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Abstract: Estimating disaster relief supplies is crucial for governments coordinating and executing
disaster relief operations. Rapid and accurate estimation of disaster relief supplies can assist the
government to optimize the allocation of resources and better organize relief efforts. Traditional
approaches for estimating disaster supplies are based on census data and regional risk assessments.
However, these methods are often static and lack timely updates, which can result in significant
disparities between the availability and demand of relief supplies. Social media, network maps, and
other sources of big data contain a large amount of real-time disaster-related information that can
promptly reflect the occurrence of a disaster and the relief requirements of the affected residents
in a given region. Based on this information, this study presents a model to estimate the demand
for disaster relief supplies using social media data. This study employs a deep learning approach
to extract real-time disaster information from social media big data and integrates it with a spatial
information diffusion model to estimate the population in need of relief in the affected regions.
Additionally, this study estimates the demand for emergency materials based on the population in
need of relief. These findings indicate that social media data can capture information on the demand
for relief materials in disaster-affected regions. Moreover, integrating social media big data with
traditional static data can effectively improve the accuracy and timeliness of estimating the demand
for disaster relief supplies.

Keywords: relief demand estimation; social media; spatial information diffusion model; deep learning

1. Introduction

Typhoons are one of the most severe natural disasters on a global scale and are
characterized by their frequent incidence, wide geographical reach, and significant capacity
for destruction. Typhoons inflict significant casualties and economic losses on the countries
and regions they traverse. Global warming and rapid urbanization have led to a noticeable
increase in the intensity and frequency of typhoons [1]. Consequently, coastal regions have
experienced increasing vulnerability and susceptibility to natural disasters. Strong winds,
heavy rainfall, and storm surges caused by typhoons significantly affect the livelihoods
and assets of individuals living in coastal areas [2,3]. It is critical for government agencies,
humanitarian aid organizations, and other groups to quickly realize and respond to the
needs of the people affected by typhoons [4].

Estimating and preparing relief materials for typhoon disaster response continues
to be a significant and complex issue in emergency management. This process assists
governments and civil society organizations in effectively allocating relief resources and
delivering prompt disaster relief assistance. Flooding is often the result of powerful winds
and copious precipitation, which are characteristic of typhoon calamities. This is due to the
extensive ramifications and formidable destructive potential associated with such weather
events. The transportation and communication infrastructure in the affected regions is
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vulnerable to damage, leading to delays, insufficiency, and inaccuracy in the dissemination
of information regarding the need for emergency relief supplies in these areas [2]. The
efficient coordination and organization of emergency relief supplies during the initial phase
of a disaster are predominantly contingent on promptly conducting onsite assessments
within a constrained timeframe. These prediction methods often depend on empirical
judgments, which are inherently subjective and inefficient. Furthermore, these methods
are prone to inconsistencies in the balance between supply and demand, resulting in a
continuous increase in disaster losses [5]. Considering the aforementioned concerns, the
exploration of a scientific, expedient, and effective approach for estimating the demand
for relief supplies during typhoons is of substantial practical significance. This study aims
to address the issues of inadequate coordination and irrationality in the organization of
emergency relief supplies, improve the response time of emergency relief efforts, and
reduce the losses caused by typhoons.

Many scholars have undertaken comprehensive research on the demand estimation
for relief supply. Demand-forecasting objectives can be divided into two distinct categories:
direct and indirect. Direct forecasting methods are predominantly used to develop pre-
dictive models that establish a correlation between disaster information and relief supply
availability. Liu et al. (2011) proposed an approach for predicting the demand for relief sup-
plies by integrating risk analysis and case-based reasoning (CBR) [6]. This method aims to
address the unique attributes associated with forecasting relief supply and demand. Sahebi
and Jafarnejad (2017) introduced a methodology based on CBR to predict the demand for
disaster relief resources, particularly for earthquakes in order to forecast the relief supplies
required for disasters [7]. Sheu (2010) considered the existence of information uncertainty
in the event of a disaster and employed a supply segmentation strategy to construct a
dynamic model to predict the demand for emergency supplies [8]. Taskin and Lodree
(2016) conducted a study aimed at investigating the relationship between the demand
for emergency supplies and the severity of hurricanes. They used a Bayesian network
algorithm to predict the demand for these types of resources [9]. Bedi and Toshniwal (2019)
introduced a deep learning framework that employed artificial intelligence methodologies
to predict future demand through the analysis of extensive historical data. The framework
integrated the notion of active learning for shifting windows, thereby augmenting the
precision of the prediction outcomes [10].

The indirect forecasting method primarily involves estimating the demand for emer-
gency materials by predicting the number of injured individuals in disaster-stricken regions
in conjunction with a material calculation formula. As the significance of forecasting
emergency supplies has increased, researchers have found that the utilization of indirect
forecasting methods is more congruent with the actual demand for emergency supplies
in disaster-stricken regions [11,12]. Chen and Liu (2015) introduced a gray model to
forecast mortality rates duringAs the significance of forecasting emergency supplies has
increased, researchers have found that the utilization of indirect forecasting methods is
more congruent with the actual demand for emergency supplies in disaster-stricken regions
earthquakes [13]. Masuya et al. (2015) conducted a study aimed at analyzing the spatial
distribution of potential shelters in two subareas of Dhaka, Bangladesh, with a specific em-
phasis on flood hazards. The population affected by floods was estimated by considering
various parameters, such as flood extent, depth, census data, and building information [14].
Gao et al. (2023) conducted a comprehensive analysis of a large earthquake dataset to
provide recommendations for relief material needs by considering the affected population
and the number of injuries as input variables [12].

