
Citation: Leroux, F.; Germain, M.;

Clabaut, É.; Bouroubi, Y.; St-Pierre, T.

Improving Three-Dimensional

Building Segmentation on

Three-Dimensional City Models

through Simulated Data and

Contextual Analysis for Building

Extraction. ISPRS Int. J. Geo-Inf. 2024,

13, 20. https://doi.org/10.3390/

ijgi13010020

Academic Editors: Wolfgang Kainz,

Mara Nikolaidou, Christos Chalkias,

Marinos Kavouras and Margarita

Kokla

Received: 22 November 2023

Revised: 1 January 2024

Accepted: 4 January 2024

Published: 7 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Improving Three-Dimensional Building Segmentation on
Three-Dimensional City Models through Simulated Data and
Contextual Analysis for Building Extraction
Frédéric Leroux 1,* , Mickaël Germain 1 , Étienne Clabaut 1, Yacine Bouroubi 1 and Tony St-Pierre 2

1 Department of Applied Geomatics, Center for Applications and Research in Remote Sensing (CARTEL),
University of Sherbrooke, 2500 Boulevard de l’Université, Sherbrooke, QC J1K 2R1, Canada;
mickael.germain@usherbrooke.ca (M.G.); etienne.clabaut@usherbrooke.ca (É.C.);
yacine.bouroubi@usherbrooke.ca (Y.B.)

2 XEOS Imaging Inc., 1405 Boulevard du Parc-Technologique, Bureau 110, Quebec City, QC G1P 4P5, Canada
* Correspondence: lerf2103@usherbrooke.ca

Abstract: Digital twins are increasingly gaining popularity as a method for simulating intricate natural
and urban environments, with the precise segmentation of 3D objects playing an important role.
This study focuses on developing a methodology for extracting buildings from textured 3D meshes,
employing the PicassoNet-II semantic segmentation architecture. Additionally, we integrate Markov
field-based contextual analysis for post-segmentation assessment and cluster analysis algorithms for
building instantiation. Training a model to adapt to diverse datasets necessitates a substantial volume
of annotated data, encompassing both real data from Quebec City, Canada, and simulated data
from Evermotion and Unreal Engine. The experimental results indicate that incorporating simulated
data improves segmentation accuracy, especially for under-represented features, and the DBSCAN
algorithm proves effective in extracting isolated buildings. We further show that the model is highly
sensible for the method of creating 3D meshes.

Keywords: semantic segmentation; 3D building segmentation; cluster analysis; 3D city models;
3D mesh; data simulation; contextual analysis; Markov random fields; Unreal Engine; Evermotion

1. Introduction

The concept of three-dimensional (3D) cities and digital twins is gaining popularity in
the representation of natural and human environments [1–3]. A digital twin is a virtual
replica of a real physical entity or system, including its surroundings and associated
processes. Consistently refreshed through the exchange of information with its real-world
counterpart, it can be represented in a virtual environment, facilitating various simulations
for comprehensive analysis and evaluation. This concept is attracting interest in many
fields to solve problems of multidisciplinary nature, such as efficient input management
in agriculture [4,5], building design and management [6,7] and even problems in the
healthcare sector [8,9]. A 3D city is a popular type of digital twin in the urban sector. This
tool has versatile applications, serving as a decision support tool in urban planning, route
planning, natural disaster management, virtual tourism, and the estimation of emergency
response times. The incorporation of 3D cities enables the visualization of objects in a
virtual environment, allowing users to access detailed information such as the type of
use, surface area, year of construction, and more [1]. For example, [10] have produced
a 3D model of a Greek city whose surfaces have been divided by pavement type with
the aim of enabling the city to perform fire propagation simulations in the event of a fire.
This type of process can be carried out automatically using semantic segmentation and
instance segmentation. The first process entails categorizing a 3D model into various classes
of objects, whereas the second involves identifying and isolating each segmented object

ISPRS Int. J. Geo-Inf. 2024, 13, 20. https://doi.org/10.3390/ijgi13010020 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi13010020
https://doi.org/10.3390/ijgi13010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0009-0003-2705-1270
https://orcid.org/0000-0003-1867-7530
https://orcid.org/0000-0003-1487-2945
https://doi.org/10.3390/ijgi13010020
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi13010020?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2024, 13, 20 2 of 33

into separate elements. Artificial intelligence (AI) provides many possibilities with deep
learning using neural networks. According to the literature, the use of convolutional neural
networks (CNNs) delivers the best segmentation results [7,11–16].

Three-dimensional models have the advantage of possessing geometric information
and spectral information from the red, green, and blue (RGB) bands. The integration of
spectral information can improve segmentation by, for example, using surface color to
differentiate objects [11–17]. This information is very important for separating objects
that have obvious color discontinuities but great geometric continuity, such as houses
arranged in rows that have different siding color. To accomplish this, a large amount
of annotated data is needed to train a neural network. It is in this context that data
simulation is used extensively. Indeed, work has highlighted the interest of simulation in
data augmentation for deep learning [17,18]. Urban scenes are created using game engines
such as “Unreal Engine”. These simulated virtual city models increase the amount of
training data. Unfortunately, there are few studies on the segmentation of 3D city instances
in the literature.

Founded in 2004, Xeos Imagerie Inc. specializes in the acquisition and processing of
high-resolution digital aerial photographs as well as LiDAR topographic surveys [19]. Each
year, the company carries out over 75,000 km2 of image acquisitions for applications in
urban planning, forestry, pipelines, wind farms, mines, erosion zones, etc. Xeos has recently
created a program called “Xeos 3D Cities”, capable of delivering high-quality 3D models
of entire cities. This program aims to deliver data extracted from the 3D model directly
to customers. To automate its processing chains, Xeos is embarking on the segmentation
of 3D city instances using deep learning. The results of this segmentation will enable the
company to produce new layers of information.

To train a 3D city segmentation model with broad applicability across datasets, a sub-
stantial volume of annotated data is essential. The training data encompass both actual data
representing Quebec City, Canada, and synthetic data generated from diverse platforms like
the 3D engine “Unreal Engine” and Evermotion. PicassoNet-II, a semantic segmentation
architecture tailored for textured meshes, was developed nearly two years ago [15]. Initially,
the semantic segmentation of 3D cities was executed using this model. Subsequently, a
context analysis based on Markov fields was incorporated into the algorithm for contextual
feature assessment post-semantic segmentation. The algorithm was adapted to iterated
conditional modes (ICMs) [20], employed to minimize the energy defined by a random
Markov field. Finally, a cluster-based analysis was applied to the semantic segmentation
outcomes to extract buildings. It is crucial to clarify that this phase does not utilize artificial
intelligence. It does not entail the training of instance segmentation models; instead, it
leverages the semantic segmentation output layer to assess object extraction. Other research
works have used similar approaches. Ref. [21] used Mask R-CNN with a KMeans kernel
on computed tomography images to improve the segmentation performance of the lung
region. Ref. [22] implemented the KMeans clustering algorithm to separate vertebral arches
from bodies after fully segmenting the spine using a 3D convolutional neural network.
This approach to instance segmentation underscores the need for clustering mechanisms
that can handle the variability in instance shapes and sizes inherent in urban landscapes.
By incorporating such clustering techniques, the segmentation process can be refined to
recognize individual buildings of 3D city models. The joint use of simulated and real
data, the adaptation of a Markov algorithm to 3D meshes, and the use of cluster analysis
algorithms are complex and innovative tasks in the context of digital twins of 3D cities. The
aim of this article is to highlight the potential benefits of using data simulation for building
extraction, taking into account not only geometry but also textural information, such as
colors in the RGB mode.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 3 of 33

2. State of the Art
2.1. Three-Dimensional Cities

A 3D city is a model that represents the 3D geometry of urban elements [1,23,24]. The
3D geometry of the landscape can be formed by a point cloud or a 3D mesh on which
textures can be applied. A mesh is a geometric network composed of segments, facets,
and vertices that form a network of triangles to approximate the geometric surface of 3D
objects [12,13,15]. A textured mesh is one in which textures have been projected onto the
facets. The term “texture” is used in the 3D domain to designate the RGB image projected
onto the mesh, which provides information on the color of the mesh facets.

2.2. The Contribution of Artificial Intelligence

The rapid development of computer processing power and the exploitation of graphics
processing units (GPUs) has enabled the emergence of deep learning, a sub-field of artificial
intelligence [25]. It is based on the use of deep artificial neural network (ANN) architectures,
simulating the functioning of neurons in the human brain. A neural network is composed
of several interconnected layers of neurons [26].

The extension of deep learning to image processing is based on the addition of a
convolution layer, a kind of filter bank that extracts properties from the image. This
innovation gave rise to convolutional neural networks (CNNs). The accuracy of image
segmentation is assessed using intersection over union (IoU), a metric commonly used
to measure the effectiveness of a model. IoU is the ratio of correctly detected features
(true positives) to the union of true positives with features not detected (false negatives) or
detected in error (false positives).

2.3. Three-Dimensional Semantic Segmentation

Interest in 3D semantic segmentation has grown in recent years thanks to the successful
application of CNNs on images [16,27]. Although the use of CNNs on 2D data has become
commonplace, the application of these types of neural networks is not as obvious with 3D
data, such as point clouds and meshes. Indeed, the unordered nature of 3D data seems a
priori incompatible with image convolution filters. Several mesh segmentation techniques
have been developed [11,15,16]. Unlike point clouds, a mesh has a topological structure
that provides more precise geometric information, as shapes are represented by continuous
polygonal surfaces and not by a cluster of points. This has the advantage of reducing the
storage space required compared with point clouds [16,28].

There are various approaches to mesh segmentation. Some methods use convolutions
based on local patch operators with arbitrary coordinate systems [11,29]. Other studies
have explored methods based on multiview labeling [18,30]. There are also methods
using spatial graph convolutions (SCGs) [28,31,32]. Finally, recently, studies have begun to
implement CNNs using 3D convolution filters on triangle networks [15,16].

Ref. [15] developed a neural network called PicassoNet-II that enables semantic seg-
mentation to be performed on textured meshes. ScanNet and S3DIS data were used to test
this segmentation. PicassoNet-II achieved an average IoU of 69.8% and 68.6% on S3DIS and
ScanNet data, respectively, outperforming KPConv. The results are shown in Appendix A
and are referred to as Figures A1 and A2.

2.4. The Role of Real and Simulated Datasets

Training semantic segmentation models requires the preparation of a lot of extensive,
high-quality annotated data, which is a laborious process. For this reason, there are a
number of image, point cloud, and mesh datasets in the literature to facilitate model perfor-
mance comparisons. To facilitate model performance comparisons, various image, point
cloud, and mesh datasets are available in the literature. Notable datasets, such as the “Stan-
ford 3D Indoor Scene Dataset” (S3DIS) [14,18], ScanNet [15,33], and Matterport3D [11,34],
have played pivotal roles in indoor scene analyses. These datasets, rich in point clouds and
meshes, are instrumental for benchmarking. Recently introduced outdoor urban datasets

ISPRS Int. J. Geo-Inf. 2024, 13, 20 4 of 33

like “Hessigheim 3D” [35] and “SUM-Helsinki” [28], derived from aerial LiDAR scans and
imagery, broaden the scope of research.

Simultaneously, researchers are exploring the potential of “3D engines” to simulate
urban environments and work with digital twins [36–39]. These engines enable users to
generate a large amount of data within a virtual universe, offering control over various
factors. Among other things, these data can be annotated automatically by algorithms
that are more efficient than manual annotation [40]. The Blender and Unreal Engine
software packages are particularly interesting for research, as it is possible to develop one’s
own tools [41,42]. Unreal Engine, developed by the company “Epic Games Inc.”, enables
users to create virtual worlds [43], and its platform includes a web store with realistic
3D models. Blender, a free software for creating and manipulating 3D models, enhances
accessibility [44].

In the context of the growing need for abundant annotated data in deep learning
models, synthetic data emerge as a pivotal solution [45]. Synthetic data offer advantages
such as being easy to generate and having error-free attributes, pre-annotated capabilities,
and ethical considerations. The ongoing progress in data synthesis and domain adap-
tation techniques is closing the statistical gap between synthetic and real data. Beyond
sustaining the deep learning revolution, synthetic data hold promise for a next generation
of models that understand the physical world, facilitating continual, multimodal, and
interactive learning.

3. Materials and Methods
3.1. Study Area

This project’s study site is Quebec City (Figure 1). It is the capital of the province
of Quebec, and it is its second largest city. The enlargement window corresponds to the
specific study area selected, from which the actual data were extracted. This procedure is
described in detail in Section 3.2.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 4 of 33

urban datasets like “Hessigheim 3D” [35] and “SUM-Helsinki” [28], derived from aerial
LiDAR scans and imagery, broaden the scope of research.

Simultaneously, researchers are exploring the potential of “3D engines” to simulate
urban environments and work with digital twins [36–39]. These engines enable users to
generate a large amount of data within a virtual universe, offering control over various
factors. Among other things, these data can be annotated automatically by algorithms that
are more efficient than manual annotation [40]. The Blender and Unreal Engine software
packages are particularly interesting for research, as it is possible to develop one’s own
tools [41,42]. Unreal Engine, developed by the company “Epic Games Inc.”, enables users
to create virtual worlds [43], and its platform includes a web store with realistic 3D models.
Blender, a free software for creating and manipulating 3D models, enhances accessibility
[44].

In the context of the growing need for abundant annotated data in deep learning mod-
els, synthetic data emerge as a pivotal solution [45]. Synthetic data offer advantages such as
being easy to generate and having error-free attributes, pre-annotated capabilities, and eth-
ical considerations. The ongoing progress in data synthesis and domain adaptation tech-
niques is closing the statistical gap between synthetic and real data. Beyond sustaining the
deep learning revolution, synthetic data hold promise for a next generation of models that
understand the physical world, facilitating continual, multimodal, and interactive learning.

3. Materials and Methods
3.1. Study Area

This project’s study site is Quebec City (Figure 1). It is the capital of the province of
Quebec, and it is its second largest city. The enlargement window corresponds to the spe-
cific study area selected, from which the actual data were extracted. This procedure is
described in detail in Section 3.2.

Figure 1. Study site (Quebec City).

Figure 1. Study site (Quebec City).

