane equations, re-
spectively, (p, q, r) are the direction vectors of the intersecting straight lines, and (x0, y0, z0)
is the point on the line that indicates that the lines intersect straight.

(3) Roof polygons. The roof inner points and outer points are obtained by intersecting
neighboring polygons and are the common vertices of the roof plane polygons. Iterate
through all the roof plane polygons, replace the vertex position of each plane polygon with
the position of its nearest inner or outer points, and then combine the vertex-corrected roof
plane polygons to form a closed roof polygon that satisfies the topological relationship, as
shown in Figure 8b.

3.4.4. Structured Model Reconstruction of Buildings

The complete building model requires the reconstruction of the building facade and
ground. The roof polygon model has been reconstructed in Section 3.4.3. In order to
reconstruct the building elevations, the ground needs to be selected as the datum for the
projection, and then, the edges of the roof outline polygons are projected onto the ground
to obtain polygons for each elevation. The outer contour of the roof polygon is projected to
the ground to obtain the ground polygon. Finally, a complete 3D model of the building
is reconstructed.

4. Experimentation and Analysis
4.1. Building Point Cloud Semantic Segmentation and Monolithization
4.1.1. Semantic Segmentation Dataset

Dublin Data Developed by the Urban Modeling Subject Group at University College
Dublin, Dublin Data provide approximately 260 million labeled data points. These labeled
data contain four major categories of features: buildings, ground, vegetation, and undefined.
The data cover an area of approximately 5.6 square kilometers in the central city of Dublin
and is divided into 13 regions, as detailed in Figure 9. Region 1, point cloud data from
5–9 and 11–13 were used for training with a total of approximately 220 million labeled data
points; Region 2, 3-point cloud data were used for validation and contain approximately
16.06 million labeled data points; and Region 4- and 10-point cloud data were used for
testing and contain approximately 21.86 million labeled data points.
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categories. The dataset consists of 13 different sections.

SemanticKITTI Dataset is a large outdoor scene dataset for lidar. The dataset has
21 scan sequences, about 40K scans, and a single scan is about 12 K~13 K points. Sequences
00–07 and sequences 09–10 are used for training, sequence 08 is used for validation, and se-
quences 11–21 are used for online testing of model segmentation accuracy. The dataset does
not distinguish between moving and nonmoving objects in the single scan-based semantic
segmentation task and is divided into 19 subcategories, which can also be categorized into
six main categories: ground, structure, vehicle, nature, human, and object. The dataset
provides information about the 3D coordinates of the laser point cloud, laser intensity, etc.

4.1.2. Semantic Segmentation Data Preprocessing

Dublin semantic category reclassification. We reclassified the feature types of the
Dublin data into seven categories: buildings, grass, sidewalks, streets, shrubs, trees,
and undefined.

Data Enhancement. The information input to the network point cloud contains nor-
malized elevations and point cloud surface change rates in addition to 3D coordinates
and intensities. The normalized elevation is the relative elevation of the point cloud to the
ground point cloud, which effectively eliminates the effect of terrain on semantic segmen-
tation. The point cloud surface change rate is a measure of the surface roughness of the
feature, which is expressed by the z-component of the normal vector and can effectively
distinguish between vegetation and roof surface.

4.1.3. Network Setup

Network parameter settings. The semantic segmentation network consists of four layers
of encoders and decoders. The output point cloud vector is (N,5), where N denotes
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the number of input point clouds and 5 denotes the number of feature channels. The
feature vectors output from each layer of the encoder are (N/4,32), (N/16,128), (N/64,256),
(N/256,512) in order, and the feature sizes output from each layer of the decoder are
(N/256,512), (N/64,256), (N/16,128), (N/4,32) in order. Finally, the network outputs the
point-by-point category prediction probability vector (N,7). In the KNN algorithm, the
neighborhood size is set to K = 16, and the set value of K is an experimental value derived
after balancing computational efficiency and model accuracy.

Training and inference details. The network was trained using the Adam optimizer with
an initial learning rate of 0.01 and an exponential decay parameter γ = 0.95 for a total of
80 epochs. The evaluation results for the SemanticKITTI dataset were obtained by means
of an online test.