However, traditional forecasting methods are prone to overestimating or underestimat-
ing relief needs, because they mostly use historical census data and cannot quickly change
to reflect the real needs of people affected by disasters [15,16]. The emergence of big data,
derived from various sources such as web-based mapping services, social media, remote
sensing, and other methodologies, offers an alternative data resource to traditional census
data obtained from official agencies [17–19]. The use of crowdsourced big data presents
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diverse data sources that hold significant promise for capturing the dynamic distribution
of urban populations in real time. Consequently, this approach can be effectively employed
in disaster assessment and post-disaster relief efforts owing to its ability to collect data
rapidly and at low cost [17,20].

With the emergence of big data, the incorporation of conventional approaches with big
data has the potential to augment the precision of relief supply estimates. This integration
has the potential to facilitate a more accurate assessment of the quantity of relief supplies
required by crisis-affected individuals. Lin et al. (2020) introduced a novel approach for
estimating dynamic population figures using Baidu Big Data. In this approach, the input
variables consist of dynamic population, seasonal coefficients, and regional coefficients.
A flood emergency material demand estimation model was constructed using a learning
machine method [20]. Sheu et al. (2019) integrated social media data with authoritative data
from disaster-affected regions to model the requirements for hospital rescue operations
during disaster scenarios [21]. However, the sparse and unequal distribution of social
media data poses a challenge, because the information extracted from such data often fails
to encompass all affected regions. Information islands exist within the study area that have
not been mentioned in social media platforms. This lack of coverage significantly impedes
the integration of statistical and social media big data, thereby limiting the ability to infer
the extent of disaster situations in affected areas.

Considering the aforementioned issues, this study presents a novel approach for
estimating the demand for relief supplies in typhoon-affected regions. The proposed model
integrates a dynamic estimation framework with a spatial information-diffusion model.
The estimation model for disaster relief supplies was enhanced in terms of timeliness and
accuracy by incorporating data mining techniques derived from social media platforms.
This initiative aims to improve the efficient coordination of relief supplies in areas affected
by typhoons, thereby ensuring the timely delivery of assistance to meet the needs of
affected individuals.

2. Methodology
2.1. Overview

Natural language processing algorithms were used to analyze vast quantities of social
media big data to acquire relief supplies. Vital information on typhoons was acquired from
data collected on social media platforms. This information encompasses the geographical
location as well as the extent and severity of a disaster. The use of a spatial information
diffusion model facilitates the dissemination of established geospatial information to unfa-
miliar geographical regions, thereby addressing concerns regarding unrepresented areas
in social media data. By acquiring a thorough spatial distribution, we can proficiently
evaluate the extent and severity of the disaster. The affected population can be estimated
by assessing the extent and severity of the disasters. A mathematical model was developed
to enhance the efficient evaluation of relief tents, folding beds, relief clothing, and other
materials. Finally, a quantitative relationship between the population and the necessary
relief supplies was established. A flowchart depicting the algorithm for estimating relief
goods is shown in Figure 1.

2.2. Named Entity Recognition: Bi-LSTM-CRF

The primary goal of Named Entity Recognition (NER) is to identify and extract words
associated with individuals, organizational entities, geographical locations, and other perti-
nent categories within a text [22]. In the field of Chinese text entity recognition, various
established NER recognizers such as HanNLP, HIT NLP, and Fudan NLP have exhibited
superior performance in the identification of generic named entities [23]. However, chal-
lenges remain in the identification and categorization of non-generically named entities. In
the present study, the Bi-LSTM-CRF method was utilized to extract place name information
from microblogs with a focus on typhoon disaster themes. Additionally, the flooded areas
in the affected regions were spatially located using geocoding [24].
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The Bi-LSTM-CRF method incorporates bidirectional long- and short-term memory
(Bi-LSTM) networks using the Conditional Random Fields (CRF) algorithm. Bi-LSTM
models have demonstrated a remarkable level of accuracy in predicting the output of
individual words, particularly in the context of entity recognition, where they excel in
accurately labeling entities [25].