ISPRS Int. J. Geo-Inf. 2024, 13, 20 5 of 33

3.2. Preparation of the Real Dataset
3.2.1. Inventory of Real Datasets

The authentic data are derived from the comprehensive Xeos 3D model that encom-
passes the entirety of Quebec City, organized into 1 km by 1 km tiles [46]. The georeferencing
accuracy of this model is finely tuned to 10 cm. The construction of the 3D model employed
a hybrid methodology, combining 5 cm resolution aerial photography and LiDAR data.
The specific tile chosen for analysis covers segments of the Saint-Jean-Baptiste and Old
Quebec districts, encompassing notable landmarks such as the Quebec National Assembly,
the Plains of Abraham, and the Citadel of Quebec. To facilitate processing, this larger tile
was subdivided into smaller 110 m by 110 m tiles. Certain tiles, which had an excessive
number of vertices, were subdivided further. In total, 114 tiles were generated from the
larger dataset for analysis. The enlarged study site is shown in Figure 2. This area has the
advantage of being very diverse in terms of its landscape. Among other things, it contains
steep cliffs, skyscrapers, wooded areas, urban sectors of varying density, and so on. Tiles of
different sizes and themes were chosen to provide a training dataset representative of the
territory. Examples are available in Appendix B and are referred to as Figure A3.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 5 of 33

3.2. Preparation of the Real Dataset
3.2.1. Inventory of Real Datasets

The authentic data are derived from the comprehensive Xeos 3D model that encom-
passes the entirety of Quebec City, organized into 1 km by 1 km tiles [46]. The georefer-
encing accuracy of this model is finely tuned to 10 cm. The construction of the 3D model
employed a hybrid methodology, combining 5 cm resolution aerial photography and Li-
DAR data. The specific tile chosen for analysis covers segments of the Saint-Jean-Baptiste
and Old Quebec districts, encompassing notable landmarks such as the Quebec National
Assembly, the Plains of Abraham, and the Citadel of Quebec. To facilitate processing, this
larger tile was subdivided into smaller 110 m by 110 m tiles. Certain tiles, which had an
excessive number of vertices, were subdivided further. In total, 114 tiles were generated
from the larger dataset for analysis. The enlarged study site is shown in Figure 2. This area
has the advantage of being very diverse in terms of its landscape. Among other things, it
contains steep cliffs, skyscrapers, wooded areas, urban sectors of varying density, and so
on. Tiles of different sizes and themes were chosen to provide a training dataset repre-
sentative of the territory. Examples are available in Appendix B and are referred to as
Figure A3

Figure 2. Distribution of Xeos 3D model tiles in the training dataset. The le ers “T” and “V” stand
for “training” and “validation”, respectively.

The first semantic segmentation tests on urban scenes were carried out using the
SUM-Helsinki dataset. The dataset consists of 64 annotated tiles, with each tile encom-
passing an area of 250 square meters. In total, these tiles cover approximately 4 square
kilometers of the city of Helsinki, Finland. Created in 2017, the dataset was generated from

Figure 2. Distribution of Xeos 3D model tiles in the training dataset. The letters “T” and “V” stand
for “training” and “validation”, respectively.

The first semantic segmentation tests on urban scenes were carried out using the SUM-
Helsinki dataset. The dataset consists of 64 annotated tiles, with each tile encompassing
an area of 250 square meters. In total, these tiles cover approximately 4 square kilometers
of the city of Helsinki, Finland. Created in 2017, the dataset was generated from aerial
LiDAR scans and aerial imagery. The annotations within the dataset are categorized into
six classes: terrain, vegetation, building, water, car, and boat [28].

ISPRS Int. J. Geo-Inf. 2024, 13, 20 6 of 33

3.2.2. Annotation of Xeos Three-Dimensional Model Tiles

The objects were divided into 5 semantic classes: terrain, vegetation, building, un-
classified, and high_urban. The high_urban class in the annotation represents tall, slender,
vertical structures such as poles, lampposts, cranes, and similar elements. The unclassified
class includes various objects like fences, retaining walls, cars, hydrants, ground cavities,
etc. The annotation of the Xeos 3D model was conducted using the “Urban Mesh Annota-
tion Tool” application, developed by [28] specifically for annotating 3D meshes of urban
scenes. Notably, the SUM-Helsinki dataset has undergone complete annotation within this
application. The annotation process is semi-automatic, and the application includes tools
for slicing the 3D mesh into planar segments. Figure 3 illustrates the general procedure for
annotating 3D tiles.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 6 of 33

aerial LiDAR scans and aerial imagery. The annotations within the dataset are categorized
into six classes: terrain, vegetation, building, water, car, and boat. [28].

3.2.2. Annotation of Xeos Three-Dimensional Model Tiles
The objects were divided into 5 semantic classes: terrain, vegetation, building, un-

classified, and high_urban. The high_urban class in the annotation represents tall, slender,
vertical structures such as poles, lampposts, cranes, and similar elements. The unclassified
class includes various objects like fences, retaining walls, cars, hydrants, ground cavities,
etc. The annotation of the Xeos 3D model was conducted using the “Urban Mesh Annota-
tion Tool” application, developed by [28] specifically for annotating 3D meshes of urban
scenes. Notably, the SUM-Helsinki dataset has undergone complete annotation within
this application. The annotation process is semi-automatic, and the application includes
tools for slicing the 3D mesh into planar segments. Figure 3 illustrates the general proce-
dure for annotating 3D tiles.

First, the main plane, which generally corresponds to the ground, is extracted, natu-
rally isolating groups of objects above ground level, such as buildings and trees. The next
step is to continue separating the surfaces until the desired objects can be extracted and
annotated into their respective classes. Once all objects have been correctly separated, all
that remains is to manually correct any incorrectly annotated triangles. The annotation
process takes between 1.5 and 4.5 depending on the density of objects in the tile. The an-
notation has been performed on a laboratory computer with the following specs: NVIDIA
RTX 3080 (8 GB of VRAM), Intel Core i7-11800H @ 2.30GHz, and 64 GB of RAM. Examples
of annotated tiles have been compiled in Appendix C and are referred to as Figure A4.

Figure 3. Annotation procedure followed using the Urban Mesh Annotation Tool: (a) a new mesh is
imported; (b) the main plane is extracted and annotated; (c) the secondary surfaces have been ex-
tracted; (d) the objects have been divided and annotated into their respective classes.

With the completion of this phase, only one task remained—generating the five cus-
tomary files, a process that will be further described in Section 3.4. The 114 real tiles were
then ready to be used by PicassoNet-II.

3.3. Preparation of the Simulated Dataset
3.3.1. Inventory of Simulated Datasets

The simulated training data comprise 3D models of buildings primarily obtained
from two specialized platforms and websites dedicated to the sale of such models, namely
“Evermotion” and “Epic Games Market.” Evermotion, a Poland-based company re-
nowned for creating realistic 3D models of scenes [47], contributed a total of six city mod-
els to the project. However, only the three most straightforward models to prepare were
utilized for this specific project (see Figure 4). Additionally, an independent artist’s model
named KC15 was also purchased and included in the training data.

Figure 3. Annotation procedure followed using the Urban Mesh Annotation Tool: (a) a new mesh
is imported; (b) the main plane is extracted and annotated; (c) the secondary surfaces have been
extracted; (d) the objects have been divided and annotated into their respective classes.

First, the main plane, which generally corresponds to the ground, is extracted, natu-
rally isolating groups of objects above ground level, such as buildings and trees. The next
step is to continue separating the surfaces until the desired objects can be extracted and
annotated into their respective classes. Once all objects have been correctly separated, all
that remains is to manually correct any incorrectly annotated triangles. The annotation
process takes between 1.5 and 4.5 depending on the density of objects in the tile. The anno-
tation has been performed on a laboratory computer with the following specs: NVIDIA
RTX 3080 (8 GB of VRAM), Intel Core i7-11800H @ 2.30GHz, and 64 GB of RAM. Examples
of annotated tiles have been compiled in Appendix C and are referred to as Figure A4.

With the completion of this phase, only one task remained—generating the five
customary files, a process that will be further described in Section 3.4. The 114 real tiles
were then ready to be used by PicassoNet-II.

3.3. Preparation of the Simulated Dataset
3.3.1. Inventory of Simulated Datasets

The simulated training data comprise 3D models of buildings primarily obtained
from two specialized platforms and websites dedicated to the sale of such models, namely
“Evermotion” and “Epic Games Market.” Evermotion, a Poland-based company renowned
for creating realistic 3D models of scenes [47], contributed a total of six city models to the
project. However, only the three most straightforward models to prepare were utilized
for this specific project (see Figure 4). Additionally, an independent artist’s model named
KC15 was also purchased and included in the training data.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 7 of 33ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 7 of 33

Figure 4. Extracts from the three Evermotion models selected. From left to right: AM131-City001,
AM131-City003, and AM133-City002. Taken and modified from Evermotion [48,49].

The Epic Games Market platform hosts a wide array of realistic 3D models encom-
passing structures and cityscapes. These models are designed for direct utilization within
the Unreal Engine and can also be exported to other software applications. Modules pur-
chased from the store total around 150 different buildings, as well as cars, lampposts,
power poles, and more.

The objects were divided into 5 semantic classes: terrain, vegetation, building, car,
and high_urban. During the content analysis of the models, it was found that the diversity
of objects was not constant for each model. For example, model AM131-City003 contained
only trees, buildings, and soil, while model AM131-City001 contained utility poles, cars,
fences, and even swimming pools. Some objects were therefore added and removed as
required. The objects added came mainly from other Evermotion models, but some of the
cars and utility poles came directly from Unreal Engine. These objects have been compiled
in Appendix D and are referred to as Figure A5. In particular, it was possible to create
variations of certain objects by changing the color and orientation of the semi-trailer trucks,
for example. It was also necessary to apply several corrections to the geometry and tex-
tures of the models. For example, all interior structures of the buildings had to be removed,
and some erroneous texture files had to be modified. These operations were carried out
using Blender software, version 3.6. Each 3D tile is made up of 5 layers of data represent-
ing the 5 semantic classes. Dividing the data into distinct layers was essential for the au-
tomatic annotation of the unified mesh. Figure 5 shows an extract of completed 3D tiles.

Figure 5. Extract from completed Evermotion mock-ups. From left to right: AM131-City001, AM131-
City003, and AM133-City002.

3.3.2. Deformation and Labeling of Simulated Tiles
The simulated data exhibit precise geometry and accurate textures, but the mesh

lacks unity, meaning there is no connectivity between objects. This presents a challenge,
as PicassoNet relies on this connectivity to learn object characteristics. In contrast, real
data comprise unified 3D meshes that have undergone deformation through a 3D recon-
struction process. Consequently, it becomes essential to replicate the same types of defor-
mation on simulated data to ensure compatibility with real data. To achieve this, Blender’s
“Remesh” and “Union” tools were essential. The “Remesh” tool transforms an input mesh
into a simplified mesh that a empts to respect the shape of the original mesh as closely as
possible. The “Union” tool, on the other hand, is used to merge 3D meshes together, cre-
ating connectivity between all objects [44].

Figure 4. Extracts from the three Evermotion models selected. From left to right: AM131-City001,
AM131-City003, and AM133-City002. Taken and modified from Evermotion [48,49].

The Epic Games Market platform hosts a wide array of realistic 3D models encompass-
ing structures and cityscapes. These models are designed for direct utilization within the
Unreal Engine and can also be exported to other software applications. Modules purchased
from the store total around 150 different buildings, as well as cars, lampposts, power poles,
and more.

The objects were divided into 5 semantic classes: terrain, vegetation, building, car, and
high_urban. During the content analysis of the models, it was found that the diversity of
objects was not constant for each model. For example, model AM131-City003 contained
only trees, buildings, and soil, while model AM131-City001 contained utility poles, cars,
fences, and even swimming pools. Some objects were therefore added and removed as
required. The objects added came mainly from other Evermotion models, but some of the
cars and utility poles came directly from Unreal Engine. These objects have been compiled
in Appendix D and are referred to as Figure A5. In particular, it was possible to create
variations of certain objects by changing the color and orientation of the semi-trailer trucks,
for example. It was also necessary to apply several corrections to the geometry and textures
of the models. For example, all interior structures of the buildings had to be removed, and
some erroneous texture files had to be modified. These operations were carried out using
Blender software, version 3.6. Each 3D tile is made up of 5 layers of data representing the
5 semantic classes. Dividing the data into distinct layers was essential for the automatic
annotation of the unified mesh. Figure 5 shows an extract of completed 3D tiles.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 7 of 33

Figure 4. Extracts from the three Evermotion models selected. From left to right: AM131-City001,
AM131-City003, and AM133-City002. Taken and modified from Evermotion [48,49].

The Epic Games Market platform hosts a wide array of realistic 3D models encom-
passing structures and cityscapes. These models are designed for direct utilization within
the Unreal Engine and can also be exported to other software applications. Modules pur-
chased from the store total around 150 different buildings, as well as cars, lampposts,
power poles, and more.

The objects were divided into 5 semantic classes: terrain, vegetation, building, car,
and high_urban. During the content analysis of the models, it was found that the diversity
of objects was not constant for each model. For example, model AM131-City003 contained
only trees, buildings, and soil, while model AM131-City001 contained utility poles, cars,
fences, and even swimming pools. Some objects were therefore added and removed as
required. The objects added came mainly from other Evermotion models, but some of the
cars and utility poles came directly from Unreal Engine. These objects have been compiled
in Appendix D and are referred to as Figure A5. In particular, it was possible to create
variations of certain objects by changing the color and orientation of the semi-trailer trucks,
for example. It was also necessary to apply several corrections to the geometry and tex-
tures of the models. For example, all interior structures of the buildings had to be removed,
and some erroneous texture files had to be modified. These operations were carried out
using Blender software, version 3.6. Each 3D tile is made up of 5 layers of data represent-
ing the 5 semantic classes. Dividing the data into distinct layers was essential for the au-
tomatic annotation of the unified mesh. Figure 5 shows an extract of completed 3D tiles.

Figure 5. Extract from completed Evermotion mock-ups. From left to right: AM131-City001, AM131-
City003, and AM133-City002.

3.3.2. Deformation and Labeling of Simulated Tiles
The simulated data exhibit precise geometry and accurate textures, but the mesh

lacks unity, meaning there is no connectivity between objects. This presents a challenge,
as PicassoNet relies on this connectivity to learn object characteristics. In contrast, real
data comprise unified 3D meshes that have undergone deformation through a 3D recon-
struction process. Consequently, it becomes essential to replicate the same types of defor-
mation on simulated data to ensure compatibility with real data. To achieve this, Blender’s
“Remesh” and “Union” tools were essential. The “Remesh” tool transforms an input mesh
into a simplified mesh that a empts to respect the shape of the original mesh as closely as
possible. The “Union” tool, on the other hand, is used to merge 3D meshes together, cre-
ating connectivity between all objects [44].

Figure 5. Extract from completed Evermotion mock-ups. From left to right: AM131-City001, AM131-
City003, and AM133-City002.

3.3.2. Deformation and Labeling of Simulated Tiles

The simulated data exhibit precise geometry and accurate textures, but the mesh lacks
unity, meaning there is no connectivity between objects. This presents a challenge, as
PicassoNet relies on this connectivity to learn object characteristics. In contrast, real data
comprise unified 3D meshes that have undergone deformation through a 3D reconstruction
process. Consequently, it becomes essential to replicate the same types of deformation on
simulated data to ensure compatibility with real data. To achieve this, Blender’s “Remesh”
and “Union” tools were essential. The “Remesh” tool transforms an input mesh into
a simplified mesh that attempts to respect the shape of the original mesh as closely as
possible. The “Union” tool, on the other hand, is used to merge 3D meshes together,
creating connectivity between all objects [44].