4.1.4. Semantic Segmentation Accuracy Evaluation Metrics

Overall accuracy (OA), Mean Intersection over Union (mIoU), Precision, F1 Score are
important accuracy metrics for evaluating different aspects of the semantic segmentation
performance of a point cloud. Overall accuracy is the ratio of the number of correctly classi-
fied points to the total number of points. It is a measure of the overall model performance
but may be biased in case of sample imbalance. The average intersection ratio is a measure
of the overlap between the results predicted by the model and the true labels, and this
metric is more concerned with the accuracy of the classification performance. Precision is
used to measure how many of the samples predicted by the model to be in the positive
category are truly positive examples. F1 Score is a combined assessment of the model’s
performance in both positive and negative categories.

OA =
∑N

i=1 cii

∑N
j=1 ∑N

k=1 cjk
(18)

IoUi =
cii

cii + ∑j ̸=i cij + ∑k ̸=i cki
(19)

mIoU =
∑N

i=1 IoUi

N
(20)

Precision =
TP

TP + FP
(21)

F1 =
2TP

2TP + FP + FN
(22)

where, _cij denotes the number of points that predicts class i as class j, N denotes the total
number of classes, TP is the number of true positive examples, FN is the number of false
negative examples, and FP is the number of false positive examples.

4.1.5. Building Semantic Segmentation Results

Dublin data semantic segmentation results. The proposed ELFA-RandLA-Net network
semantic segmentation visualization results are shown in Figure 11a, and the comparison of
semantic segmentation accuracies of different neural networks is shown in Table 1, and the
overall accuracy of the ELFA-RandLA-Net network semantic segmentation is about 79%,
the precision is 55.9%, the F1 Score is 63.02%, and the mIoU is 54.49%. Compared with the
preimprovement method of [23], the OA, precision, F1 Score and mIoU have been improved
by 1.28%, 3.9%, 0.54% and 3.48%, respectively, and the building segmentation accuracy
has been improved by 9.11%. The network accuracy is improved compared to the method
of [24] thanks to two aspects: On the one hand, the proposed ELFA module effectively
enhances the local features and improves the network performance, and on the other hand,
the data enhancement for the point cloud of the building makes the semantic segmentation
accuracy of the building significantly improved. In order to demonstrate more clearly the
improvements in this paper relative to [23], we performed a visual comparative analysis,
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the results of which are shown in Figure 10. In the figure, we use cyan boxes to highlight
the main differences. It is worth noting that RandLA-Net incorrectly predicts the building
category (blue) as an undefined category (magenta), whereas our network predicts results
that are closer to the real situation.

Table 1. Semantic segmentation results of different methods on Dublin data (%).

OA Precision F1 mIoU Building Grass Sidewalk Street Bush Tree Undefined

DGCNN [51] 74.12 42.8 53.34 41.66 75.63 30.56 15.64 32.45 0.37 92.48 44.52
ConvPoint [52] 75.46 50.5 60.12 49.50 78.15 38.52 38.71 44.83 0.80 93.83 51.63

RandLA-Net [23] 77.74 52.0 62.48 51.01 80.63 43.68 37.06 46.05 1.52 91.64 56.48
Qiu [53] 78.94 55.8 64.76 54.34 85.44 45.12 44.12 52.12 3.25 92.45 57.63

Ours 79.02 55.9 63.02 54.49 89.74 44.02 42.54 51.75 3.63 92.78 57.01
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Figure 10. A comparative example of network predictions, where the color information corresponding
to the different categories can be found in Figure 11a.

SemanticKITTI dataset semantic segmentation results. According to Table 2, the anal-
ysis is as follows: (1) ELFA-RandLA-Net improves the mIoU by 4.1% compared to the
preimprovement [23], which demonstrates the effectiveness of the proposed enhanced local
feature aggregation module and data enhancement. (2) Although ELFA-RandLA-Net is
not as good as [18–22] methods in terms of accuracy, ELFA-RandLA-Net has a significant
advantage over these networks in terms of the number of known parameters and the
semantic segmentation accuracy of buildings, which is conducive to the efficient process-
ing of large-scale urban market attraction clouds and subsequent high-precision building
reconstruction.
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Table 2. Accuracy evaluation of different methods on SemanticKITTI dataset (%).
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PointNet 3.0 14.6 46.3 1.3 0.3 0.1 0.8 0.2 0.2 0.0 61.6 15.8 35.7 1.4 41.4 12.9 31.0 4.6 17.6 2.4 3.7
SPG 0.3 17.4 49.3 0.2 0.2 0.1 0.8 0.3 2.7 0.1 45.0 0.6 28.5 0.6 64.3 20.8 48.9 27.2 24.6 15.9 0.8