Bi-LSTM training involves the iterative propagation of the input and hidden layer
values to establish correlations between them. However, this study did not establish any
statistically significant correlation between the assigned labels and the output of each
word. CRF algorithms can be applied to enforce constraints to maintain grammatical
accuracy in line with the principles of natural language, and the CRF algorithm can be
applied to enforce constraints. This process ensures that the final result, as illustrated
in Figure 2, conforms to grammatical accuracy [26]. For instance, the entity label “B”
signifies the commencement of a word, while “I” denotes the absence of word initiation.
Furthermore, the abbreviation “PER” is utilized to denote an individual’s name, whereas
“LOC” is employed to indicate a location name. This legal context imposes limitations on
consecutive tags that are considered permissible. These limitations include the following
patterns: an initial tag indicating a person’s name (B-PER), followed by a subsequent tag
indicating a non-initial part of the person’s name (I-PER), and an initial tag indicating a
place name (B-LOC) followed by a subsequent tag indicating a non-initial part of the name
of the place (I-LOC). If two consecutive output labels are observed as “B-PER” followed
by “I-PER”, they are deemed valid. If the consecutive output labels consist of “B-LOC”
followed by “I-PER”, it is considered invalid, as it violates the rule that prohibits a person’s
name from immediately following a place name. The utilization of the CRF algorithm
allows the estimation of the probability of a complete sequence by considering the states
between sequences. The state in the CRF is not solely determined by the preceding state
but is also influenced by the subsequent state. The conditional probability in the CRF is
calculated as follows [25]:

Pi(yi|xi) =
exp(∑ αitrans f (yt−1, yt, i) + ∑ βistatus(yt, xt, i))

φ(x)

φ(x) = ∑ exp
(
∑ αitrans f (yt−1, yt, i) + ∑ βistatus(yt, xt, i)

)
,
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where P is the conditional probability, αi and βi are the weights, trans f (yt−1, yt, i) is the
transfer function, φ(x) is the normalization factor, and status(yt, xt, i) is the state function.
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2.3. Object Information Extraction and Recognition

The objective of this study is to analyze the extent and severity of flooding in areas
affected by typhoons by extracting relevant data from microblog posts. In this study, a novel
approach for extracting relevant object information from microblog texts associated with
typhoon disaster events is proposed [27]. The proposed methodology incorporates lexical
rules and features word matching to efficiently discern and classify object names, along with
their corresponding attribute features and behavioral feature information. Given the unique
characteristics of the entities affected by typhoon disasters, a standardized vocabulary is
utilized to describe their related characteristics. For instance, the sentence “the entire tree
was blown down to the ground” exemplifies the utilization of the grammatical rule “noun–
verb” to identify the corresponding lexical collocation pair “tree–blown down” within
the given text. This statement not only elucidates the executed action but also delineates
the precise entity upon which the action is performed and the characteristics linked to
that entity.

Given the colloquial nature of language expressions in microblog texts, and the com-
plexity and diversity of the forms of expression, there is a relative insufficiency in the
coverage of seed word pairs. Hence, this study utilizes seed word pairs as the foundation
and employs a word vector model (skip-gram) to identify words with similar distances
from the seed words. This approach aims to supplement and expand seed word pairs by
incorporating complementary words [28].

Various methods are available for calculating the similarity between word vectors.
In this study, the cosine similarity measure is used to calculate the cosine value, which
signifies the angle between two word vectors. The correlation between the two entities
strengthens as the cosine value increases. The calculation of the cosine function for word
vectors is as follows:

cos(θ) = ∑ xi × yi√
∑ x2

i

√
∑ y2

i
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The cosine function produces values ranging from 0 to 1. The degree of similarity
among word vectors can be assessed using the cosine value, where a value approaching 1
signifies a greater similarity and a value approaching 0 indicates a lower similarity [27].

Considering the significant influence of negative adverbs on textual expression, this
study aims to analyze microblog texts to identify and annotate adverbs that carry negative
connotations. Subsequently, a comprehensive list of negative words was constructed.
Simultaneously, regulations were developed to handle the semantic aspects of negative
terms within a text [23]:

(1) Within microblog texts, the occurrence of a negative word preceding a feature word
can have a contrasting impact on the inherent semantics of the feature word: “There
is currently an uninterrupted water supply in the local vicinity”.

(2) Within the context of a micro-blog text, it has been observed that the presence of
a double negative does not change the original semantic meaning of the word
being discussed: “Therefore, the operational efficiency of high-speed railways is
inevitably affected”.

Table 1 provides a partial representation of the depth and extent of flood inundation,
along with their corresponding classifications. Generally, Level 1 denotes the absence of
a flood disaster, whereas Level 2 signifies the occurrence of a flood disaster in a specific
localized area. At Level 2, the depth of the flood significantly affects the livelihoods of
specific inhabitants, presenting a heightened risk to regions with inadequate flood resilience.
Level 3 denotes a substantial influence of the flood, encompassing an extensive geographic
region and involving a flood depth exceeding 1 m. Consequently, the well-being and safety
of the residents of the affected regions are significantly compromised.

Table 1. Flood disaster text classification codes.

Category Level Description

flooded depth
1 0.5 m or less; up to the knees; knee-deep; car wheel flooded
2 flood depth of 0.5 m or more; depth up to waist; car flooded; over the banks
3 flood depth exceeded 1.0 m; first floor flooded; car washed away

flooded area
1 road water-logging; a sheet of water
2 boating on the road; watch sea at home; going out like crossing an ocean
3 extensive inundation; broad expanse of water; whole city flooded

We utilized the linguistic expressions presented in Table 1 as the base word and
proceeded to amplify and enrich the initial term using a cosine similarity calculation.

