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Abstract: The objective imbalance between the taxi supply and demand exists in various areas of the
city. Accurately predicting this imbalance helps taxi companies with dispatching, thereby increasing
their profits and meeting the travel needs of residents. The application of Graph Convolutional
Networks (GCNs) in traffic forecasting has inspired the development of a spatial–temporal model
for grid-level prediction of the taxi demand–supply imbalance. However, spatial–temporal GCN
prediction models conventionally capture only static inter-grid correlation features. This research aims
to address the dynamic influences caused by taxi mobility and the variations of other transportation
modes on the demand–supply dynamics between grids. To achieve this, we employ taxi trajectory
data and develop a model that incorporates dynamic GCN and Gated Recurrent Units (GRUs)
to predict grid-level imbalances. This model captures the dynamic inter-grid influences between
neighboring grids in the spatial dimension. It also identifies trends and periodic changes in the
temporal dimension. The validation of this model, using taxi trajectory data from Shenzhen city,
indicates superior performance compared to classical time-series models and spatial–temporal GCN
models. An ablation study is conducted to analyze the impact of various factors on the predictive
accuracy. This study demonstrates the precision and applicability of the proposed model.

Keywords: taxi demand–supply imbalance; taxi trajectory data; graph convolutional network; gated
recurrent unit; dynamic graph convolution

1. Introduction

The optimal state for urban taxi services is to attain a balance between supply and
demand [1]. However, due to the mobility of taxis and the randomness of travel demands,
many areas within a city are in an imbalanced state most of the time [2]. For instance,
some areas have an excessive taxi demand, while in other areas, the taxi supply far exceeds
the demand, causing inefficiency. In order to rectify this situation, taxi companies are
increasingly using intelligent algorithms for taxi dispatching [3,4]. These algorithms require
precise forecasting of the demand–supply imbalance in specific areas. So, grid-level taxi
demand–supply prediction [5–7], especially the prediction of said imbalance [8,9], has
become a focal point of research. The accurate prediction of the demand–supply imbalance
in specific areas is a critical consideration when it comes to making taxi dispatching
decisions. It also facilitates research in various areas, such as the formulation and forecasting
of taxi-based mobility [6], cruising route recommendation for vacant taxis [10], and ride-
hailing services [11], among others.

The demand and supply of transportation for urban residents, including taxi services,
have traditionally relied on surveys or numerical simulations [12,13]. Nonetheless, these
methods present issues with reliability and timeliness. With the widespread use of GPS
devices, a significant number of taxis outfitted with GPS systems traverse the city’s road
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networks, gathering trajectory data that depict aspects of urban traffic operations, such
as the traffic flow, speed, and density [14]. The GPS systems of most city taxis can trace
information such as the vehicle ID, location coordinates, and time, as well as whether the
vehicle is occupied [15–17]. This presents opportunities for analyzing demand and supply
in terms of taxi travel, offering potential solutions to the accuracy and timeliness issues
previously faced.

Grid-level taxi demand and supply demonstrate unique characteristics in the temporal
and spatial dimensions, similar to traffic flow parameters like the volume and speed [18].
On the one hand, temporal trend features are present in traffic flow parameters, making
them predictable via time-series models, and the same does hold true for grid-level taxi
demand and supply. Various modeling approaches exist for traffic forecasting, such as
early methods like AR (Autoregressive Models) [19], MA (Moving Average Models) [20],
and ARIMA (Auto-Regressive Integrated Moving Average Models) [21]. These models
convert time-series data into stationary sequences and then establish a mathematical
model to predict future values. However, these models perform poorly when modeling
data that exhibit pronounced periodicity, and the intricate periodicity of traffic flows
limits the applicability of these models in the domain of traffic prediction. In recent years,
numerous machine-learning models have emerged that have shown improved performance
in predicting time-series data. RNN (Recurrent Neural Network) [22], LSTM (Long Short-
Term Memory) [23], GRU (Gated Recurrent Unit) [24], and Transformer [25] are some such
models. These models effectively capture the trend and periodicity characteristics of the
traffic flow in the time dimension, resulting in excellent predictive performance.