PointNet++ 6.0 20.1 53.7 1.9 0.2 0.9 0.2 0.9 1.0 0.1 72.0 18.7 41.8 5.6 62.3 16.9 46.5 0.9 30.0 6.0 8.9
TangentConv 0.4 40.9 90.8 2.7 16.5 15.2 12.1 23.0 28.4 8.1 83.9 33.4 63.9 15.4 83.4 49.0 79.5 49.3 58.1 35.8 28.5
RandLA-Net 1.2 53.9 94.2 26.0 25.8 40.1 38.9 49.2 48.2 7.2 90.7 60.3 73.7 20.4 86.9 56.3 81.4 61.3 66.8 49.2 47.7

SPVNAS 12.5 67.0 97.2 50.6 50.4 56.6 58.0 67.4 67.1 50.3 90.2 67.6 75.4 21.8 91.6 66.9 86.1 73.4 71.0 64.3 67.3
AF2-S3Net - 69.7 94.5 65.4 86.8 39.2 41.1 80.7 80.4 74.3 91.3 68.8 72.5 53.5 87.9 63.2 70.2 68.5 53.7 61.5 71.0

RPVNet 24.8 70.3 97.6 68.4 68.7 44.2 61.1 75.9 74.4 73.4 93.4 70.3 80.7 33.3 93.5 72.1 86.5 75.1 71.7 64.8 61.4
PVKD - 71.2 97.0 67.9 69.3 53.5 60.2 75.1 73.5 50.5 91.8 70.9 77.5 41.0 92.4 69.4 86.5 73.8 71.9 64.9 65.8

2DPASS _ 72.9 97.0 63.6 63.4 61.1 61.5 77.9 81.3 74.1 89.7 67.4 74.7 40.0 93.5 72.9 86.2 73.9 71.0 65.0 70.4
Ours 1.5 58.0 94.7 50.4 40.8 36.1 37.0 52.1 54.3 10.4 91.4 59.8 75.4 21.4 94.1 55.4 83.4 61.8 68.3 52.1 58.8

4.1.6. Building Monomer Results

After monolithic segmentation of the semantically segmented building point cloud
by clustering method, 71 buildings are automatically extracted. However, the proximity
of some buildings caused them to be incorrectly categorized into one building. After
manual checking and correction, 77 separate buildings were finally obtained, as shown in
Figure 11b.
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Figure 11. Building point cloud semantic segmentation and monolithic visualization results. In 
subgraph (b), single building point clouds are shown in different colors. 

  

Figure 11. Building point cloud semantic segmentation and monolithic visualization results. In
subgraph (b), single building point clouds are shown in different colors.

4.2. Accuracy Analysis of Structured Building Models
4.2.1. Building Reconstruction Data

The point cloud density of the Dublin data is about 348 points per square meter with a
ground resolution of 3.4 cm. In this part of the experiment, the structured reconstruction of
the building is performed using the point cloud data located in the region T_315000_233500.
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4.2.2. Precision Evaluation Metrics

The accuracy of the building model is evaluated using two metrics to evaluate the
accuracy of the model reconstruction: P2M (the distance from the original building point
to its nearest model plane) and M2P (the distance from the model vertices to their nearest
original point cloud). P2M reflects the completeness of the point cloud coverage by the
model and the degree of model fit to the point cloud. M2P can represent the geometrical
accuracy of the model vertices.

4.2.3. Building Plane Segmentation and Roof Identification Results

Building Plane Segmentation. For the Dublin data, the parameters of RANSAC plane
segmentation were uniformly set to a point-to-plane distance threshold of 0.1 m, a minimum
number of points in the plane of 10, and an iteration count of 500.

Figures 12 and 13a show the planes after segmentation by the RANSAC algorithm.
It can be seen that the RANSAC algorithm incorrectly divides the planes of different
structures of the building into one plane, which is due to the difference in the height of
the planes being less than the point-to-plane distance threshold. By resegmenting the
planes, the missegmented planes are obtained optimized as shown in Figures 12 and 13b.
This optimization is made possible by the density-adaptive plane repartitioning of the
DBSCAN algorithm.
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Figure 12. Example 1 of the segmentation and optimization results of the RANSAC algorithm, where
the planes indicated by the arrows in (a,b) denote the missegmented plane to be optimized and the
optimized plane, respectively.
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Figure 13. Example 2 of the segmentation and optimization results of the RANSAC algorithm, where
the boxed planes in (a,b) denote the missegmented plane to be optimized and the optimized plane,
respectively. Different colors in the figure represent distinct planes of the buildings.
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Roof Plane Recognition. In order to highlight the advantages of the proposed roof plane
recognition method based on the CSF algorithm, this section compares it with the roof plane
recognition method based on the normal vector of the plane and the roof plane recognition
method based on the normal vector of the plane and the combined judgment of the height,
and the specific parameter settings and the results are shown in Table 3. According to the
analysis in Table 3, the following analysis is made: The structure of building 1 is simple,
and the roof planes can be recognized by the three methods. For buildings 2 and 3, the roof
plane recognition method based on plane normal vector cannot accurately distinguish the
roof from the façade of the balcony, steps and other structures and cannot recognize the
vertical plane in the roof (such as the plane pointed by the black arrows in buildings 2 and
3), while the combined recognition method of plane normal vector and plane height needs
to set up different plane heights for different buildings in order to exclude the accessory
structure planes of the façade and add the vertical plane of the roof. In contrast, the CSF-
based roof plane recognition method only needs to set common parameters to recognize
the roof planes of buildings without setting different plane heights for different buildings.