By performing data mining on microblog texts originating from affected regions,
valuable insights pertaining to the current flooding conditions in specific areas can be
acquired. These data include detailed accounts of the location, extent of inundation, and
depth of flooding in the affected areas. Given the restricted dissemination of microblog text
and the interconnectivity of inundated regions, this study proposes that the same street
or township encounters comparable consequences owing to flooding. Building on the
aforementioned assumptions, this study incorporated previous research and social media
data to calculate the typhoon flooding disaster index for a particular geographic area. This
was achieved using the following methodology.

uk =
∑3

i=1 ∑3
j=1 nij × i × j + ∑3

i=1 ni × i × (i − 1) + ∑3
j=1 nj × (j − 1)× j

∑3
i=1 ∑3

j=1 nij + ∑3
i=1 ni + ∑3

i=1 nj
,

where uk is the typhoon flooding index of region k, i denotes the level of flood inundation
depth in the social media text, j denotes the level of flood inundation range in the social
media text, nij denotes the number of texts with both inundation depth and range, ni
denotes the number of texts with only flood depth descriptions, and nj denotes the number
of texts with only flood range descriptions.
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2.4. Spatial Information Diffusion Models

Not all disaster information is reflected in social media data. Despite the recurrent
occurrence of typhoons and floods near townships and streets, it cannot be assumed that
residents openly share their experiences and emotions on social media platforms. For
regions that have been impacted but have not been documented on social media platforms,
it is suggested that spatial information diffusion modeling be used to collect data on the
extent of the affected areas [29].

The information diffusion model is a mathematical approach that uses fuzzy logic to
handle set-value samples. It aims to optimize the utilization of samples in order to address
the issue of insufficient information. This methodology converts a sample with observations
into a fuzzy set, thereby converting a single-value sample into a set-value sample. The
ultimate objective is to determine the probability of an event with a low probability [30].
There are three primary reasons for selecting a spatial information diffusion model. First,
the model can identify nonlinear relationships. Second, the model is not limited by the
continuity hypothesis of the spatial parameters. Notably, the samples obtained from various
sampling points may contain contradictory data points, which can lead to nonconvergence
of learning. Fuzzy centralization allows data non-convergence, although this phenomenon
does not occur in artificial neural networks [31].

Let U be the discussion domain of the typhoon disaster index, denoted as
U = {u1, u2, . . . , um}; then, the probability that the disaster index exceeds uj is Pj(u > uj),
i = 1, 2, . . . , m, and the probability distribution P = {p1, p2, . . . , pm} is called the risk
of disaster index. Assume that X = {x1, x2, . . . , xn} represents a sample set of n ob-
servations of natural hazards in the region. A single observation sample xi can dif-
fuse the information it carries to all members of U according to the diffusion formula

fi
(
uj
)
= 1

h
√

2π
exp[−

(xij−ujkj
)2

2h2
j

], where fi
(
uj
)

denotes the amount of information distributed

to the specific point by the observed sample value, uj is the information absorption point,
and h is the diffusion coefficient, which can be determined according to the maximum
value a and minimum value b in the sample and the number of sample points n [31]:

hj =



0.8146
(
bj − aj

)
, q = 5

0.5690
(
bj − aj

)
, q = 6

0.4560
(
bj − aj

)
, q = 7

0.3860
(
bj − aj

)
, q = 8

0.3362
(
bj − aj

)
, q = 9

0.2986
(
bj − aj

)
, q = 10

2.6851
(
bj − aj

)
/(q − 1), q ≥ 11

Assuming that Ci = ∑m
j=1 fi

(
uj
)
, the normalized information distribution of the disaster

sample is µ
(

xi, uj
)
=

fi(uj)
Ci

. Assuming that q
(
uj
)
= ∑n

i=1 µ
(
xi, uj

)
, Q = ∑m

j=1 q
(
uj
)
, then

the frequency value of the disaster sample point at uj is p
(
uj
)
=

q(uj)
Q . If considered as

an estimate of the probability, the probability value beyond uj is P
(
u ≥ uj

)
= ∑m

k=j p
(
uj
)
,

which is the requested estimate of the beyond-probability risk.

2.5. Estimation Model for Relief-Supply Demand

After a typhoon, it is imperative to forecast the requirements for relief provisions by
considering the number of individuals in need of rescue measures. Thus, it is hypothesized
that regions characterized by a high disaster index will experience a greater impact than
regions with a low disaster index. The number of individuals in need of assistance is
determined by two factors: the extent and severity of the disaster, and the population size
in the region. Based on the disaster situation index, a calculation method was employed
to determine the percentage of individuals requiring rescue services in the affected areas.
Subsequently, the total number of individuals requiring rescue in the county affected by
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the disaster was obtained by aggregating the number of individuals requiring rescue across
all streets and towns. The formula used to calculate the number of individuals requiring
rescue is as follows:

Prescue =
m

∑
k=1

uk − Llow
Lupper − Llow

× PLk

where Prescue is the number of people in need of rescue, uk is the disaster index, and Llow
and Lupper are the lower and upper limits of the interval in which u resides; specifically
Llow ≤ uk ≤ Lupper,

{
Llow, Lupper

}
⊆

{
L2, L(L + 1)

∣∣L = 1, 2, 3
}

. When 1 ≤ uk ≤ 4, L = 1,
the region k is little damaged, PLk = 0; when 4 ≤ uk ≤ 6, L = 2, there is flood disaster in
region k, but the scope and depth of the flood are limited, and PLk represents the relatively
poor population in the disaster region, whose ability to resist disasters is weak. Before
the typhoon, local governments often mobilized people for emergency evacuation. When
6 ≤ uk ≤ 9, L = 2, the region k is very seriously flooded and needs emergency assistance;
here, PLk represents the entire population of the area.

In this study, the safety stock theory was applied to estimate the correlation between
the population in need of assistance and the availability of nonexpendable materials in
regions affected by typhoon disasters [32]. Additionally, a prediction model was developed
to forecast the demand for emergency materials during typhoons, which allowed for
indirect forecasting of the demand for these materials.

The initial moment of relief operations in the affected area after the typhoon was 0.
DK

i (t) is the demand for emergency supplies K in affected region i at time t, Pi(t) is the
number of people transferred within disaster area i at time t, and Dk is the quantity of
emergency materials K demanded by each person in need of assistance during the time
period. α is the service level of relief supplies, that is, the extent to which supplies meet
the needs of the people in the disaster area; Zα is the coefficient of the corresponding level
of supply of materials under the conditions of the α level of service; σDi(t) represents the
standard deviation of the average demand for emergency materials K per unit time of
disaster area i at time t; ∆t is the time of the latest distribution of the material; βk is the
storage capacity of the material K in the affected area i, which can be calculated according
to the service level of relief supplies α, the area of emergency materials for per refugee sr,
and the use area of the warehouse S; CK

i (t − k) is the quantity of material K arriving in

disaster area i at time t − k; and DK
i (t) is the average value of DK

i (t). Combined with the
theory of safety stock, an emergency supply relief model based on the number of people to
be rescued is established as follows:

DK
i (t) = DkPi(t) + Zα × σDi(t) ×

√
∆t − βk −

T−1

∑
∆=1

CK
i (t − k)

σDi(t) =

√√√√∑t−1
k=1

(
Di(t − k)− Di(t)

)2

t

Di(t) =
∑t−1

k=1 Di(t − k)
t

βk = α × sr × S

3. Study Cases and Data
3.1. Study Cases

Typhoon Lekima, the fifth most powerful typhoon that has impacted China since 1949,
was selected as the subject of this study. Typhoon Lekima made landfall in Zhejiang, China,
at 01:00 h on 10 August 2019, accompanied by a maximum wind speed of Level 16 (52 m/s).
The route subsequently passed through Zhejiang and Jiangsu Provinces before reaching the
Yellow Sea. The typhoon made its second landfall in Qingdao, Shandong Province, China,
at 20:00 h on 11 August. At the time of landfall, it had a maximum wind speed of Level 9
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(23 m/s). On 13 August, the typhoon underwent reclassification and was reclassified as a
tropical depression. Typhoon Lekima caused the displacement of a significant population
of 14.024 million individuals in China, leading to substantial direct economic losses of
53.72 billion CNY. The regions that were predominantly affected include Zhejiang, Jiangsu,
Anhui, Shandong, Shanghai, Liaoning, and other adjacent areas. The extent of the land area
affected by typhoon rainstorms with precipitation levels of 100 mm or higher was measured
at 361,000 km2. Additionally, the land area that experienced rainstorms with precipitation
levels of 250 mm or higher was recorded as 66,000 km2. In specific regions of Zhejiang
and Shandong Provinces, the total amount of precipitation exceeded 400 mm, whereas the
wind speed in certain localized areas reached or exceeded level 17 (56.1~61.2 m/s). The
area affected by moderate and severe typhoons encompasses a total area of 248,000 km2.
The geographical regions affected by Typhoon Lekima are shown in Figure 3.
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3.2. Research Data

This study utilized data mining techniques to extract regional disaster information
from social media big data. A spatial information diffusion model is used to disseminate
the extracted information, thereby providing a comprehensive understanding of disaster
situations throughout the region. Subsequently, information acquired regarding the disaster
was used to estimate the number of individuals in need of rescue services. Additionally, the
demand for emergency materials was estimated based on a population count. Three distinct
data categories were used in this study. The first category encompasses historical statistical
data on typhoon disasters, primarily obtained from national disaster reduction networks
and local civil affairs websites. This dataset encompasses various aspects of typhoon events,
including their duration, proximity to the typhoon trajectory, and quantity of emergency
supplies distributed to affected populations. These supplies included tents, quilts, and
folded beds. The second category encompasses regional statistical data, such as gross
domestic product (GDP), resident population, flood risk level, flood control capacity level,
housing structure proportion, and regional resident income distribution. The third category
of data was obtained from social media, specifically from the microblog platform, by
employing a crawling technique using the keyword “Typhoon Lekima”. In this study,
a total of 1.56 million short text data were collected from the microblog platform. After
de-emphasizing the text, more than 900,000 short text data remained.
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4. Results and Discussion
4.1. Geospatial Named Entity Recognition