ISPRS Int. J. Geo-Inf. 2024, 13, 20 8 of 33

The operations performed in Blender are not sufficient to make 3D tiles usable. Indeed,
as shown in Figure 6b, Blender not only generates too many vertices, but the size and dis-
tribution of the triangles are far too different from one class to another. The GraphiteThree
application, version 3-1.8.0., was used to solve both of these problems. This application,
developed by [50], specializes in 3D mesh processing. This application has a “Remesh”
tool that allows both the density and size of triangles in a mesh to be controlled. Each
simulated tile was processed in GraphiteThree to obtain a number of vertices below 500,000
and distribute the triangles more evenly throughout the mesh. Figure 6 illustrates the three
stages of mesh deformation: original mesh, deformed mesh in Blender, and deformed mesh
in GraphiteThree.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 33

The operations performed in Blender are not sufficient to make 3D tiles usable. In-
deed, as shown in Figure 6b, Blender not only generates too many vertices, but the size
and distribution of the triangles are far too different from one class to another. The
GraphiteThree application, version 3-1.8.0., was used to solve both of these problems. This
application, developed by [50], specializes in 3D mesh processing. This application has a
“Remesh” tool that allows both the density and size of triangles in a mesh to be controlled.
Each simulated tile was processed in GraphiteThree to obtain a number of vertices below
500,000 and distribute the triangles more evenly throughout the mesh. Figure 6 illustrates
the three stages of mesh deformation: original mesh, deformed mesh in Blender, and de-
formed mesh in GraphiteThree.

Figure 6. State of the 3D mesh at each deformation stage: (a) original mesh, (b) mesh processed in
Blender, and (c) mesh processed in GraphiteThree.

After processing the tiles in GraphiteThree, all that remained was to apply the origi-
nal mesh texture to the unified mesh and annotate the triangles. The whole process was
automated with a Python script. The texture of the original mesh (Figure 7a) was applied
to the vertices of the unified mesh (Figure 7b) by superimposing the data. Because it is the
vertices that receive the color, the textures are of poorer quality than originally. The trian-
gles were automatically annotated by matching the closest triangles by superimposing the
5 layers on the unified mesh (Figure 7c). Finally, all that remained was to generate the 5
files required as input information for PicassoNet. Further details about each of these files
are described in the subsequent paragraph. The 29 simulated tiles were then ready to be
used by PicassoNet. Detailed views of the 3D models are available in Appendix E and are
referred to as Figure A6, A7, and A8.

Figure 7. Comparison between the original textured mesh and the final result: (a) original mesh, (b)
final textured mesh, and (c) final annotated mesh.

3.4. PicassoNet-II
The PicassoNet-II neural network [15] was selected for the segmentation of textured

3D meshes, primarily due to its recent development and availability on the web. This

Figure 6. State of the 3D mesh at each deformation stage: (a) original mesh, (b) mesh processed in
Blender, and (c) mesh processed in GraphiteThree.

After processing the tiles in GraphiteThree, all that remained was to apply the original
mesh texture to the unified mesh and annotate the triangles. The whole process was
automated with a Python script. The texture of the original mesh (Figure 7a) was applied
to the vertices of the unified mesh (Figure 7b) by superimposing the data. Because it is
the vertices that receive the color, the textures are of poorer quality than originally. The
triangles were automatically annotated by matching the closest triangles by superimposing
the 5 layers on the unified mesh (Figure 7c). Finally, all that remained was to generate the
5 files required as input information for PicassoNet. Further details about each of these
files are described in the subsequent paragraph. The 29 simulated tiles were then ready to
be used by PicassoNet. Detailed views of the 3D models are available in Appendix E and
are referred to as Figures A6–A8.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 8 of 33

The operations performed in Blender are not sufficient to make 3D tiles usable. In-
deed, as shown in Figure 6b, Blender not only generates too many vertices, but the size
and distribution of the triangles are far too different from one class to another. The
GraphiteThree application, version 3-1.8.0., was used to solve both of these problems. This
application, developed by [50], specializes in 3D mesh processing. This application has a
“Remesh” tool that allows both the density and size of triangles in a mesh to be controlled.
Each simulated tile was processed in GraphiteThree to obtain a number of vertices below
500,000 and distribute the triangles more evenly throughout the mesh. Figure 6 illustrates
the three stages of mesh deformation: original mesh, deformed mesh in Blender, and de-
formed mesh in GraphiteThree.

Figure 6. State of the 3D mesh at each deformation stage: (a) original mesh, (b) mesh processed in
Blender, and (c) mesh processed in GraphiteThree.

After processing the tiles in GraphiteThree, all that remained was to apply the origi-
nal mesh texture to the unified mesh and annotate the triangles. The whole process was
automated with a Python script. The texture of the original mesh (Figure 7a) was applied
to the vertices of the unified mesh (Figure 7b) by superimposing the data. Because it is the
vertices that receive the color, the textures are of poorer quality than originally. The trian-
gles were automatically annotated by matching the closest triangles by superimposing the
5 layers on the unified mesh (Figure 7c). Finally, all that remained was to generate the 5
files required as input information for PicassoNet. Further details about each of these files
are described in the subsequent paragraph. The 29 simulated tiles were then ready to be
used by PicassoNet. Detailed views of the 3D models are available in Appendix E and are
referred to as Figure A6, A7, and A8.

Figure 7. Comparison between the original textured mesh and the final result: (a) original mesh, (b)
final textured mesh, and (c) final annotated mesh.

3.4. PicassoNet-II
The PicassoNet-II neural network [15] was selected for the segmentation of textured

3D meshes, primarily due to its recent development and availability on the web. This

Figure 7. Comparison between the original textured mesh and the final result: (a) original mesh,
(b) final textured mesh, and (c) final annotated mesh.

3.4. PicassoNet-II

The PicassoNet-II neural network [15] was selected for the segmentation of textured
3D meshes, primarily due to its recent development and availability on the web. This

ISPRS Int. J. Geo-Inf. 2024, 13, 20 9 of 33

network follows an encoder–decoder architecture and incorporates three key convolutions
directly affecting the meshes: “facet2vertex”, “vertex2facet”, and “facet2facet”.

To effectively operate on 3D meshes, PicassoNet requires information to be distributed
across five distinct files: the textured 3D mesh, the class number assigned to each vertex,
the barycentric coefficients of the vertices, the textured point cloud, and the count of points
within each triangle. The textured 3D mesh encompasses vertex coordinates, vertex colors,
and facets. Barycentric coefficients represent any coordinate within a triangle as a scalar
(ranging from 0 to 1), and the corresponding file includes the barycentric coordinates for
each vertex. The textured point cloud includes the coordinates of all vertices along with
their color, as well as other sampled points within the triangles.

For the automated generation of these five files for any textured 3D mesh, a Python
script utilizing the PyMeshLab [51–53] and Trimesh [54] libraries was designed. Picas-
soNet’s main hyperparameters include the learning rate, the number of vertices to be
retained during decimation, and the batch size. As part of this project, PicassoNet was
installed on Compute Canada’s Graham cluster to leverage available GPUs for training
purposes [55]. In the initial testing phase during the initialization of the neural network,
it was observed that PicassoNet’s processing capacity was restricted, being able to han-
dle a maximum of 500,000 vertices allowed in a batch when utilizing an NVIDIA P100
Pascal GPU.

3.5. Contextual Analysis Based on Markov Fields
3.5.1. Basic Principles

In computer vision and 3D modeling, the semantic segmentation of 3D meshes remains
a major challenge due to the complexity and variability of real scenes. This is why Markov
field-based contextual analysis is integrated into the methodology, more specifically the
iterative conditional modes (ICM) algorithm, to improve results following the semantic
segmentation of 3D meshes.

Markov fields (MRFs) are a class of probabilistic models used to capture contextual
relationships between neighboring features in various image processing and computer
vision applications [56]. They offer a powerful mathematical framework for modeling spa-
tial dependency between discrete or continuous random variables. MRFs are particularly
useful for solving image segmentation, denoising, and reconstruction problems, where
contextual consistency is crucial [57,58]. Mathematically, an MRF can be defined as follows:

Let X = {X1, X2, . . ., Xn} be a set of random variables corresponding to features of
interest, such as pixels in an image. Markov fields model the dependencies between these
variables using interaction potentials. The total energy of an MRF is given by:

E(X) = ∑
i

ψi(Xi) + ∑
i,j

ψi,j
(
Xi, Xj

)
(1)

where ψi(Xi) is an individual potential associated with the random variable Xi, and
ψi,j

(
Xi, Xj

)
is an interaction potential between the variables Xi and Xj. The aim is to

find an X labeling configuration that minimizes this total energy, reflecting optimal seg-
mentation or assignment of variables. MRFs are often solved using optimization methods
such as the ICM algorithm mentioned earlier to find the optimal labeling that respects both
local constraints and global interactions.

3.5.2. Adapted Algorithm for ICM

The ICM algorithm is an optimization method widely used to solve energy minimiza-
tion problems on Markov fields (MRFs) [20]. The main objective of ICM is to find the
labeling configuration that minimizes the total energy of the MRF, taking into account local
interactions and contextual constraints, i.e., its direct neighborhood. The ICM algorithm
works iteratively by updating the labels of the MRF’s random variables, optimizing them
one by one while keeping the labels of neighboring variables constant. The process is

ISPRS Int. J. Geo-Inf. 2024, 13, 20 10 of 33

repeated until convergence is reached, i.e., label changes no longer result in a significant
improvement in total energy.

In this project, local energy is calculated as follows for a vertex, its neighborhood, and
a class (c):

EICM(c) = β ·
(
∑j∈neighbors(i)

∥[yj ̸= c]−∑j∈neighbors(i)
∥[yj = c]

)
− log(P(yi = c)) (2)

where β is the beta parameter (varying from 0 to 1) that governs the influence of neighboring
vertices, j is a particular neighboring vertex, i is the target vertex, neighbors(i) denotes the
set of neighboring vertices selected for vertex i. yj is the predicted class for vertex i, and c is
a specific class label; ∥[·] is the indicator function that evaluates to 1 when the condition
inside is true, and it is 0 otherwise. P(yi = c) represents the predicted probability that
vertex i belongs to class c. In this formula, the first term captures the compatibility between
class c and the classes of neighboring vertices. The second term incorporates the probability
of assigning class c to the current vertex based on the probabilities predicted by the model
(e.g., the softmax function). The ICM algorithm aims to determine the lowest energy by
iteratively evaluating it for various class assignments, and it will thus determine the most
likely class. This results in a more consistent and probable segmentation.

3.5.3. Adaptation to Three-Dimensional Meshes

The algorithm for selecting the neighbors of the target vertex has been adapted to
exploit the connectivity of the 3D mesh. An additional parameter “αl” was incorporated
into the algorithm, allowing the neighborhood level to be specified for selection, as visu-
alized in Figure 8a. In addition, to ensure consistency with the target vertex, the angular
defect was calculated for each of the relevant vertices. In particular, only those neighbors
whose angular defects lie within the interquartile range (IQR) were retained. This approach
ensures the avoidance of neighbors whose geometries could differ significantly from that
of the target vertex. As illustrated in Figure 8b, the two vertices at the foot of a building
were correctly excluded from the selection, their value being outside the upper limits of the
IQR (0.000067 in this example).

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 10 of 33

them one by one while keeping the labels of neighboring variables constant. The process
is repeated until convergence is reached, i.e., label changes no longer result in a significant
improvement in total energy.

In this project, local energy is calculated as follows for a vertex, its neighborhood,
and a class (c):

𝑬𝑰𝑪𝑴(𝒄) = 𝜷 ⋅ ⃦

𝒋∈𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔(𝒊)
[𝒚𝒋 ≠ 𝒄] − ⃦

𝒋∈𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔(𝒊)
[𝒚𝒋 = 𝒄] − 𝐥𝐨𝐠(𝑷(𝒚𝒊 = 𝒄)) (2)

where 𝜷 is the beta parameter (varying from 0 to 1) that governs the influence of neigh-
boring vertices, 𝒋 is a particular neighboring vertex, 𝒊 is the target vertex, 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒔(𝒊)
denotes the set of neighboring vertices selected for vertex 𝒊. 𝒚𝒋 is the predicted class for
vertex 𝒊, and 𝒄 is a specific class label; ⃦ [·] is the indicator function that evaluates to 1
when the condition inside is true, and it is 0 otherwise. 𝑷(𝒚𝒊 = 𝒄) represents the predicted
probability that vertex 𝒊 belongs to class 𝒄. In this formula, the first term captures the
compatibility between class 𝒄 and the classes of neighboring vertices. The second term
incorporates the probability of assigning class 𝒄 to the current vertex based on the prob-
abilities predicted by the model (e.g., the softmax function). The ICM algorithm aims to
determine the lowest energy by iteratively evaluating it for various class assignments, and
it will thus determine the most likely class. This results in a more consistent and probable
segmentation.

3.5.3. Adaptation to Three-Dimensional Meshes
The algorithm for selecting the neighbors of the target vertex has been adapted to

exploit the connectivity of the 3D mesh. An additional parameter “αl” was incorporated
into the algorithm, allowing the neighborhood level to be specified for selection, as visu-
alized in Figure 8a. In addition, to ensure consistency with the target vertex, the angular
defect was calculated for each of the relevant vertices. In particular, only those neighbors
whose angular defects lie within the interquartile range (IQR) were retained. This ap-
proach ensures the avoidance of neighbors whose geometries could differ significantly
from that of the target vertex. As illustrated in Figure 8b, the two vertices at the foot of a
building were correctly excluded from the selection, their value being outside the upper
limits of the IQR (0.000067 in this example).

Figure 8. Procedure for selecting neighboring vertices according to their neighborhood level (a) and
angular defect (b).
Figure 8. Procedure for selecting neighboring vertices according to their neighborhood level (a) and
angular defect (b).

To limit the simultaneous processing of all vertices, a final measure was introduced.
An additional parameter named “p” has been incorporated to retain exclusively those

ISPRS Int. J. Geo-Inf. 2024, 13, 20 11 of 33

vertices for which the difference between the two maximum softmax indices is less than or
equal to a given value. This approach was designed to avoid processing vertices for which
there is no doubt about the predicted class.

3.6. Cluster Analysis Algorithms

Cluster analysis is a fundamental method in unsupervised machine learning. It aims
to group similar data into sets called clusters. The scikit-learn (sklearn) library offers a
range of cluster analysis algorithms for exploring latent structures in data. For this project,
three of these algorithms are explored: KMeans, spectral clustering, and DBSCAN [59].

3.6.1. KMeans

The KMeans algorithm divides the data into κ clusters by minimizing the sum of the
squared distances between the points and centroids of their respective clusters. KMeans
relies on the random initialization of centroids, followed by alternating steps of assigning
points to clusters and updating centroids. This iterative approach generally converges on
a stable solution. KMeans is suitable for datasets where clusters have convex shapes and
similar sizes. The main parameters of the algorithm are:

• n_clusters: The number of clusters to be formed;
• init: The centroid initialization method;
• n_init: The number of different initializations of the KMeans algorithm to try. The

final result is the one that minimizes the sum of squared distances;
• max_iter: Maximum number of iterations for each KMeans initialization.