On the other hand, traffic flow displays detectable spatial correlations in the spatial
dimension due to geographical and road connectivity features. This implies that time-series
models alone cannot predict the traffic flow with precision. A significant number of deep-
learning prediction models have been developed based on the GCN (Graph Convolutional
Network) model [26], capable of capturing the spatiotemporal characteristics of traffic
flow. For instance, several models have arisen within this context, including T-GCN [27],
GAMCN [28], DDP-GCN [29], KST-GCN [30], and TPP-GCN [31]. These models generally
take into account only the fixed correlations between vertices while executing spatial
convolution operations, such as adjacency relationships [27], distance [30], and attribute
correlations between vertices [31]. However, even in adjacent grids, the connections
between them can be intricate due to variances in taxi trip origins and destinations. As
an illustration, in Figure 1, Grid A and Grid B both belong to residential areas. When the
subway operates during its hours of operation, the taxi demand in Grid B surpasses that in
Grid A. Nevertheless, when the subway service concludes at night, the taxi demand in both
areas tends to equalize. Moreover, Grid C and Grid D exhibit comparable taxi demand on
weekdays owing to the presence of schools and hospitals. However, on weekends, when
the schools are off, the demand for taxis in Grid C notably decreases in contrast to Grid D.
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Figure 1. Possible reasons for changes in the taxi demand between adjacent grids: (a) a residential
area with a metro station; (b) a normal residential area; (c) a residential area with a school; and (d) a
residential area with a hospital.
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To tackle these issues, a model for forecasting the taxi demand–supply imbalances at
the level of the grid is proposed. A dynamic graph convolutional network is designed to
capture the dynamic spatial characteristics between grids. The correlations between the
grids can be dynamically computed to form a graph by sliding a window of T time periods
along the temporal dimension, as illustrated in Figure 2. The edges of graph Gt during
time period t are determined by the attribution correlations between the grids from time
period t − T to t, and so on. Subsequently, we employ a GRU to uncover the temporal
characteristics of the taxi supply and demand. We then establish a correlation between
the taxi supply and demand, and the mismatch within the grids to predict the current
mismatch. We validate our model utilizing taxi trajectory data from Shenzhen city and
examine the effect of involved hyperparameters. The key contributions of this paper are
summarized below:

• A spatial–temporal graph convolution model that integrates GCN and GRU is pro-
posed, which can accurately forecast the taxi demand–supply imbalance at the grid
level. It not only reflects the temporal trends and periodicity of the taxi demand–supply
in the time dimension but also captures the interplay of the taxi demand–supply im-
balance among different grids.

• A dynamic graph convolutional network is developed to capture the dynamic spatial
features between grids. The correlations between grids are evident and vary sub-
stantially in different time periods, such as daytime and nighttime, weekdays and
weekends, and so on. By capturing these variable influences, the taxi demand–supply
can be predicted more accurately.

• Experiments are carried out utilizing real taxi trajectory data from Shenzhen city to
validate the feasibility and accuracy of the proposed model. The experiments contrast
the suggested model with other existing spatial–temporal graph convolutional models.
In addition, the impact of the hyperparameters involved in the model on real-world
scenarios are also discussed, providing a reference for the practical application of
the model.
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The structure of this paper is as follows. Section 2 provides a comprehensive review
of the research related to this paper. Section 3 introduces the relevant definitions and
explanations, while Section 4 presents the forecasting model of the grid-level taxi demand-
supply imbalance, including a breakdown of each component and its overall structure.
Section 5 presents the experimental data required for validating the model alongside
a comparison of the obtained results with those from other models. Following this, a
discussion is provided. Lastly, a comprehensive summary is presented.
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2. Related Studies

In this section, we firstly review the related works concerning urban taxi services, and
then we review the related work from two perspectives: deep-learning neural network-
based methods and complex deformable graph convolutional network-based methods.

2.1. Related Works Concerning Urban Taxi Services

The increasing use of GPS devices in modern cities has led to the emergence of
intelligent applications aimed at improving or transforming taxi services [32]. For instance,
modeling the location choice of taxi drivers for passenger pickup using GPS data [33],
discussing how informal transport can be better understood using GPS tracking data [34],
modeling the spatial–temporal of yellow taxi demands in New York City using generalized
STAR models [35], etc. With the support of data, this sentence highlights the potential for
data-driven methodologies in the field of taxi services. For instance, forecasting residents’
taxi travel demand can be achieved using traditional time-series models such as ARMA
and Linear Regression [36], using deep-learning methods such as reinforcement learning to
minimize taxi idle times [37], etc. The use of these technologies is leading research in urban
taxi services toward data-driven approaches and the ongoing development and application
of deep learning.