Table 3. Parameter settings and results of different roof plane identification methods.

Collection of Building
Planes

Based on Plane Normal
Vectors

Based on Plane Normal
Vectors and Heights Based on CSF Algorithm

B1
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The following conclusions can be drawn from the above analysis: (1) Usually, flat roofs,
sloped roofs and elevations have different orientations, and roofs and elevations can be
distinguished by the angle between the plane normal and the vertical direction. (2) In cases
where the plane orientation of the accessory structure of the façade is the same as that of the
roof plane or where there is a vertical plane in the roof plane, the roof plane identification
method based on the plane normal vector may be erroneous. Although the combined plane
normal vector and height recognition method can recognize the roof plane, it needs to set
different heights according to the characteristics of the building. (3) The proposed CSF roof
plane recognition method is unaffected by the absence of façade appendages and vertical
planes in the roof, and it is more versatile as it does not require individual parameters for
each building.

4.2.4. Reconstruction Models and Comparative Analysis

In this section, we introduce the building reconstruction steps, the methods used and
their parameter settings, and show the reconstruction process and the final results, and
compare and analyze the reconstructed model in this paper with the reconstructed model
of PolyFit [16].
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Reconstruction Parameter Settings. The methods and parameter settings used in each
step of reconstruction are detailed in Table 4.

Table 4. Methods used for building reconstruction and their parameterization.

Building Reconstruction Steps Corresponding Methods Parameter Setting

Step1: building plane segmentation RANSAC plane segmentation
Distance threshold from point to plane
0.1 m, minimum number of points 10,

iteration number 500.

Step2: building plane optimization DBSCAN plane optimization Search radius 0.15 m, minimum number
of points 3.

Step3: roof plane identification CSF algorithm to recognize roof planes cloth resolution 0.3 m, classification
threshold 0.5 m.

Step4: roof plane initial boundary
vertex acquisition

Alpha shape extracts contour points and
RANSAC fits straight lines.

Alpha parameter 0.3, distance threshold
for straight line fitting is 0.3 m.

Step5: roof vertical plane reasoning Fit the plane according to the structural
characteristics of the building None

Step6: roof plane adjacency judgment Set the distance threshold to judge the
adjacency between the planes

The distance threshold is generally set to
3–5 times the average point

cloud spacing.

Step7: roof topology reconstruction Intersect planes to find intersection
points, intersect straight lines. None

Step8: building model reconstruction Stretch the outer contour of the roof to
the ground None

Reconstruction results and comparative analysis.
In Figures 14–16, (a) represents the point cloud of the building, subfigure (b) represents

the results of steps 1–7, subfigure (c) represents the final reconstructed wireframe model of
the building, (d) and (e) represent the contrasting models, and (f) is the reference image.
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Figure 14. Reconstruction results for Building 1. The red points in (b) represent the initial roof surface
vertices, while the black lines indicate the neighboring relationships between the planes; the green
points in (c) represent the corrected roof surface vertices.
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Figure 15. Reconstruction results for Building 2. The red points in (b) represent the initial roof surface
vertices, the black lines indicate the neighborhood between the planes, and the blue is the fitted plane;
the green points in (c) represent the corrected roof surface vertices.
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Figure 16. Reconstruction results for building 3. The red points in (b) represent the initial roof surface
vertices, the black lines indicate the neighborhood between the planes, and the blue is the fitted plane;
the green points in (c) represent the corrected roof surface vertices.
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By comparing the proposed building topology reconstruction method based on vertical
plane reasoning with the building model reconstructed by the PolyFit [16] method, the
following conclusions are drawn:

(1) The building model reconstruction method proposed in this paper mainly recon-
structs the roof model of the building, while the 3D model of the building is obtained by
stretching the outer contour of the roof to the ground. The proposed method mainly relies
on the complete roof point cloud data, while the PolyFit building reconstruction method
requires the complete point cloud data of the building, which limits the applicability of the
PolyFit method to the reconstruction of point clouds of buildings in different scenes. How-
ever, the geometric accuracy (M2P) of the reconstructed model of the proposed method may
be affected to some extent when dealing with buildings containing eave structures, and a
comparison of the results of the reconstructed building model is shown in Figure 14d,e.