3.6.2. Spectral Clustering

The spectral clustering algorithm draws on the concepts of graph theory and spectral
decomposition. It transforms data into a graphical representation and exploits the graph’s
spectral properties to perform partitioning. Using an eigenvalue-based approach, spectral
clustering identifies clusters that are not necessarily convex or of equal size. This makes it a
relevant choice for data with more complex, non-linear structures. The main parameters of
the algorithm are:

• n_clusters: The number of clusters to be formed;
• affinity: The similarity measure used to construct the affinity matrix;
• assign_labels: The method for assigning labels to clusters.

3.6.3. DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is a robust
algorithm for detecting clusters of varying density in noisy datasets. Rather than fixing a
number of clusters κ in advance, DBSCAN automatically identifies high-density regions
based on a radius ε and minimum number of neighbors. Points that do not meet these
criteria are considered noise. DBSCAN is particularly useful for processing data where
clusters may have complex shapes and uneven densities. The main parameters of the
algorithm are:

• eps: The radius around a point to define its neighborhood. This is a crucial parameter
for DBSCAN, as it defines the maximum distance between two points for them to be
considered neighbors;

• min_samples: The minimum number of points required for a point to be considered a
nucleus (central point of a cluster);

• metric: The distance metric used to calculate distances between points;
• algorithm: The algorithm used to calculate neighbors.

In short, the scikit-learn library offers a diverse range of cluster analysis algorithms,
including KMeans, spectral clustering, and DBSCAN. Each algorithm has its own advan-
tages and is adapted to specific types of data and cluster structures. The choice of algorithm
depends on the characteristics of the dataset and the objectives of the cluster analysis.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 12 of 33

4. Results
4.1. Semantic Segmentation Using PicassoNet-II
4.1.1. Results of Training with the SUM-Helsinki Dataset

The 64 tiles in the SUM-Helsinki dataset were distributed as follows during the training
phase: 40 for training, 12 for validation, and 12 for inference (see Figure A9 in Appendix F).
During training on the SUM-Helsinki dataset (as illustrated in Figure 9), we can see that
the IoUs for the “building” and “vegetation” classes are already very high (>90%) and
remain constant throughout training. The “terrain” class also remains stable at around 80%.
These three classes are the best represented in the dataset. The results for the “car” and
“water” classes show a slight improvement from epoch 1 to epoch 2, with IoUs ranging
from around 64% to 74%. The “boat” class showed the greatest improvement, with an IoU
rising from around 45% to 85%. Each epoch took around 7 h. It is essential to emphasize
that, while epoch 13 produces the best results, there is a possibility of achieving even better
results with extended training.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 12 of 33

In short, the scikit-learn library offers a diverse range of cluster analysis algorithms,
including KMeans, spectral clustering, and DBSCAN. Each algorithm has its own ad-
vantages and is adapted to specific types of data and cluster structures. The choice of al-
gorithm depends on the characteristics of the dataset and the objectives of the cluster anal-
ysis.

4. Results
4.1. Semantic Segmentation Using PicassoNet-II
4.1.1. Results of Training with the SUM-Helsinki Dataset

The 64 tiles in the SUM-Helsinki dataset were distributed as follows during the train-
ing phase: 40 for training, 12 for validation, and 12 for inference (see Figure A9 in Appen-
dix F). During training on the SUM-Helsinki dataset (as illustrated in Figure 9), we can
see that the IoUs for the “building” and “vegetation” classes are already very high (>90%)
and remain constant throughout training. The “terrain” class also remains stable at
around 80%. These three classes are the best represented in the dataset. The results for the
“car” and “water” classes show a slight improvement from epoch 1 to epoch 2, with IoUs
ranging from around 64% to 74%. The “boat” class showed the greatest improvement,
with an IoU rising from around 45% to 85%. Each epoch took around 7 h. It is essential to
emphasize that, while epoch 13 produces the best results, there is a possibility of achieving
even be er results with extended training.

Figure 9. Progression of validation results by class at each epoch during SUM-Helsinki tile training
(left). IoUs of the best result (right).

As can be seen in Figure 10, it is difficult to distinguish ground truth from predictions.
These results confirm that PicassoNet works and looks promising for 3D city segmenta-
tion.

Figure 9. Progression of validation results by class at each epoch during SUM-Helsinki tile training
(left). IoUs of the best result (right).

As can be seen in Figure 10, it is difficult to distinguish ground truth from predictions.
These results confirm that PicassoNet works and looks promising for 3D city segmentation.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 13 of 33

Figure 10. Inference results on a test tile. Comparison between actual colors (a), ground truth (b),
and predictions (c) for a tile in the SUM-Helsinki test dataset.

4.1.2. Training Results with Simulated Data Only
Evermotion models are made up of 29 3D tiles. During training, the data were di-

vided as follows: 21 tiles for training, 7 tiles for validation, and a single tile (KC15) for
inference. The learning rate for all training runs was set at 0.001 and decayed according to
an exponential decay formula. It is essential to note that the number of epochs performed
during the different training runs is not uniform. This variation can be explained by sig-
nificant fluctuations in the execution time per epoch, directly linked to the size of the da-
taset. It should also be pointed out that these variations are also influenced by the pro-
cessing time limit imposed by Compute Canada.

The most notable results were recorded in epoch 6, with an average IoU reaching
98.72%, including 99.50% for buildings (see Figure 11). In particular, the validation IoU
for the “car” class increased significantly from 86% to 97% between epoch 1 and epoch 6,
while the other classes had already reached a plateau by epoch 3. These observations sug-
gest that the model easily captured the characteristics of the objects present in the simu-
lated tiles. Detailed graphs of the evolution of loss and accuracy for all training sessions
are available in Appendix G and are referred to as A10, A11, A12, and A13.

Figure 11. IoU progression for each class during PicassoNet-II training on simulated data (left). IoUs
of the best result (right).

To assess the model’s generalizability to other datasets, an inference was conducted
on the KC15 tile (simulated dataset) and a Xeos tile (real dataset).

Figure 10. Inference results on a test tile. Comparison between actual colors (a), ground truth (b),
and predictions (c) for a tile in the SUM-Helsinki test dataset.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 13 of 33

4.1.2. Training Results with Simulated Data Only

Evermotion models are made up of 29 3D tiles. During training, the data were
divided as follows: 21 tiles for training, 7 tiles for validation, and a single tile (KC15) for
inference. The learning rate for all training runs was set at 0.001 and decayed according to
an exponential decay formula. It is essential to note that the number of epochs performed
during the different training runs is not uniform. This variation can be explained by
significant fluctuations in the execution time per epoch, directly linked to the size of the
dataset. It should also be pointed out that these variations are also influenced by the
processing time limit imposed by Compute Canada.

The most notable results were recorded in epoch 6, with an average IoU reaching
98.72%, including 99.50% for buildings (see Figure 11). In particular, the validation IoU for
the “car” class increased significantly from 86% to 97% between epoch 1 and epoch 6, while
the other classes had already reached a plateau by epoch 3. These observations suggest that
the model easily captured the characteristics of the objects present in the simulated tiles.
Detailed graphs of the evolution of loss and accuracy for all training sessions are available
in Appendix G and are referred to as Figures A10–A13.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 13 of 33

Figure 10. Inference results on a test tile. Comparison between actual colors (a), ground truth (b),
and predictions (c) for a tile in the SUM-Helsinki test dataset.

4.1.2. Training Results with Simulated Data Only
Evermotion models are made up of 29 3D tiles. During training, the data were di-

vided as follows: 21 tiles for training, 7 tiles for validation, and a single tile (KC15) for
inference. The learning rate for all training runs was set at 0.001 and decayed according to
an exponential decay formula. It is essential to note that the number of epochs performed
during the different training runs is not uniform. This variation can be explained by sig-
nificant fluctuations in the execution time per epoch, directly linked to the size of the da-
taset. It should also be pointed out that these variations are also influenced by the pro-
cessing time limit imposed by Compute Canada.

The most notable results were recorded in epoch 6, with an average IoU reaching
98.72%, including 99.50% for buildings (see Figure 11). In particular, the validation IoU
for the “car” class increased significantly from 86% to 97% between epoch 1 and epoch 6,
while the other classes had already reached a plateau by epoch 3. These observations sug-
gest that the model easily captured the characteristics of the objects present in the simu-
lated tiles. Detailed graphs of the evolution of loss and accuracy for all training sessions
are available in Appendix G and are referred to as A10, A11, A12, and A13.

Figure 11. IoU progression for each class during PicassoNet-II training on simulated data (left). IoUs
of the best result (right).

To assess the model’s generalizability to other datasets, an inference was conducted
on the KC15 tile (simulated dataset) and a Xeos tile (real dataset).

Figure 11. IoU progression for each class during PicassoNet-II training on simulated data (left). IoUs
of the best result (right).

To assess the model’s generalizability to other datasets, an inference was conducted
on the KC15 tile (simulated dataset) and a Xeos tile (real dataset).

For the inference on the KC15 tile, the outcomes were reasonably definitive, showing
an average IoU of 92%. Notably, the primary errors were associated with features that
were either absent or under-represented in the training dataset. These features included
hedges, low vegetation, cavities, and certain street lamps and traffic lights with a horizontal
component (Figure 12).

As for the inference on Xeos tiles, the results were relatively disappointing, with an
average IoU of just 48% for the three validation tiles. Figure 13 shows a tile depicting the fa-
cade of the Quebec National Assembly, where significant confusion between the “building”
and “high_urban” classes can be clearly seen. These errors are visually inconsistent, as they
occur on many parts of building facades. In addition, many artifacts appear at ground level.
However, after processing the tile with GraphiteThree, the inference results are significantly
improved. The confusion between the two classes has completely disappeared, as have
most of the ground-level artifacts. These results highlight the sensitivity of the model to
the method of creating the 3D mesh itself.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 14 of 33

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 33

For the inference on the KC15 tile, the outcomes were reasonably definitive, showing
an average IoU of 92%. Notably, the primary errors were associated with features that
were either absent or under-represented in the training dataset. These features included
hedges, low vegetation, cavities, and certain street lamps and traffic lights with a horizon-
tal component (Figure 12).

Figure 12. Inference results for the KC15 tile under different views.

As for the inference on Xeos tiles, the results were relatively disappointing, with an
average IoU of just 48% for the three validation tiles. Figure 13 shows a tile depicting the
facade of the Quebec National Assembly, where significant confusion between the “build-
ing” and “high_urban” classes can be clearly seen. These errors are visually inconsistent,
as they occur on many parts of building facades. In addition, many artifacts appear at
ground level. However, after processing the tile with GraphiteThree, the inference results
are significantly improved. The confusion between the two classes has completely disap-
peared, as have most of the ground-level artifacts. These results highlight the sensitivity
of the model to the method of creating the 3D mesh itself.

Figure 13. Comparison of inference results for a Xeos tile with its geometry intact (a) and the same
tile after being modified in GraphiteThree (b).

4.1.3. Training Results on Real Data Only
Tiles for the Xeos 3D model were distributed as illustrated previously in Figure 2,

where 17 tiles were used for training and 3 were reserved for validation. The results ob-
tained are shown in Figure 14, highlighting optimal performance at epoch 12, with an

Figure 12. Inference results for the KC15 tile under different views.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 14 of 33

For the inference on the KC15 tile, the outcomes were reasonably definitive, showing
an average IoU of 92%. Notably, the primary errors were associated with features that
were either absent or under-represented in the training dataset. These features included
hedges, low vegetation, cavities, and certain street lamps and traffic lights with a horizon-
tal component (Figure 12).

Figure 12. Inference results for the KC15 tile under different views.

As for the inference on Xeos tiles, the results were relatively disappointing, with an
average IoU of just 48% for the three validation tiles. Figure 13 shows a tile depicting the
facade of the Quebec National Assembly, where significant confusion between the “build-
ing” and “high_urban” classes can be clearly seen. These errors are visually inconsistent,
as they occur on many parts of building facades. In addition, many artifacts appear at
ground level. However, after processing the tile with GraphiteThree, the inference results
are significantly improved. The confusion between the two classes has completely disap-
peared, as have most of the ground-level artifacts. These results highlight the sensitivity
of the model to the method of creating the 3D mesh itself.

Figure 13. Comparison of inference results for a Xeos tile with its geometry intact (a) and the same
tile after being modified in GraphiteThree (b).

4.1.3. Training Results on Real Data Only
Tiles for the Xeos 3D model were distributed as illustrated previously in Figure 2,

where 17 tiles were used for training and 3 were reserved for validation. The results ob-
tained are shown in Figure 14, highlighting optimal performance at epoch 12, with an

Figure 13. Comparison of inference results for a Xeos tile with its geometry intact (a) and the same
tile after being modified in GraphiteThree (b).

4.1.3. Training Results on Real Data Only

Tiles for the Xeos 3D model were distributed as illustrated previously in Figure 2,
where 17 tiles were used for training and 3 were reserved for validation. The results
obtained are shown in Figure 14, highlighting optimal performance at epoch 12, with an
average IoU of 79.87%. This result is particularly notable for the “building” class, where an
IoU of 95.68% was achieved.

Interestingly, the IoU in validation remains stable for most classes, with the exception
of “high_urban” and “unclassified”, which show marked variations from one epoch to
the next. It seems that the model suffers from overlearning for the “high_urban” class,
indicating a tendency to memorize training data rather than generalize to new data. This
observation is not surprising, as these classes are the least represented in the dataset. The
“unclassified” class, which groups together various objects that do not belong to any of the
four main categories, also presents learning difficulties, which is understandable given its
heterogeneous nature. However, it is encouraging to note a slight improvement over time,
with the validation IoU rising from around 55% to around 62%.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 15 of 33

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 15 of 33

average IoU of 79.87%. This result is particularly notable for the “building” class, where
an IoU of 95.68% was achieved.

Interestingly, the IoU in validation remains stable for most classes, with the exception
of “high_urban” and “unclassified”, which show marked variations from one epoch to the
next. It seems that the model suffers from overlearning for the “high_urban” class, indi-
cating a tendency to memorize training data rather than generalize to new data. This ob-
servation is not surprising, as these classes are the least represented in the dataset. The
“unclassified” class, which groups together various objects that do not belong to any of
the four main categories, also presents learning difficulties, which is understandable given
its heterogeneous nature. However, it is encouraging to note a slight improvement over
time, with the validation IoU rising from around 55% to around 62%.

It is noteworthy that the frequent merging of poles with vegetation during the gen-
eration of the Xeos 3D model introduced ambiguity regarding their geometry and texture.
While this confusion was more evident in the “high_urban” class, it also had repercus-
sions for other classes. The interplay of these factors, coupled with the limited represen-
tation, likely elucidates the difficulties encountered by the model in learning features, es-
pecially within the “high_urban” class.