In this study, the Bi-LSTM-CRF algorithm was implemented to facilitate the recognition
of geolocational entities. The model was implemented using the deep-learning framework
PyTorch version 1.6.0. The training data used in this study consist of a microblog Chinese-
text entity corpus. Words containing lexical ns, indicating place names, were extracted
to generate the BIO datasets required for training. Each word in the BIO dataset was
annotated with the labels ‘B’ (denoting that the separate word was at the beginning of a
phase or sentence), ‘I’ (denoting that the word was not at the beginning of a word), or ‘O’
(denoting that the word was not in the target vocabulary). Furthermore, words within the
designated vocabulary were classified into specific categories, including individual names
(PER), geographical locations (LOC), and names of organizations (ORG).

Three metrics—Precision, Recall, and F1—were used to evaluate the accuracy of the
extracted place names. Precision is a metric that measures the accuracy of place names
extracted from tweets. It specifically quantifies the proportion of extracted place names that
correspond to actual names. However, recall quantifies the completeness of the extracted
place names, specifically indicating the percentage of tweets that contain the extracted
place names out of all tweets that include place names. F1 is a composite metric that
integrates precision and recall to assess model effectiveness. The results for the three
metrics are shown in Table 2. Based on the evaluation indexes, the Bi-LSTM-CRF model
exhibited a recognition accuracy and recall rate exceeding 0.9 when applied to microblog
text data. This level of performance satisfactorily fulfills the research requirements in
terms of recognizing geographic names. The specific recognition results show that the
Bi-LSTM-CRF model is proficient at extracting specific geographical names mentioned in
the text, such as “Dingqiao Town” and “Wenhui Street”. Furthermore, the model could
detect geographical names over a wider range, such as “Hangzhou” and “Pudong”. More-
over, the model demonstrates a high level of accuracy in identifying consecutive place
names, such as the Pudong Avenue Station East Exit, Jindu Road, Minhang District, and
Shanghai. The model successfully demonstrates the recognition outcomes and exhibited
a significant level of precision in correctly identifying and categorizing the outcomes of
identification based on administrative divisions. For datasets that consist of a single level
of geographic information, such as “Dingqiao Town”, we utilized a method to compensate
for any missing information that involves extracting published or registered location data
from microblogs and incorporating them into a dataset. This approach helps mitigate the
occurrence of duplicate names within a confined geographical region, such as Dongcheng
Street, Huangyan District, Taizhou City, Dongcheng Street, Dongying District, and Dongy-
ing City. The Bi-LSTM-CRF model demonstrated sufficient capability to accurately iden-
tify geographic entities, thereby satisfying the information recognition requirements of
the study.

Table 2. Geographic information recognition model parameters.

Model Bi-LSTM-CRF

Evaluation Indicators Precision Recall F1

ORG 0.91 1.00 0.9154
PER 0.92 1.00 0.9148
LOC 0.92 1.00 0.9233

4.2. Distribution of People Transferred and Resettled Based on Social Media Data
4.2.1. Heat Map of Social Media Data

This study used the keyword “Typhoon Lekima” to extract textual data from microblog
social media platforms. The researchers proceeded to conduct a quantitative analysis of the
quantity of micro-blog posts within each region affected by the typhoon. Figure 4 illustrates
the distribution of micro-blog posts across different regions, showing the substantial level
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of discourse surrounding Typhoon Lekima in the coastal regions of Zhejiang, the central
and western areas of Shandong, the central part of Liaoning, and densely populated cities
such as Hangzhou, Dalian, and Shanghai. Conversely, there seems to be a relatively limited
discourse surrounding typhoons in Jiangsu Province.
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4.2.2. Assessment of Direct Economic Losses

Using an economic loss assessment method previously established by researchers [25],
a comprehensive evaluation of the direct economic losses was conducted for the area
affected by Typhoon Lekima. The assessment model was used to evaluate the direct
economic damage resulting from the typhoon in various prefecture-level cities, such as
Zhejiang, Jiangsu, Shandong, Shanghai, and Liaoning. Table 3 presents the error parameter
values for the assessment of the economic losses. From the analysis of the assessment results,
it can be inferred that the model employed for economic loss assessment demonstrates a
significant degree of consistency. Additionally, the estimated direct economic losses in most
regions closely aligned with the actual values, indicating a reasonable level of accuracy.

Table 3. Model performance for the testing data sets.

Evaluation Indicators MAE RMSE R2

value 1735.47 1035.78 0.715

To assess the accuracy of the direct economic loss assessment model, we calculated
the mean absolute error (MAE), root mean square error (RMSE), and discrepancy between
the estimated and actual values. This analysis indicated that the correlation coefficient (R2)
between the estimated and actual values was 0.715. The observed data revealed a robust
and significant positive correlation between the estimated and actual values, implying
that the model employed is proficient in accurately predicting economic losses in the
impacted regions.