(2) When dealing with the point cloud plane defect problem, the proposed method can
successfully reconstruct the building model as well as the PolyFit method, and the specific
reconstruction results are shown in Figure 15. However, when the building point cloud
has a plane missing, the proposed vertical plane inference method is still able to correctly
reconstruct the building model (Figure 16a–d), whereas the model reconstructed by the
PolyFit method has a plane error, such as the plane indicated by the red line in Figure 16e.

4.2.5. Evaluation and Analysis of Regional Reconstruction Model Accuracy

Figures 17–19 show the results of the regional reconstructed images, regional point
cloud data, and building point clouds overlaid with structured models, respectively. Table 5
provides statistics of specific values for P2M (point cloud to model) and M2P (model to
point cloud).

For the two building types in the area, i.e., flat-roofed staggered-story buildings (e.g.,
Building 4 in Figure 18) and herringbone-roofed buildings (e.g., Buildings 2, 3, 5, etc., in
Figure 18), there are fewer roof facets where they intersect. Therefore, the accuracy of the
modeling depends more on the accuracy of the boundary fitting of the buildings and the
geometric accuracy is poor.
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Table 5. Regional model accuracy statistics.

Max Mean RMS

P2M (m) 0.67 0.31 0.42
M2P (m) 0.39 0.25 0.26

Note: Max, Mean, and RMS are the maximum, mean, and median error, respectively.
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Figure 18. The reconstruction results of the buildings in the region, where the planes circled in red 
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building are shown in different colors. 
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Figure 18. The reconstruction results of the buildings in the region, where the planes circled in red
are the poorly fitted planes to the point cloud. In order to present the reconstruction of the buildings
more clearly, we transformed the wireframe model into a polyhedral model and used different colors
to represent the different planes of the buildings. In the figure, the different planes of the building are
shown in different colors.
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For buildings 1, 8, 11 and 12 in Figure 18, the architectural structure is relatively
more complex, with the same roof level containing multiple roof surfaces. The geometric
accuracy of these buildings is better relative to the flat-roofed staggered-story buildings
and herringbone-roofed buildings due to the restoration of the topological relationships
between the planes.

Overall, topological reconstruction of the roof model was better in areas with plane
intersecting building structures but performed slightly worse in fitting the boundaries of
the flat-roof model and the herringbone model. The error of the model point cloud fitting
was 0.31 m, and the geometric error was 0.25 m. In addition, some of the point cloud fitting
errors for buildings with eaves were larger.

5. Conclusions

According to the experimental results, the proposed ELFA-RandLA-Net network
shows higher performance relative to other methods, especially for semantic segmentation
of buildings, the IoU value reaches 89.74%, which is 9.11% higher compared to RandLA-
Net, and the performance improvement is significant. In this paper, we use the clustering
method to monomer the building point cloud, which can effectively deal with buildings
that exist at a certain distance, but there still exists the inability to automatically extract a
single building point cloud for overlapping or closely neighboring buildings.

Our building topology reconstruction method, especially the inference method for
the vertical plane of the roof, successfully solves the problem of failing to reconstruct the
roof of a building due to the defective quality of the point cloud data of the vertical plane
of the roof and ensures the correctness of the roof topology reconstruction. In addition,
the reconstructed model is guaranteed to have a complete topological structure due to the
restoration of the topological relationship of the building planes. For buildings with fewer
intersecting roof planes, such as flat-roofed buildings, the accuracy of modeling is more
dependent on the boundary fitting accuracy of the building, and the geometric accuracy of
the building model is poor.

In the future, we plan to utilize the proposed roof plane recognition method to associate
the semantic information of the building with the structured reconstruction in order to take
a step further towards semantic reconstruction of buildings. In addition, we will further
validate the effectiveness of the proposed reconstruction method for building reconstruction
on low-density point cloud data and enhance the applicability of the method to different
building types (e.g., cantilevered roofs).
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