Figure 14. Progression of the IoU of each class during PicassoNet training on real data (left). IoUs
of the best result (right).

4.1.4. Training Results with Mixed Data (Real and Simulated)
Simulated and real data were combined to form a mixed dataset. This combination

includes 18 simulated tiles in addition to 10 real tiles, resulting in a training set of 28 tiles,
with the same 3 real tiles being dedicated to validation. Note that these three validation
tiles are the same as those used in the previous training phase. The best performance was
observed in epoch 16, with an average IoU of 78.04%, including 93.21% for the “building”
class (see Figure 15).

On the one hand, similar to training based exclusively on real data, the validation
IoU for the “high_urban” class showed significant fluctuations. However, overall, a clear
improvement can be observed, from around 50% at the start to around 60% at the end of
training. On the other hand, for the “unclassified” class, results are now much more stable,
with the IoU remaining at around 50%. However, in contrast to the previous training, a
significant improvement is not observed. This trend could be a ributed to the predomi-
nant influence of the simulated data, mainly composed of vehicles, whereas the real data
of the “unclassified” class encompass a diversity of objects of different natures. The other
three classes remain relatively stable in their performance.

Figure 14. Progression of the IoU of each class during PicassoNet training on real data (left). IoUs of
the best result (right).

It is noteworthy that the frequent merging of poles with vegetation during the gener-
ation of the Xeos 3D model introduced ambiguity regarding their geometry and texture.
While this confusion was more evident in the “high_urban” class, it also had repercussions
for other classes. The interplay of these factors, coupled with the limited representation,
likely elucidates the difficulties encountered by the model in learning features, especially
within the “high_urban” class.

4.1.4. Training Results with Mixed Data (Real and Simulated)

Simulated and real data were combined to form a mixed dataset. This combination
includes 18 simulated tiles in addition to 10 real tiles, resulting in a training set of 28 tiles,
with the same 3 real tiles being dedicated to validation. Note that these three validation
tiles are the same as those used in the previous training phase. The best performance was
observed in epoch 16, with an average IoU of 78.04%, including 93.21% for the “building”
class (see Figure 15).

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 33

Figure 15. Progression of the IoU of each class during PicassoNet training on mixed data (left). IoUs
of the best result (right).

4.1.5. Results of Transfer Learning on Real Data (Fine-tuning)
The training phase involves refining the model that was initially trained solely on

simulated data. This fine-tuning stage utilizes real data exclusively, aiming to enhance the
model’s performance. The decision was made to recommence training from epoch 7 on-
ward, based on the recognition that the optimal results were achieved during epoch 6. In
epoch 7, the learning rate is reduced to 5e-5, a common practice when fine-tuning models
to avoid the loss of features already acquired. The data distribution remains the same as
in the previous training, where only real data were used.

As shown in Figure 16, optimal results are observed at epoch 10. The average IoU
reaches 80.37%, with 96.37% for the “buildings” class. A slight improvement in results
appears once again for the “high_urban” class. However, the validation IoU for the “un-
classified” class continues to fluctuate throughout the training. In addition, the model
shows signs of overfi ing from epoch 11 to 14 for these two classes. Overall, this is the
model with the best performance in terms of average IoU in validation among the three
models evaluated.

Figure 15. Progression of the IoU of each class during PicassoNet training on mixed data (left). IoUs
of the best result (right).

ISPRS Int. J. Geo-Inf. 2024, 13, 20 16 of 33

On the one hand, similar to training based exclusively on real data, the validation
IoU for the “high_urban” class showed significant fluctuations. However, overall, a clear
improvement can be observed, from around 50% at the start to around 60% at the end of
training. On the other hand, for the “unclassified” class, results are now much more stable,
with the IoU remaining at around 50%. However, in contrast to the previous training, a
significant improvement is not observed. This trend could be attributed to the predominant
influence of the simulated data, mainly composed of vehicles, whereas the real data of the
“unclassified” class encompass a diversity of objects of different natures. The other three
classes remain relatively stable in their performance.

4.1.5. Results of Transfer Learning on Real Data (Fine-Tuning)

The training phase involves refining the model that was initially trained solely on
simulated data. This fine-tuning stage utilizes real data exclusively, aiming to enhance
the model’s performance. The decision was made to recommence training from epoch 7
onward, based on the recognition that the optimal results were achieved during epoch 6.
In epoch 7, the learning rate is reduced to 5 × 10−5, a common practice when fine-tuning
models to avoid the loss of features already acquired. The data distribution remains the
same as in the previous training, where only real data were used.

As shown in Figure 16, optimal results are observed at epoch 10. The average IoU
reaches 80.37%, with 96.37% for the “buildings” class. A slight improvement in results
appears once again for the “high_urban” class. However, the validation IoU for the
“unclassified” class continues to fluctuate throughout the training. In addition, the model
shows signs of overfitting from epoch 11 to 14 for these two classes. Overall, this is the
model with the best performance in terms of average IoU in validation among the three
models evaluated.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 16 of 33

Figure 15. Progression of the IoU of each class during PicassoNet training on mixed data (left). IoUs
of the best result (right).

4.1.5. Results of Transfer Learning on Real Data (Fine-tuning)
The training phase involves refining the model that was initially trained solely on

simulated data. This fine-tuning stage utilizes real data exclusively, aiming to enhance the
model’s performance. The decision was made to recommence training from epoch 7 on-
ward, based on the recognition that the optimal results were achieved during epoch 6. In
epoch 7, the learning rate is reduced to 5e-5, a common practice when fine-tuning models
to avoid the loss of features already acquired. The data distribution remains the same as
in the previous training, where only real data were used.

As shown in Figure 16, optimal results are observed at epoch 10. The average IoU
reaches 80.37%, with 96.37% for the “buildings” class. A slight improvement in results
appears once again for the “high_urban” class. However, the validation IoU for the “un-
classified” class continues to fluctuate throughout the training. In addition, the model
shows signs of overfi ing from epoch 11 to 14 for these two classes. Overall, this is the
model with the best performance in terms of average IoU in validation among the three
models evaluated.

Figure 16. Progression of the IoU of each class during PicassoNet training on real data by fine-tuning (left).
IoUs of the best result (right).

In order to assess the impact of the size of the training data set on the results, two
other models were tested. In this configuration, the number of training tiles was reduced
from 17 to 8, and one of the validation tiles was replaced by another containing fewer
posts. Looking at the left of Figure 17, which illustrates training exclusively on real data,
it is apparent that there is overlearning for the “unclassified” and “high_urban” classes.
In particular, the latter performs very poorly, almost approaching an IoU of 0%. On the
right-hand side of Figure 17, we observe the training of real data with a fine-tuning phase. It
is immediately apparent that the validation IoU for the “high_urban” class reaches around

ISPRS Int. J. Geo-Inf. 2024, 13, 20 17 of 33

50% in the first epoch. It then falls to between 30% and 40% before rising again to between
40% and 50%. The model trained with the fine-tuning phase performs significantly better
for the “high_urban” class.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 17 of 33

Figure 16. Progression of the IoU of each class during PicassoNet training on real data by fine-tuning
(left). IoUs of the best result (right).

In order to assess the impact of the size of the training data set on the results, two
other models were tested. In this configuration, the number of training tiles was reduced
from 17 to 8, and one of the validation tiles was replaced by another containing fewer
posts. Looking at the left of Figure 17, which illustrates training exclusively on real data,
it is apparent that there is overlearning for the “unclassified” and “high_urban” classes.
In particular, the la er performs very poorly, almost approaching an IoU of 0%. On the
right-hand side of Figure 17, we observe the training of real data with a fine-tuning phase.
It is immediately apparent that the validation IoU for the “high_urban” class reaches
around 50% in the first epoch. It then falls to between 30% and 40% before rising again to
between 40% and 50%. The model trained with the fine-tuning phase performs signifi-
cantly be er for the “high_urban” class.

Figure 17. Real data training only with reduced data set (left) and real data training with fine-tuning
(right).

Table 1 summarizes the IoU results of the three generated models. Finally, the model
trained by transfer learning obtained the best average IoU as well as the best IoU for the
“building” class. This suggests that the use of simulated data had a positive impact on
training with real data.

Table 1. Compilation of the best validation IoUs for the different models generated with PicassoNet-
II according to the different datasets used during training.

 IoU (%)

Trained Model
Mean
IoU

Terrain Vegetation Building High_urban Unclassified

Simulated data 1 98.72 99.24 99.55 99.50 98.24 97.08
Real data 79.87 83.96 98.35 95.68 59.38 61.98
Mixed (real and simulated) 78.04 85.56 98.26 93.21 62.97 50.18
Real data (transfer learning) 80.37 85.57 98.30 96.37 58.03 63.57

1 The “unclassified” category corresponds to the “car” for this dataset.

The inference results are visually very similar from one model to another. These have
been compiled in Appendix H (Figure A14) and are derived from the model trained by
transfer learning on the 14 real tiles.

Figure 17. Real data training only with reduced data set (left) and real data training with fine-
tuning (right).

Table 1 summarizes the IoU results of the three generated models. Finally, the model
trained by transfer learning obtained the best average IoU as well as the best IoU for the
“building” class. This suggests that the use of simulated data had a positive impact on
training with real data.

Table 1. Compilation of the best validation IoUs for the different models generated with PicassoNet-II
according to the different datasets used during training.

IoU (%)

Trained Model Mean IoU Terrain Vegetation Building High_urban Unclassified

Simulated data 1 98.72 99.24 99.55 99.50 98.24 97.08
Real data 79.87 83.96 98.35 95.68 59.38 61.98
Mixed (real and simulated) 78.04 85.56 98.26 93.21 62.97 50.18
Real data (transfer learning) 80.37 85.57 98.30 96.37 58.03 63.57

1 The “unclassified” category corresponds to the “car” for this dataset.

The inference results are visually very similar from one model to another. These have
been compiled in Appendix H (Figure A14) and are derived from the model trained by
transfer learning on the 14 real tiles.

4.2. Results of Contextual Analysis Based on Markov Fields

A contextual analysis was carried out to assess the impact of this approach on the
semantic segmentation results. Initial tests were carried out on a tile from the Xeos database,
used as part of our validation. The mesh of this tile comprises a total of 328,600 vertices. In
these tests, the β parameter was set to an average value of 0.5. In addition, to maximize
variation, the algorithm was repeated five times for each test. A context analysis perfor-
mance was evaluated for different levels of neighborhood (αl) and probability difference
thresholds (p), For example, an iteration with αl = 1 and p = 1 took around 4 min, while
with αl = 3 and p = 1.0, it required around 20 min.

The results, shown in Table 2, indicate a quantitative improvement in performance for
the “building” class when αl < 3. Overall, however, the results show a decrease in average
IoU compared with initial values (before the application of context analysis). By increasing
the neighborhood level αl, this reduction in IoUs intensifies.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 18 of 33

Table 2. IoU results for the different tests carried out with the Markov context analysis algorithm
according to different parameters.

IoU (%)

Algorithm Parameters
(β = 0.5) Mean IoU Terrain Vegetation Building High_urban Unclassified

Default predictions 69.17 79.85 97.56 88.87 33.60 45.99

αl = 1 p = 1.0 68.71 77.71 97.56 89.19 34.03 45.05
p = 0.1 68.73 77.81 97.56 89.21 34.03 45.03

αl = 2 p = 1.0 67.37 73.69 97.37 88.98 33.26 43.56
p = 0.1 67.53 74.23 97.38 89.03 33.49 43.54

αl = 3 p = 1.0 66.04 69.87 97.17 88.42 33.49 41.27
p = 0.1 66.34 70.95 97.19 88.63 33.49 41.43

Increasing the neighborhood level has the advantage of more effectively correcting
misclassified vertices located within homogeneous zones. However, this approach leads
to a significant overlap between several semantic zones, as illustrated in Figure 18.
Furthermore, it is important to note that the contextual analysis performs significantly
better when applied to only a fraction of the vertices (p = 0.1). As shown in Figure 19,
this approach succeeds in correcting many isolated vertex clusters and homogenizing
semantic boundaries.

For a more in-depth understanding of the impact of the contextual analysis, a more
targeted approach was adopted. Instead of calculating the IoU on all vertices simultane-
ously, the analysis was stratified into two distinct groups: vertices located at the semantic
boundary between two classes and vertices located within these boundaries. This strategy
enabled us to explore more precisely the algorithm’s ability to segment areas where class
boundaries are most complex and subject to change. By examining these two groups of
vertices separately, it is possible to assess how the contextual analysis contributes to a
better delineation of semantic transition zones in relation to interior regions. This detailed
analysis offers crucial insights into the performance of context analysis in more delicate
segmentation scenarios, where accuracy and consistency are essential.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 18 of 33

4.2. Results of Contextual Analysis Based on Markov Fields
A contextual analysis was carried out to assess the impact of this approach on the

semantic segmentation results. Initial tests were carried out on a tile from the Xeos data-
base, used as part of our validation. The mesh of this tile comprises a total of 328,600 ver-
tices. In these tests, the β parameter was set to an average value of 0.5. In addition, to
maximize variation, the algorithm was repeated five times for each test. A context analysis
performance was evaluated for different levels of neighborhood (αl) and probability dif-
ference thresholds (p), For example, an iteration with αl = 1 and p = 1 took around 4 min,
while with αl = 3 and p = 1.0, it required around 20 min.

The results, shown in Table 2, indicate a quantitative improvement in performance
for the “building” class when αl < 3. Overall, however, the results show a decrease in av-
erage IoU compared with initial values (before the application of context analysis). By
increasing the neighborhood level αl, this reduction in IoUs intensifies.

Increasing the neighborhood level has the advantage of more effectively correcting
misclassified vertices located within homogeneous zones. However, this approach leads
to a significant overlap between several semantic zones, as illustrated in Figure 18. Fur-
thermore, it is important to note that the contextual analysis performs significantly be er
when applied to only a fraction of the vertices (p = 0.1). As shown in Figure 19, this ap-
proach succeeds in correcting many isolated vertex clusters and homogenizing semantic
boundaries.

Table 2. IoU results for the different tests carried out with the Markov context analysis algorithm
according to different parameters.

 IoU (%)
Algorithm Parameters

(β = 0.5)
Mean
IoU

Terrain Vegetation Building High_urban Unclassified

Default predictions 69.17 79.85 97.56 88.87 33.60 45.99
αl = 1 p = 1.0 68.71 77.71 97.56 89.19 34.03 45.05

 p = 0.1 68.73 77.81 97.56 89.21 34.03 45.03
αl = 2 p = 1.0 67.37 73.69 97.37 88.98 33.26 43.56

 p = 0.1 67.53 74.23 97.38 89.03 33.49 43.54
αl = 3 p = 1.0 66.04 69.87 97.17 88.42 33.49 41.27

 p = 0.1 66.34 70.95 97.19 88.63 33.49 41.43

Figure 18. Visual impact of Markov context analysis on Xeos 3D tiles. Figure 18. Visual impact of Markov context analysis on Xeos 3D tiles.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 19 of 33ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 19 of 33

Figure 19. Visual impact of Markov context analysis on Xeos 3D tiles. The following parameters
were used: p = 1, αl = 1, and β = 0.5.