To facilitate a comprehensive analysis of the correlation between social media disaster
information and economic losses in various regions, it is imperative to obtain precise data
on direct economic losses at the district and county levels in the affected areas. Consider-
ing the comparable level of impact caused by disasters in various districts and counties
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within prefecture-level cities, we chose to distribute the estimated economic losses in
prefecture-level cities based on the GDP of the district and county. This approach enables
the evaluation of economic losses at district and county levels. The results pertaining to
economic losses are depicted in Figure 5.
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4.2.3. Distribution of the Population in Need of Rescue Based on the Information
Diffusion Model

The distribution of the population in need within the affected area was determined
using an information diffusion model. To quantitatively evaluate the correlation between
the population in need and geographic unit data, gray correlation analysis was performed
on the population in need and geographic unit information. Gray correlation analysis is
a widely recognized and effective method for addressing the complex correlation issues
that may arise when dealing with multiple factors and variables. The fundamental concept
underlying gray correlation analysis involves evaluating the geometric similarity between a
reference data series and several comparable data series. The gray correlation value, which
ranges from 0 to 1, indicates the degree of similarity between the trends of the two series. A
higher gray correlation value indicates a stronger influence of the comparable data series
on the reference series, suggesting a closer similarity trend. The data series in this study
encompassed various factors such as the regional resident population, direct economic loss,
wind circle impact coefficient, regional flood risk level, regional flood protection capacity
level, and the vulnerability coefficient of residential houses. In contrast, the reference
series pertains to the population in the typhoon-affected region that needs to be rescued,
specifically referring to individuals who require relocation. Table 4 displays the gray
correlation coefficients between the comparable and reference series, showing that the
gray correlation value of the comparable series within the study area of GDP is lower than
the value of direct economic loss. Therefore, we decided to depart from the traditional
approach of utilizing GDP as the geographical unit of analysis and instead selected the
estimated value of direct economic loss as the geographical unit of analysis. The gray scale
correlation values of the remaining comparable series were higher, indicating that these
influencing factors had a more pronounced impact on the number of individuals rescued
from the region.

The number of individuals requiring rescue in each region affected by the typhoon
was estimated using a geographic information diffusion model. The distribution of these
individuals is illustrated in Figure 6. The population is predominantly distributed across
different regions of Zhejiang and Liaoning Provinces, with some concentrations in specific
areas of Shandong Province. Individuals requiring aid were mainly distributed in the
coastal regions of Zhejiang, central regions of Shandong, and coastal regions of Liaoning.
To evaluate the accuracy of the methodology, a scatter plot was used to compare the
actual and estimated values of individuals requiring assistance. Figure 7a,b displays the
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scatter plot after applying a common logarithmic transformation (i.e., base 10) to the
values in Figure 7a. As depicted in the figure, the estimated and actual values of the
population in need of assistance obtained using the geographic information diffusion
model exhibited a distribution aligned with the y = x line. The distribution of data indicates
a close correspondence between the estimated number of individuals requiring assistance
and the actual value, indicating a degree of feasibility in the estimation model.

Table 4. Gray correlation between the influencing factors and the population in need of rescue.

Factor Gray Relational Grades

Area resident population 0.732
GDP 0.625
Predicted direct economic losses 0.758
Duration of the category 7 wind circle 0.704
Duration of the category 10 wind circle 0.767
24-h rainfall in the region 0.788
Regional Typhoon Disaster Risk Level
(low, medium, high, very high) 0.896

Level of regional flood defense capacity
(<5, 5–10, 10–20, 20–50, 50–100, >100) 0.859

Percentage of residential housing in category III
(brick and wood) 0.814

Percentage of residential housing in category IV
(civil/bamboo structures) 0.743
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4.3. Results of the Estimated Demand for Relief Supplies

Currently, the categorization of relief materials for typhoon disasters predominantly
encompasses consumable and non-consumable items. Consumable materials generally
include provisions that are gradually exhausted, such as food, potable water, and med-
ication. Non-consumable materials include items that can be reused or recycled, such
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as tents, quilts, clothing, and lifesaving instruments. The demand for consumable and
non-consumable materials is often influenced by the population size of individuals needing
assistance. Table 5 displays a curated set of criteria pertaining to emergency supplies. This
study aimed to develop a model that assesses the demand for emergency materials during
a typhoon by considering the estimated number of residents in need of assistance.
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Table 5. Criteria for relief supplies requirements in the subsistence category [33].

Types Food
(F)

Potable
Water (W)

Tents
(T) Blankets (Q) Folding Bed

(FB)

Standard (Dk) 1.6 kg/per/d 2 L/per/d 0.24/per/d 1 set/per 1 bed/per

Tables 6 and 7 list the quantities of tents, quilts, folding beds, and other materials
per unit area in the reserve depots at different levels. It is assumed that all districts and
counties have established corresponding material reserve depots.

Table 6. Specification size and number of stacks per unit area of stockpile material in the reserve
warehouse.