For a more in-depth understanding of the impact of the contextual analysis, a more
targeted approach was adopted. Instead of calculating the IoU on all vertices simultane-
ously, the analysis was stratified into two distinct groups: vertices located at the semantic
boundary between two classes and vertices located within these boundaries. This strategy
enabled us to explore more precisely the algorithm’s ability to segment areas where class
boundaries are most complex and subject to change. By examining these two groups of
vertices separately, it is possible to assess how the contextual analysis contributes to a
be er delineation of semantic transition zones in relation to interior regions. This detailed
analysis offers crucial insights into the performance of context analysis in more delicate
segmentation scenarios, where accuracy and consistency are essential.

The results presented in Table 3 reveal a significant impact of the contextual analysis
on segmentation performance, with contrasting trends for different classes. More specifi-
cally, the contextual analysis shows a clear improvement in results for the “building” and
“high_urban” classes when applied to vertices within semantic boundaries. However, an
opposite trend emerges for vertices located at semantic boundaries, where the contribu-
tion of changes related to these vertices seems to deteriorate the overall segmentation re-
sults.

Table 3. IoU results for the different tests performed with the Markov context analysis algorithm
according to different vertex groups.

 IoU (%)
Algorithm Parameters

(αl = 1; p = 1; β = 0.5)
Mean IoU Terrain Vegetation Building High_urban Unclassified

All vertices (328,600)
 Original 69.17 79.85 97.56 88.87 33.60 45.99
 With contextual analysis 68.71 77.71 97.56 89.19 34.03 45.05
Interior vertices (318,944)
 Original 71.61 85.96 98.22 91.80 35.14 46.92
 With contextual analysis 71.66 85.36 98.24 92.13 35.94 46.62
Boundary vertices (9656)
 Original 43.33 58.83 46.41 51.64 16.67 43.11
 With contextual analysis 40.06 53.90 42.20 51.36 12.68 40.18

Figure 19. Visual impact of Markov context analysis on Xeos 3D tiles. The following parameters were
used: p = 1, αl = 1, and β = 0.5.

The results presented in Table 3 reveal a significant impact of the contextual analysis
on segmentation performance, with contrasting trends for different classes. More specifi-
cally, the contextual analysis shows a clear improvement in results for the “building” and
“high_urban” classes when applied to vertices within semantic boundaries. However, an
opposite trend emerges for vertices located at semantic boundaries, where the contribution
of changes related to these vertices seems to deteriorate the overall segmentation results.

Table 3. IoU results for the different tests performed with the Markov context analysis algorithm
according to different vertex groups.

IoU (%)

Algorithm Parameters
(αl = 1; p = 1; β = 0.5) Mean IoU Terrain Vegetation Building High_urban Unclassified

All vertices (328,600)
Original 69.17 79.85 97.56 88.87 33.60 45.99
With contextual analysis 68.71 77.71 97.56 89.19 34.03 45.05

Interior vertices (318,944)
Original 71.61 85.96 98.22 91.80 35.14 46.92
With contextual analysis 71.66 85.36 98.24 92.13 35.94 46.62

Boundary vertices (9656)
Original 43.33 58.83 46.41 51.64 16.67 43.11
With contextual analysis 40.06 53.90 42.20 51.36 12.68 40.18

4.3. Results of Building Extraction with Cluster Analysis Algorithms

Tests were carried out on the KC15 tile from the simulated data, which contains
79,455 vertices classified as “building”, as well as on the same tile as for the contextual
analysis of the real data, which contains 40,877 vertices classified as “buildings”. The
former contains numerous isolated buildings of varying sizes, while the latter contains
mainly attached buildings. Clustering analyses were performed using three algorithms:
KMeans, spectral clustering, and DBSCAN. The results of these analyses are shown in
Figures 20 and 21 for simulated and real data, respectively. The contextual analysis was
integrated into the semantic segmentation process to address gaps, inconsistencies, and
regional heterogeneity. This method fills the gaps and homogenizes the semantic regions.
This improved segmentation guarantees data quality upstream of cluster analysis, ensuring

ISPRS Int. J. Geo-Inf. 2024, 13, 20 20 of 33

more accurate and meaningful results. It should be noted that the specific parameters used
for each algorithm are not indicated, as the results illustrate a general example obtained by
each of these algorithms.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 20 of 33

4.3. Results of Building Extraction with Cluster Analysis Algorithms
Tests were carried out on the KC15 tile from the simulated data, which contains

79,455 vertices classified as “building”, as well as on the same tile as for the contextual
analysis of the real data, which contains 40,877 vertices classified as “buildings”. The for-
mer contains numerous isolated buildings of varying sizes, while the la er contains
mainly a ached buildings. Clustering analyses were performed using three algorithms:
KMeans, spectral clustering, and DBSCAN. The results of these analyses are shown in
Figure 20 and Figure 21 for simulated and real data, respectively. The contextual analysis
was integrated into the semantic segmentation process to address gaps, inconsistencies,
and regional heterogeneity. This method fills the gaps and homogenizes the semantic re-
gions. This improved segmentation guarantees data quality upstream of cluster analysis,
ensuring more accurate and meaningful results. It should be noted that the specific pa-
rameters used for each algorithm are not indicated, as the results illustrate a general ex-
ample obtained by each of these algorithms.

For the KMeans algorithm using geometry alone, it should be noted that it tends to
coarsely divide groups of vertices, leading to the merging of some isolated buildings into
a single cluster. As for the KMeans algorithm using both geometry and color, when
KMeans uses both geometric and color data, the clusters change considerably. This algo-
rithm seems to be sensitive to variations in vertex color. However, the results more closely
resemble a coarse semantic segmentation, seeking to roughly separate the different color
variations present on buildings. A major drawback of this algorithm is that it requires a
prior specification of the number of clusters to be created, making automation difficult.
On the other hand, the other parameters are relatively simple to calibrate to obtain optimal
results.

The results obtained with the spectral clustering algorithm are similar to those of
KMeans, with a coarse division of buildings and sensitivity to variations in vertex color.
It also suffers from the need to specify in advance the number of clusters to be created and
involves other complex parameters to be calibrated to obtain optimal results.

The geometry-only DBSCAN algorithm produces interesting results. It efficiently ex-
tracts every single building or group of buildings, including hedges that had been mis-
classified as “building”. However, DBSCAN that uses both geometry and color returns
similar results to the other two methods, which also use both geometry and color and are
not usable. A notable advantage of DBSCAN is that it does not require pre-specification
of the number of clusters. However, it does require several initial trials to calibrate the
“eps” and “min_samples” parameters in order to obtain optimal results for a specific da-
taset.

Figure 20. Results of the KMeans, spectral clustering, and DBSCAN algorithms on the simulated 3D
tile KC15.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 21 of 33

Figure 20. Results of the KMeans, spectral clustering, and DBSCAN algorithms on the simulated 3D
tile KC15.

Figure 21. Results of KMeans, spectral clustering, and DBSCAN analyses on a validation tile from
the Xeos 3D model.

5. Discussion
The results of this study highlight several crucial aspects in the field of the semantic

segmentation of 3D data, particularly for building segmentation. The use of mixed da-
tasets, combining both real and simulated data, has proven to be a promising approach
for improving segmentation performance. The results show that the model trained by
transfer learning with simulated data outperformed the other models in terms of average
IoU and IoU for the “building” class. However, it is important to note that the sensitivity
of the model to the methods used to create the 3D mesh was highlighted, underlining the
need for careful a ention when preparing the data. Furthermore, the limited representa-
tion and errors generated during the Xeos 3D model creation process, such as the merging
of certain poles and trees, are factors that can contribute to the model’s difficulty in learn-
ing object features. This observation implies that texture may not consistently serve as a
reliable parameter for learning object features in real data. NVIDIA recently developed
Neuralangelo [60]. This innovative method combines the representational power of multi-
resolution 3D hash grids with neural surface rendering. Neuralangelo brings significant
improvements to the reconstruction of 3D structures from multi-view images by using
digital gradients to compute higher-order derivatives and by progressively optimizing
details on hash grids. Moreover, the utilization of 3D meshes characterized by improved
geometry and texture holds the potential to mitigate ambiguity in object differentiation,
as observed in this study, particularly when distinguishing between objects like poles and
trees. This enhancement shows the prospect of delivering enhanced results in semantic
segmentation. In addition, an improved version of PicassoNet, entitled PicassoNet++, was

Figure 21. Results of KMeans, spectral clustering, and DBSCAN analyses on a validation tile from
the Xeos 3D model.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 21 of 33

For the KMeans algorithm using geometry alone, it should be noted that it tends to
coarsely divide groups of vertices, leading to the merging of some isolated buildings into a
single cluster. As for the KMeans algorithm using both geometry and color, when KMeans
uses both geometric and color data, the clusters change considerably. This algorithm
seems to be sensitive to variations in vertex color. However, the results more closely
resemble a coarse semantic segmentation, seeking to roughly separate the different color
variations present on buildings. A major drawback of this algorithm is that it requires a prior
specification of the number of clusters to be created, making automation difficult. On the
other hand, the other parameters are relatively simple to calibrate to obtain optimal results.

The results obtained with the spectral clustering algorithm are similar to those of
KMeans, with a coarse division of buildings and sensitivity to variations in vertex color. It
also suffers from the need to specify in advance the number of clusters to be created and
involves other complex parameters to be calibrated to obtain optimal results.

The geometry-only DBSCAN algorithm produces interesting results. It efficiently
extracts every single building or group of buildings, including hedges that had been
misclassified as “building”. However, DBSCAN that uses both geometry and color returns
similar results to the other two methods, which also use both geometry and color and are
not usable. A notable advantage of DBSCAN is that it does not require pre-specification of
the number of clusters. However, it does require several initial trials to calibrate the “eps”
and “min_samples” parameters in order to obtain optimal results for a specific dataset.

5. Discussion

The results of this study highlight several crucial aspects in the field of the semantic
segmentation of 3D data, particularly for building segmentation. The use of mixed datasets,
combining both real and simulated data, has proven to be a promising approach for
improving segmentation performance. The results show that the model trained by transfer
learning with simulated data outperformed the other models in terms of average IoU and
IoU for the “building” class. However, it is important to note that the sensitivity of the
model to the methods used to create the 3D mesh was highlighted, underlining the need
for careful attention when preparing the data. Furthermore, the limited representation
and errors generated during the Xeos 3D model creation process, such as the merging of
certain poles and trees, are factors that can contribute to the model’s difficulty in learning
object features. This observation implies that texture may not consistently serve as a
reliable parameter for learning object features in real data. NVIDIA recently developed
Neuralangelo [60]. This innovative method combines the representational power of multi-
resolution 3D hash grids with neural surface rendering. Neuralangelo brings significant
improvements to the reconstruction of 3D structures from multi-view images by using
digital gradients to compute higher-order derivatives and by progressively optimizing
details on hash grids. Moreover, the utilization of 3D meshes characterized by improved
geometry and texture holds the potential to mitigate ambiguity in object differentiation,
as observed in this study, particularly when distinguishing between objects like poles and
trees. This enhancement shows the prospect of delivering enhanced results in semantic
segmentation. In addition, an improved version of PicassoNet, entitled PicassoNet++, was
recently published by [61]. This new version performs slightly better than PicassoNet-II in
the area of semantic segmentation.

Three-dimensional models generated synthetically by various artists and companies
are typically designed with a high level of detail for applications such as animation, video
game design, or architecture. When employing these models for data augmentation in
a distinct context, it is frequently imperative to make substantial alterations to the 3D
data, often involving the use of various software tools, as no single software or Python
library comprehensively addresses all the associated challenges. This adjustment process
can become quite intricate, especially when dealing with objects of diverse characteristics,
further adding to the complexity of the task. Creating simulated data remains a laborious

ISPRS Int. J. Geo-Inf. 2024, 13, 20 22 of 33

and arduous task, raising the question of whether investing this valuable time might be
better spent annotating a larger volume of real data.

The addition of a contextual analysis revealed advantages, particularly for improving
building segmentation, although increasing the neighborhood level could lead to excessive
overlap between semantic zones as well as a decrease in average IoUs. Additionally, the
analysis excels at handling isolated vertices, which contributes to an overall improvement
in results. However, an opposite trend emerges for vertices located at semantic bound-
aries, where the contribution of changes related to these vertices seems to deteriorate the
overall segmentation results. Ultimately, it appears that the contextual analysis primarily
serves a role in refining semantic class delineation rather than significantly enhancing
quantitative outcomes.

With regard to cluster analysis, both the KMeans and spectral clustering algorithms
often struggle to accurately segment isolated or non-isolated buildings. The DBSCAN
algorithm using geometric data alone was found to be the most effective at extracting
isolated buildings, but it presented difficulties with groups of connected buildings. Fur-
thermore, this algorithm demands the identification of appropriate parameters to achieve
precise individual building extraction. These parameter values may differ for each dataset,
potentially introducing complexities in automating the process.

In summary, these results highlight the importance of carefully considering the combi-
nation of different approaches and techniques to achieve accurate and reliable segmentation
in 3D meshes, particularly in scenarios where building complexity and data variability can
represent significant challenges. Furthermore, it is worth noting the growing interest in
instance segmentation techniques. These methods offer the potential to greatly enhance
segmentation outcomes, particularly when they can leverage intrinsic texture information
embedded within 3D mesh facets. This underscores the importance of staying abreast of de-
velopments in instance segmentation, exemplified by projects like Segment Anything [62],
which push the boundaries of image segmentation models, and the Multi-View Stereo
(MVS) building instance segmentation work [63], which demonstrates the possibilities
of extracting 3D object instances in complex urban scenes. In addition, datasets like Ur-
banBiS [64], which offer rich annotations and encompass extensive urban areas, represent
essential resources for benchmarking and advancing segmentation techniques. The com-
bination of different approaches and their potential synergy, especially when harnessing
texture image information in 3D mesh facets, presents exciting prospects for the future of
3D mesh segmentation.

6. Conclusions

In conclusion, the findings from this study shed light on the intricate and evolving
field of semantic segmentation in 3D data, with a specific focus on building segmen-
tation. The integration of mixed datasets, blending real and simulated data, exhibited
promising results, especially when leveraging transfer learning. However, this study also
underscored the critical importance of meticulous data preparation, given the model’s
sensitivity to 3D mesh quality. The discussion also emphasized the potential benefits of
context analysis in refining class delineation and raised awareness about the challenges
in cluster analysis, especially for isolated and non-isolated buildings. Ultimately, this
study encourages a holistic approach that combines various techniques and stays abreast
of instance segmentation developments, with a focus on leveraging texture information
within 3D mesh facets. These collective efforts pave the way for the exciting future of
3D mesh segmentation, where innovation, benchmarking, and rich datasets are the key
drivers of progress in this dynamic field.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 23 of 33

Author Contributions: Conceptualization, Frédéric Leroux, Mickaël Germain, Étienne Clabaut and
Yacine Bouroubi; methodology, Frédéric Leroux; validation, Frédéric Leroux, Mickaël Germain,
Étienne Clabaut, Yacine Bouroubi and Tony St-Pierre; formal analysis, Frédéric Leroux; investigation,
Frédéric Leroux; resources, Frédéric Leroux, Mickaël Germain, Étienne Clabaut, Yacine Bouroubi and
Tony St-Pierre; data curation, Frédéric Leroux and Tony St-Pierre; writing—original draft preparation,
Frédéric Leroux; writing—review and editing, Frédéric Leroux, Mickaël Germain, Étienne Clabaut,
Yacine Bouroubi and Tony St-Pierre; visualization, Frédéric Leroux; supervision, Mickaël Germain,
Étienne Clabaut, and Yacine Bouroubi; project administration, Mickaël Germain; funding acquisition,
Mickaël Germain. All authors have read and agreed to the published version of the manuscript.

Funding: This research was undertaken, in part, thanks to funding from a Mitacs Accelerate grant
(IT28137) and a Université de Sherbrooke grant (707582) held by Mickaël Germain.

Data Availability Statement: Data available on request due to restrictions privacy.

Acknowledgments: We would like to thank XEOS Imaging Inc. for letting us use some of their data.
Additionally, we would like to express our gratitude to Van-Tho Nguyen for providing advisory
counsel and technical expertise throughout this project.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Appendix A. Comparison of PicassoNet-II Results with Other Segmentation Models
from Literature

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 23 of 33

encourages a holistic approach that combines various techniques and stays abreast of in-
stance segmentation developments, with a focus on leveraging texture information within
3D mesh facets. These collective efforts pave the way for the exciting future of 3D mesh
segmentation, where innovation, benchmarking, and rich datasets are the key drivers of
progress in this dynamic field.

Author Contributions: Conceptualization, Frédéric Leroux, Mickaël Germain, Étienne Clabaut and
Yacine Bouroubi; methodology, Frédéric Leroux; validation, Frédéric Leroux, Mickaël Germain,
Étienne Clabaut, Yacine Bouroubi and Tony St-Pierre; formal analysis, Frédéric Leroux; investiga-
tion, Frédéric Leroux; resources, Frédéric Leroux, Mickaël Germain, Étienne Clabaut, Yacine
Bouroubi and Tony St-Pierre; data curation, Frédéric Leroux and Tony St-Pierre; writing—original
draft preparation, Frédéric Leroux; writing—review and editing, Frédéric Leroux, Mickaël Germain,
Étienne Clabaut, Yacine Bouroubi and Tony St-Pierre; visualization, Frédéric Leroux; supervision,
Mickaël Germain, Étienne Clabaut, and Yacine Bouroubi; project administration, Mickaël Germain;
funding acquisition, Mickaël Germain. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was undertaken, in part, thanks to funding from a Mitacs Accelerate grant
(IT28137) and a Université de Sherbrooke grant (707582) held by Mickaël Germain.

Data Availability Statement: Data available on request due to restrictions privacy.

Acknowledgments: We would like to thank XEOS Imaging Inc. for le ing us use some of their data.
Additionally, we would like to express our gratitude to Van-Tho Nguyen for providing advisory
counsel and technical expertise throughout this project.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results.

Appendix A—Comparison of PicassoNet-II Results with Other Segmentation Models
from Literature

Figure A1. PicassoNet-II performance on the S3DIS dataset. From [15].

Figure A2. PicassoNet-II performance on the ScanNet dataset. From [15].

Figure A1. PicassoNet-II performance on the S3DIS dataset. From [15].

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 23 of 33

encourages a holistic approach that combines various techniques and stays abreast of in-
stance segmentation developments, with a focus on leveraging texture information within
3D mesh facets. These collective efforts pave the way for the exciting future of 3D mesh
segmentation, where innovation, benchmarking, and rich datasets are the key drivers of
progress in this dynamic field.

Author Contributions: Conceptualization, Frédéric Leroux, Mickaël Germain, Étienne Clabaut and
Yacine Bouroubi; methodology, Frédéric Leroux; validation, Frédéric Leroux, Mickaël Germain,
Étienne Clabaut, Yacine Bouroubi and Tony St-Pierre; formal analysis, Frédéric Leroux; investiga-
tion, Frédéric Leroux; resources, Frédéric Leroux, Mickaël Germain, Étienne Clabaut, Yacine
Bouroubi and Tony St-Pierre; data curation, Frédéric Leroux and Tony St-Pierre; writing—original
draft preparation, Frédéric Leroux; writing—review and editing, Frédéric Leroux, Mickaël Germain,
Étienne Clabaut, Yacine Bouroubi and Tony St-Pierre; visualization, Frédéric Leroux; supervision,
Mickaël Germain, Étienne Clabaut, and Yacine Bouroubi; project administration, Mickaël Germain;
funding acquisition, Mickaël Germain. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was undertaken, in part, thanks to funding from a Mitacs Accelerate grant
(IT28137) and a Université de Sherbrooke grant (707582) held by Mickaël Germain.

Data Availability Statement: Data available on request due to restrictions privacy.

Acknowledgments: We would like to thank XEOS Imaging Inc. for le ing us use some of their data.
Additionally, we would like to express our gratitude to Van-Tho Nguyen for providing advisory
counsel and technical expertise throughout this project.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manu-
script; or in the decision to publish the results.

Appendix A—Comparison of PicassoNet-II Results with Other Segmentation Models
from Literature

Figure A1. PicassoNet-II performance on the S3DIS dataset. From [15].

Figure A2. PicassoNet-II performance on the ScanNet dataset. From [15].

Figure A2. PicassoNet-II performance on the ScanNet dataset. From [15].

ISPRS Int. J. Geo-Inf. 2024, 13, 20 24 of 33

Appendix B. Compilation of Selected Textured 3D Tiles from the Xeos 3D Model

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 24 of 33

Appendix B—Compilation of Selected Textured 3D Tiles from the Xeos 3D Model

Figure A3. Compilation of selected textured 3D tiles from the Xeos 3D model.

Figure A3. Compilation of selected textured 3D tiles from the Xeos 3D model.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 25 of 33

Appendix C. Compilation of Annotated Tiles from the Xeos 3D Model

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 25 of 33

Appendix C—Compilation of Annotated Tiles from the Xeos 3D Model

Figure A4. Compilation of annotated tiles from the Xeos 3D model.

Figure A4. Compilation of annotated tiles from the Xeos 3D model.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 26 of 33

Appendix D. Inventory of 3D Objects from Epic Games Market and Evermotion

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 26 of 33

Appendix D—Inventory of 3D Objects from Epic Games Market and Evermotion

Figure A5. Inventory of 3D objects from Epic Games Market and Evermotion.

Appendix E—Overview and Distribution of Simulated Tiles in the Training Dataset

Figure A6. Overview and distribution of simulated tiles from Evermotion model AM133-City002
and KC15.

Figure A5. Inventory of 3D objects from Epic Games Market and Evermotion.

Appendix E. Overview and Distribution of Simulated Tiles in the Training Dataset

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 26 of 33

Appendix D—Inventory of 3D Objects from Epic Games Market and Evermotion

Figure A5. Inventory of 3D objects from Epic Games Market and Evermotion.

Appendix E—Overview and Distribution of Simulated Tiles in the Training Dataset

Figure A6. Overview and distribution of simulated tiles from Evermotion model AM133-City002
and KC15.

Figure A6. Overview and distribution of simulated tiles from Evermotion model AM133-City002
and KC15.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 27 of 33ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 27 of 33

Figure A7. Overview and distribution of simulated tiles from Evermotion model AM131-City003.

Figure A8. Overview and distribution of simulated tiles from Evermotion model AM131-City001.

Appendix F—Overview of the SUM-Helsinki Dataset

Figure A7. Overview and distribution of simulated tiles from Evermotion model AM131-City003.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 27 of 33

Figure A7. Overview and distribution of simulated tiles from Evermotion model AM131-City003.

Figure A8. Overview and distribution of simulated tiles from Evermotion model AM131-City001.

Appendix F—Overview of the SUM-Helsinki Dataset

Figure A8. Overview and distribution of simulated tiles from Evermotion model AM131-City001.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 28 of 33

Appendix F. Overview of the SUM-Helsinki Dataset

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 28 of 33

Figure A9. Distribution of SUM-Helsinki tiles during training (left). Area covered by each class in
terms of surface area (right). From [28].

Appendix G—Charts Illustrating the Progression of Precision and Loss of Drive in
Each Era for the Different Drives

Figure A10. Progression of accuracy (left) and loss at each epoch (right) for training on simulated
data only.

Figure A9. Distribution of SUM-Helsinki tiles during training (left). Area covered by each class in
terms of surface area (right). From [28].

Appendix G. Charts Illustrating the Progression of Precision and Loss of Drive in Each
Era for the Different Drives

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 28 of 33

Figure A9. Distribution of SUM-Helsinki tiles during training (left). Area covered by each class in
terms of surface area (right). From [28].

Appendix G—Charts Illustrating the Progression of Precision and Loss of Drive in
Each Era for the Different Drives

Figure A10. Progression of accuracy (left) and loss at each epoch (right) for training on simulated
data only.

Figure A10. Progression of accuracy (left) and loss at each epoch (right) for training on simulated
data only.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 29 of 33

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 29 of 33

Figure A11. Progression of accuracy (left) and loss at each epoch (right) for training on real data
only.

Figure A12. Progression of accuracy (left) and loss at each epoch (right) for training on real and
simulated data.

Figure A11. Progression of accuracy (left) and loss at each epoch (right) for training on real data only.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 29 of 33

Figure A11. Progression of accuracy (left) and loss at each epoch (right) for training on real data
only.

Figure A12. Progression of accuracy (left) and loss at each epoch (right) for training on real and
simulated data.

Figure A12. Progression of accuracy (left) and loss at each epoch (right) for training on real and
simulated data.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 29 of 33

Figure A11. Progression of accuracy (left) and loss at each epoch (right) for training on real data
only.

Figure A12. Progression of accuracy (left) and loss at each epoch (right) for training on real and
simulated data.

Figure A13. Progression of accuracy (left) and loss at each epoch (right) for training on real data by
transfer learning.

ISPRS Int. J. Geo-Inf. 2024, 13, 20 30 of 33

Appendix H. Compilation of Inferences Generated with PicassoNet-II (Transfer
Learning Model)

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 30 of 33

Figure A13. Progression of accuracy (left) and loss at each epoch (right) for training on real data by
transfer learning.

Appendix H—Compilation of Inferences Generated with PicassoNet-II (Transfer
Learning Model)

Figure A14. Compilation of inferences generated with PicassoNet-II (transfer learning model).
Shaded areas correspond to annotated data.

References
1. Julin, A.; Jaalama, K.; Virtanen, J.-P.; Pouke, M.; Ylipulli, J.; Vaaja, M.; Hyyppä, J.; Hyyppä, H. Characterizing 3D City Modeling

Projects: Towards a Harmonized Interoperable System. Int. J. Geo-Inf. 2018, 7, 55. h ps://doi.org/10.3390/ijgi7020055.
2. Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.K.; Zobaa, A.F.; Wu, R.; Lai, L.L. A Review of Technical

Standards for Smart Cities. Clean Technol. 2020, 2, 290–310. h ps://doi.org/10.3390/cleantechnol2030019.

Figure A14. Compilation of inferences generated with PicassoNet-II (transfer learning model).
Shaded areas correspond to annotated data.

References
1. Julin, A.; Jaalama, K.; Virtanen, J.-P.; Pouke, M.; Ylipulli, J.; Vaaja, M.; Hyyppä, J.; Hyyppä, H. Characterizing 3D City Modeling

Projects: Towards a Harmonized Interoperable System. Int. J. Geo-Inf. 2018, 7, 55. [CrossRef]
2. Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.K.; Zobaa, A.F.; Wu, R.; Lai, L.L. A Review of Technical

Standards for Smart Cities. Clean Technol. 2020, 2, 290–310. [CrossRef]
3. Deng, T.; Zhang, K.; Shen, Z.J.M. A systematic review of a digital twin city: A new pattern of urban governance toward smart

cities. J. Manag. Sci. Eng. 2021, 6, 125–134. [CrossRef]

https://doi.org/10.3390/ijgi7020055
https://doi.org/10.3390/cleantechnol2030019
https://doi.org/10.1016/j.jmse.2021.03.003

ISPRS Int. J. Geo-Inf. 2024, 13, 20 31 of 33

4. Pylianidis, C.; Osinga, S.; Athanasiadis, I.N. Introducing digital twins to agriculture. Comput. Electron. Agric. 2021, 184, 105942.
[CrossRef]

5. Alves, R.G.; Maia, R.F.; Lima, F. Development of a Digital Twin for smart farming: Irrigation management system for water
saving. J. Clean. Prod. 2023, 388, 135920. [CrossRef]

6. Deng, M.; Menassa, C.C.; Kamat, V.R. From BIM to digital twins: A systematic review of the evolution of intelligent building
representations in the AEC-FM industry. J. Inf. Technol. Constr. 2021, 26, 58–83. [CrossRef]

7. Honghong, S.; Gang, Y.; Haijiang, L.; Tian, Z.; Annan, J. Digital twin enhanced BIM to shape full life cycle digital transformation
for bridge engineering. Autom. Constr. 2023, 147, 104736. [CrossRef]

8. Erol, T.; Mendi, A.F.; Doğan, D. The digital twin revolution in healthcare. In Proceedings of the 2020 4th International Symposium
on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Istanbul, Turkey, 22–24 October 2020; pp. 1–7. [CrossRef]

9. Moztarzadeh, O.; Jamshidi, M.; Sargolzaei, S.; Jamshidi, A.; Baghalipour, N.; Malekzadeh Moghani, M.; Hauer, L. Metaverse and
Healthcare: Machine Learning-Enabled Digital Twins of Cancer. Bioengineering 2023, 10, 455. [CrossRef]

10. Koutsoudis, A.; Ioannakis, G.; Pistofidis, P.; Arnaoutoglou, F.; Kazakis, N.; Pavlidis, G.; Chamzas, C.; Tsirliganis, N. Multispectral
aerial imagery-based 3D digitisation, segmentation and annotation of large scale urban areas of significant cultural value. J. Nat.
Herit. 2021, 49, 1–9. [CrossRef]

11. Huang, J.; Zhang, H.; Yi, L.; Funkhouser, T.; Niebner, M.; Guidas, L. TextureNet: Consistent Local Parametrizations for Learning
from High-Resolution Signals on Meshes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition 2019, Long Beach, CA, USA, 15–20 June 2019; pp. 4440–4449.

12. Laupheimer, D.; Eddin, M.H.S.; Haala, N. The Importance of Radiometric Feature Quality for Semantic Mesh Segmentation.
In Proceedings of the DGPF Annual Conference, Stuttgart, Germany, 4–6 March 2020; Volume 29, pp. 205–218.