Material Type Size (m)
Individual

Volume
(m3)

Stack Height Number of
Stacks (/m2)

Tents
(12 m2)

2.3 × 0.4 × 0.2 0.184 1.5 m × 2 16.30
1.6 × 0.4 × 0.2 0.128 1.5 m × 2 23.44

quilts 0.9 × 0.5 × 0.65
(per 10) 0.293 1.5 m × 2 102.39

folding beds 0.5 × 0.44 × 0.2 0.044 1.5 m × 2 68.18

clothes 0.7 × 0.45 × 0.5
(per 10) 0.158 1.5 m × 2 189.87

sleeping bags 0.35 × 0.2 (caliber) 0.07 1.5 m × 2 42.86
safety chute 0.2 × 0.2 × 0.2 0.008 1.5 m × 2 375.00
portable toilet 2.1 × 0.8 × 0.42 0.706 1.5 m × 2 4.25

life jackets 0.9 × 0.5 × 0.65
(per 20) 0.293 1.5 m × 2 204.78
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Table 7. Storage area of the material reserve warehouse.

Provincial Level City Level County Level

Usable
Area

Construction
Area

Usable
Area

Construction
Area

Usable
Area

Construction
Area

Main
reserves

3261
–5434

3623
–6038

1811
–2717

2012
–3019

317
–444

352
–493

Other
reserves

326
–543

362
–603

181
–272

201
–302

38
–53

42
–59

Total 3587
–5977

3985
–6641

1992
–2989

2213
–3321

355
–497

394
–552

Note 1: Area used for storage = total amount of stockpiled material/quantity of material stacked per unit
area/storage stacking area coefficient. Note 2: Storehouse building area = storehouse use area/storehouse use
area coefficient. Note 3: The coefficient of the stacking area of the warehouse was taken as 0.60, and the coefficient
of the area of the warehouse as 0.90.
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Figure 8a–c illustrate the estimated results of the regional distribution of supplemen-
tary emergency provisions required by each county-level city during typhoon disasters.
According to the findings of the regional distribution analysis, Taizhou and Wenzhou in
Zhejiang Province, Xuancheng in Anhui Province, and Weifang in Shandong Province
required a substantial quantity of relief supplies. Additionally, some coastal regions of
Liaoning required limited relief. Figure 8d–f illustrate the scatter distribution depicting
the relationship between the estimated results of the supplementary emergency supplies
required by each county-level city during typhoon disasters and the corresponding govern-
ment statistics of the dispatched supplies. The distributions of the actual and estimated
values of the emergency materials were observed on both sides of the y = x line. The
error between the estimated and actual values decreases as the values approach the axis.
The scatter distribution diagram of the three types of emergency materials revealed that
the estimation model for disaster relief materials could effectively assess the feasibility of
utilizing tents, folding beds, and quilts during typhoons.

To conduct a quantitative analysis of the emergency supply estimation model, an
examination of errors and correlation tests was conducted on the actual and estimated
values for tents, clothing, and folding beds. The test results are presented in Table 8. As
indicated by the data in Table 8, the mean absolute error and the root mean square error
between the observed values and the estimated values of the three categories of emergency
supplies are within the acceptable range. All values were greater than 0.8, indicating that
the estimation results were obtained from the emergency supply estimation model. The
model exhibited an enhanced predictive capability.

Table 8. Parameters for assessing the contingency material estimation model.

Material Types MAE RMSE R2

Tents 335.47 486.78 0.816
Folding beds 1164.52 1728.16 0.832

Blankets 856.36 1435.58 0.828



ISPRS Int. J. Geo-Inf. 2024, 13, 29 17 of 18

5. Conclusions

Estimating disaster relief requirements in the case of significant natural disasters is
frequently impeded by uncertain and incomplete information. To mitigate this, this study
proposes the integration of social media data as a complementary source of information to
enhance the accuracy of disaster-relief demand estimation models. Data on the extent of
flood inundation and the severity of damage in areas affected by typhoon disasters were
acquired through information mining using social media big data. A spatial information
diffusion model was employed to effectively extend information coverage to areas previ-
ously undetected on social media. Comprehensive information regarding the flooded areas
within the typhoon impact zone was obtained. The population requiring assistance was
estimated from available data on the extent of the flooded area. Based on an assessment of
the population requiring rescue in the flooded regions, the material resources required for
rescue operations were estimated. This estimation was then combined with existing emer-
gency material reserves in flooded areas, resulting in a final estimation of the emergency
material resources required for rescue operations in the affected regions.

However, vulnerability and exposure to disaster-bearing vectors exhibited signifi-
cant regional variations. The selection of certain conventionally significant variables for
evaluating the effects of disasters in research is frequently a topic of debate and lacks a
logical basis. Furthermore, the scarcity of social media data in specific geographical areas
presents difficulties in accurately assessing disaster-relief needs. To mitigate these issues,
the proposed methodology requires acquisition of supplementary datasets pertaining to
analogous calamities. Through a comparative and analytical examination of these datasets,
our objective was to enhance the precision of disaster characterization and quantification.
In addition, we verified the suitability and universality of the proposed model.
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