13. Tutzauer, P.; Laupheimer, D.; Haala, N. Semantic urban mesh enhancement utilizing a hybrid model. ISPRS Ann. Photogramm.
Remote Sens. Spat. Inf. Sci. 2019, 4, 175–182. [CrossRef]

14. Fan, S.; Dong, Q.; Zhu, F.; Lv, Y.; Ye, P.; Wang, F.Y. SCF-Net: Learning spatial contextual features for large-scale point cloud
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA,
13–19 June 2020; pp. 14504–14513.

15. Lei, H.; Akhtar, N.; Mubarak, S.; Mian, A. Geometric Feature Learning for 3D Meshes. arXiv 2021, arXiv:2112.01801.
16. Dong, Q.; Wang, Z.; Li, M.; Gao, J.; Chen, S.; Shu, Z.; Wang, W. Laplacian2mesh: Laplacian-based mesh understanding. IEEE

Trans. Vis. Comput. Graph. 2023, 14, 1–13. [CrossRef] [PubMed]
17. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [CrossRef]
18. Kundu, A.; Yin, X.; Fathi, A.; Ross, D.; Brewington, B.; Funkhouser, T.; Pantofaru, C. Virtual multi-view fusion for 3d semantic

segmentation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, 23–28 August 2020;
Springer International Publishing: Cham, Switzerland; pp. 518–535. [CrossRef]

19. XEOS Imaging. Available online: https://xeosimaging.com/en/home/ (accessed on 29 May 2022).
20. Zivkovic, Z. Gentle ICM energy minimization for Markov random fields with smoothness-based priors. J. Real-Time Image Process.

2016, 11, 235–246. [CrossRef]
21. Hu, Q.; Souza, L.F.D.F.; Holanda, G.B.; Alves, S.S.; Silva, F.H.D.S.; Han, T.; Reboucas Filho, P.P. An effective approach for CT lung

segmentation using mask region-based convolutional neural networks. Artif. Intell. Med. 2020, 103, 101792. [CrossRef] [PubMed]
22. Altini, N.; De Giosa, G.; Fragasso, N.; Coscia, C.; Sibilano, E.; Prencipe, B.; Hussain, S.M.; Brunetti, A.; Buongiorno, D.; Guerriero,

A.; et al. Segmentation and Identification of Vertebrae in CT Scans Using CNN, k-Means Clustering and k-NN. Informatics 2021,
8, 40. [CrossRef]

23. Buyukdemircioglu, M.; Kocaman, S. Reconstruction and Efficient Visualization of Heterogeneous 3D City Models. Remote Sens.
2020, 12, 2128. [CrossRef]

24. Jovanović, D.; Milovanov, S.; Ruskovski, I.; Govedarica, M.; Sladić, D.; Radulović, A.; Pajić, V. Building Virtual 3D City Model for
Smart Cities Applications: A Case Study on Campus Area of the University of Novi Sad. Int. J. Geo-Inf. 2020, 9, 476. [CrossRef]

25. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; pp. 216–261.
26. Sharma, S. Activation functions in neural networks. Data Sci. 2017, 6, 310–316. [CrossRef]
27. He, Y.; Yu, H.; Liu, X.; Yang, Z.; Sun, W.; Wang, Y.; Fu, Q.; Zou, Y.; Mian, A. Deep learning based 3D segmentation: A survey.

arXiv 2021, arXiv:2103.05423.
28. Gao, W.; Nan, L.; Boom, B.; Ledoux, H. SUM: A Benchmark Dataset of Semantic Urban Meshes. ISPRS J. Photogramm. Remote

Sens. 2021, 179, 108–120. [CrossRef]
29. Boscaini, D.; Masci, J.; Rodola, E.; Bronstein, M. Learning shape correspondence with anisotropic convolutional neural networks.

Adv. Neural Inf. Process. Syst. 2016, 29, 3189–3197.
30. Dai, A.; Niessner, M. 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. In Proceedings of the European

Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 8–14.
31. Ranjan, A.; Bolkart, T.; Sanyal, S.; Black, M.J. Generating 3D faces using convolutional mesh autoencoders. In Proceedings of the

European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 704–720.
32. Hanocka, R.; Hertz, A.; Fish, N.; Giryes, R.; Fleishman, S.; Cohen-Or, D. MeshCNN: A network with an edge. ACM Trans. Graph.

2019, 38, 1–12. [CrossRef]

https://doi.org/10.1016/j.compag.2020.105942
https://doi.org/10.1016/j.jclepro.2023.135920
https://doi.org/10.36680/j.itcon.2021.005
https://doi.org/10.1016/j.autcon.2022.104736
https://doi.org/10.1109/ISMSIT50672.2020.9255249
https://doi.org/10.3390/bioengineering10040455
https://doi.org/10.1016/j.culher.2021.04.004
https://doi.org/10.5194/isprs-annals-IV-2-W7-175-2019
https://doi.org/10.1109/TVCG.2023.3259044
https://www.ncbi.nlm.nih.gov/pubmed/37030768
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1007/978-3-030-58586-0_31
https://xeosimaging.com/en/home/
https://doi.org/10.1007/s11554-012-0308-z
https://doi.org/10.1016/j.artmed.2020.101792
https://www.ncbi.nlm.nih.gov/pubmed/32143797
https://doi.org/10.3390/informatics8020040
https://doi.org/10.3390/rs12132128
https://doi.org/10.3390/ijgi9080476
https://doi.org/10.33564/IJEAST.2020.v04i12.054
https://doi.org/10.1016/j.isprsjprs.2021.07.008
https://doi.org/10.1145/3306346.3322959

ISPRS Int. J. Geo-Inf. 2024, 13, 20 32 of 33

33. Hu, Z.; Bai, X.; Shang, J.; Zhang, R.; Dong, J.; Wang, X.; Sun, G.; Fu, H.; Tai, C.L. Vmnet: Voxel-mesh network for geodesic-aware
3d semantic segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada,
11–17 October 2021; pp. 15488–15498.

34. Siddiqui, Y.; Valentin, J.; Nießner, M. Viewal: Active learning with viewpoint entropy for semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 9433–9443.

35. Kölle, M.; Laupheimer, D.; Schmohl, S.; Haala, N.; Rottensteiner, F.; Wegner, J.D.; Ledoux, H. The Hessigheim 3D (H3D) benchmark
on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo.
ISPRS Open J. Photogramm. Remote Sens. 2021, 1, 100001. [CrossRef]

36. Buyuksalih, I.; Bayburt, S.; Buyuksalih, G.; Baskaraca, A.P.; Karim, H.; Rahman, A.A. 3D modelling and visualization based on the
unity game engine–advantages and challenges. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 161–166. [CrossRef]

37. Huo, Y.; Yang, A.; Jia, Q.; Chen, Y.; He, B.; Li, J. Efficient Visualization of Large-Scale Oblique Photogrammetry Models in Unreal
Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 643. [CrossRef]

38. Liao, X.; Zhao, X.; Wu, G.; Barth, M.; Wang, Z.; Han, K.; Tiwari, P. A game theory based ramp merging strategy for connected and
automated vehicles in the mixed traffic: A unity-sumo integrated platform. arXiv 2021, arXiv:2101.11237.

39. Wang, Z.; Han, K.; Tiwari, P. Digital twin simulation of connected and automated vehicles with the unity game engine.
In Proceedings of the 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), Beijing, China,
15 July–15 August 2021; pp. 1–4. [CrossRef]

40. de Souza, C.R.; Gaidon, A.; Cabon, Y.; Murray, N.; López, A.M. Generating human action videos by coupling 3D game engines
and probabilistic graphical models. Int. J. Comput. Vis. 2020, 128, 1505–1536. [CrossRef]

41. Qiu, W.; Yuille, A. Unrealcv: Connecting computer vision to unreal engine. In Proceedings of the Computer Vision–ECCV
2016 Workshops, Amsterdam, The Netherlands, 8–10 October 2016; Springer International Publishing: Cham, Switzerland;
pp. 909–916.

42. Wu, C.; Zhou, K.; Kaiser, J.P.; Mitschke, N.; Klein, J.F.; Pfrommer, J.; Furmans, K. MotorFactory: A Blender Add-on for Large
Dataset Generation of Small Electric Motors. Procedia CIRP 2022, 106, 138–143. [CrossRef]

43. Epic Games. Available online: https://www.epicgames.com/site/en-US/about (accessed on 30 May 2022).
44. Blender. Available online: https://docs.blender.org/manual/en/latest/getting_started/about/index.html (accessed on 21

May 2023).
45. de Melo, C.M.; Torralba, A.; Guibas, L.; DiCarlo, J.; Chellappa, R.; Hodgins, J. Next-generation deep learning based on simulators

and synthetic data. Trends Cogn. Sci. 2022, 26, 174–187. [CrossRef]
46. XEOS Imaging. Available online: https://xeosimaging.com/en/city-model-program-3d/ (accessed on 29 May 2022).
47. Evermotion. Available online: https://evermotion.org/projects/?page_id=44 (accessed on 2 June 2022).
48. Evermotion. Available online: https://evermotion.org/files/pdf/archmodels_vol_133.pdf (accessed on 2 June 2022).
49. Evermotion. Available online: https://evermotion.org/files/pdf/archmodels_vol_131.pdf (accessed on 2 June 2022).
50. Lévy, B. Graphite Three. Available online: https://github.com/BrunoLevy/GraphiteThree (accessed on 30 January 2023).
51. Cignoni, P.; Montani, C.; Rocchini, C.; Scopigno, R.; Tarini, M. Preserving attribute values on simplified meshes by resampling

detail textures. Vis. Comput. 1999, 15, 519–539. [CrossRef]
52. Cignoni, P.; Callieri, M.; Corsini, M.; Dellepiane, M.; Ganovelli, F.; Ranzuglia, G. MeshLab: An Open-Source Mesh Processing

Tool. In Proceedings of the Sixth Eurographics Italian Chapter Conference, Salerno, Italy, 2–4 July 2008; pp. 129–136.
53. Muntoni, A.; Espadero, J.M.; Luaces, A. RichardScottOZ, luzpaz “cnr-isti-vclab/PyMeshLab: PyMeshLab v2022.2.post3”. Zenodo.

10 March 2023. Available online: https://zenodo.org/records/10363967 (accessed on 30 January 2023).
54. Dawson-Haggerty, M. Trimesh. 2023. Available online: https://trimsh.org/ (accessed on 30 January 2023).
55. Digital Research Alliance of Canada. Available online: https://docs.alliancecan.ca/wiki/National_systems (accessed on 22

May 2023).
56. Blake, A.; Kohli, P.; Rother, C. Markov Random Fields for Vision and Image Processing; The MIT Press: Cambridge, MA, USA, 2011.
57. Bi, H.; Xu, L.; Cao, X.; Xue, Y.; Xu, Z. Polarimetric SAR image semantic segmentation with 3D discrete wavelet transform and

Markov random field. IEEE Trans. Image Process. 2020, 29, 6601–6614. [CrossRef]
58. Salazar, A.; Vergara, L.; Safont, G. Generative adversarial networks and Markov random fields for oversampling very small

training sets. Expert Syst. Appl. 2021, 163, 113819. [CrossRef]
59. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in {P}ython. J. Mach. Learn. Res. 2011, 12, 2825–2830.
60. Li, Z.; Müller, T.; Evans, A.; Taylor, R.H.; Unberath, M.; Liu, M.Y.; Lin, C.H. Neuralangelo: High-Fidelity Neural Surface

Recon-struction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC,
Canada, 18–22 June 2023; pp. 8456–8465.

61. Lei, H.; Akhtar, N.; Shah, M.; Mian, A. Mesh Convolution with Continuous Filters for 3-D Surface Parsing. arXiv 2023. [CrossRef]
62. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.Y.; et al. Segment

Anything. arXiv 2023, arXiv:2304.02643.

https://doi.org/10.1016/j.ophoto.2021.100001
https://doi.org/10.5194/isprs-annals-IV-4-W4-161-2017
https://doi.org/10.3390/ijgi10100643
https://doi.org/10.1109/DTPI52967.2021.9540074
https://doi.org/10.1007/s11263-019-01222-z
https://doi.org/10.1016/j.procir.2022.02.168
https://www.epicgames.com/site/en-US/about
https://docs.blender.org/manual/en/latest/getting_started/about/index.html
https://doi.org/10.1016/j.tics.2021.11.008
https://xeosimaging.com/en/city-model-program-3d/
https://evermotion.org/projects/?page_id=44
https://evermotion.org/files/pdf/archmodels_vol_133.pdf
https://evermotion.org/files/pdf/archmodels_vol_131.pdf
https://github.com/BrunoLevy/GraphiteThree
https://doi.org/10.1007/s003710050197
https://zenodo.org/records/10363967
https://trimsh.org/
https://docs.alliancecan.ca/wiki/National_systems
https://doi.org/10.1109/TIP.2020.2992177
https://doi.org/10.1016/j.eswa.2020.113819
https://doi.org/10.1109/TNNLS.2023.3281871

ISPRS Int. J. Geo-Inf. 2024, 13, 20 33 of 33

63. Chen, J.; Xu, Y.; Lu, S.; Liang, R.; Nan, L. 3-D Instance Segmentation of MVS Buildings. IEEE Trans. Geosci. Remote Sens. 2021,
60, 1–14. [CrossRef]

64. Yang, G.; Xue, F.; Zhang, Q.; Xie, K.; Fu, C.W.; Huang, H. UrbanBIS: A Large-scale Benchmark for Fine-grained Urban Building
Instance Segmentation. In Proceedings of the ACM SIGGRAPH 2023 Conference, Los Angeles, CA, USA, 6–10 August 2023;
pp. 1–11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TGRS.2020.3034752
https://doi.org/10.1145/3588432.3591508

	Introduction
	State of the Art
	Three-Dimensional Cities
	The Contribution of Artificial Intelligence
	Three-Dimensional Semantic Segmentation
	The Role of Real and Simulated Datasets

	Materials and Methods
	Study Area
	Preparation of the Real Dataset
	Inventory of Real Datasets
	Annotation of Xeos Three-Dimensional Model Tiles

	Preparation of the Simulated Dataset
	Inventory of Simulated Datasets
	Deformation and Labeling of Simulated Tiles

	PicassoNet-II
	Contextual Analysis Based on Markov Fields
	Basic Principles
	Adapted Algorithm for ICM
	Adaptation to Three-Dimensional Meshes

	Cluster Analysis Algorithms
	KMeans
	Spectral Clustering
	DBSCAN

	Results
	Semantic Segmentation Using PicassoNet-II
	Results of Training with the SUM-Helsinki Dataset
	Training Results with Simulated Data Only
	Training Results on Real Data Only
	Training Results with Mixed Data (Real and Simulated)
	Results of Transfer Learning on Real Data (Fine-Tuning)

	Results of Contextual Analysis Based on Markov Fields
	Results of Building Extraction with Cluster Analysis Algorithms

	Discussion
	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	Appendix G
	Appendix H
	References