2.2. Deep-Learning Neural Network-Based Methods

Taxi demand–supply data are a specific type of traffic flow data. Therefore, most
methods suitable for traffic flow prediction can also be used for predicting taxi demand–
supply data. As traffic flow data are a type of time-series data, researchers have long
been using traditional time-series models for prediction, such as HA (Historical Average
Model) [38], Kalman Filters [39], ARIMA [15] and its variants [40]. These models convert
time-series data into stationary sequences and then build mathematical models to predict
future values, which have proven to perform well.

The early time-series models mentioned above have limited suitability for data with
strong periodic and trending patterns. Traffic flow data exhibit strong trending and periodic
patterns, making these models increasingly less appropriate. With the application of
deep learning, models such as RNN [16], LSTM [17], GRU [18] and their variants [41,42]
have proven to better capture the changing characteristics of traffic flow data in the time
dimension, leading to improved prediction results.

In recent years, an increasing number of studies have focused not only on capturing
the changing characteristics of traffic flow data in the time dimension but also on consid-
ering the mutual influences between adjacent roads and neighboring areas in the spatial
dimension. Some of the earliest attempts have used CNN (Convolutional Neural Network)
models [43–45] to capture the spatial characteristics of traffic flow. However, urban road
networks and regions within the city have unique connectivity and uneven distribution,
so the CNN model, which excels at exploring spatial features based on Euclidean dis-
tances [46,47], faces limitations in the field of grid-level traffic flow prediction. The GCN
model, on the other hand, is better at extracting spatial features from non-Euclidean dis-
tance data [27,48]. This has led to a considerable amount of research focusing on combining
GCN models with temporal models for traffic prediction. For example, there are models
such as the ride-hailing demand forecasting model [49], which combines GCN and LSTM,
and the T-GCN model [27], which integrates GCN and GRU. These models have been
widely researched and applied due to their outstanding predictive performance.

2.3. Complex Deformable Graph Convolutional Network-Based Methods

However, traditional graph convolutional neural networks, which focus primarily
on considering the influence between adjacent nodes (such as road segments, networks,
or regions), quickly become inadequate for predicting some complex traffic flows, such
as predicting traffic speed in non-grid road networks [29], predicting traffic propagation
flow [31], predicting road network traffic density [50], and so on. Consequently, many
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methods based on complex deformable graph convolutional networks have emerged [43].
These methods can be broadly categorized into static graph-based approaches and dynamic
graph-based approaches.

A static graph means that its structure does not change over time. The early graph
convolutional neural network-based traffic prediction models considered only the influence
between adjacent vertices. Later, various spatial–temporal prediction models with more
complex graph structures were developed. These graphs include those that consider
the upstream–downstream relationships of road segments [31], angles between adjacent
roads [29], attribute correlations between adjacent regions [48], and geographic features
within regions [30]. These complex deformable graphs are calculated based on the historical
attribute or geographic information associated with the vertices and do not change over
time. Furthermore, these graphs are used in conjunction with the original adjacency graph
for either sequential or parallel convolutions that enrich the spatial feature extraction. The
results have shown that these prediction models outperform models that only perform
convolution operations on the adjacency graph.

A dynamic graph means that its structure changes over time. As outlined in the intro-
duction, adjacent grids display dynamic correlations in their taxi demand. It is probable
that the correlation is strong during particular time periods on the same day, but weak
during others. Additionally, the correlation can fluctuate greatly from one day to the next.
Therefore, a number of scholars have initiated investigations into traffic flow prediction
models using dynamic graph convolutional networks. Such investigations have resulted in
various models, including a reinforced dynamic graph convolutional network model for
network-wide traffic flow prediction [51], an attention-based spatial–temporal graph neural
network for long-term traffic prediction [52], a new dynamic correlation graph construction
method for specific location traffic flow prediction [53], etc. However, these studies primar-
ily use dynamic graph convolution to capture dynamic spatial features at a single-point
level or link level [51–54], with limited focus on grid-level research. Moreover, these studies
are geared toward predicting general traffic flow, while the grid-level taxi demand exhibits
higher randomness and variability, making it challenging to apply these models.

In summary, there is presently no predictive model that can effectively capture the
spatial and dynamic characteristics of the taxi demand–supply imbalances at a grid level,
which are caused by the unpredictability and variability of taxis. This study proposes a
forecasting model for grid-level taxi demand–supply imbalances that employs dynamic
graph convolutional networks to address these challenges.

3. Preliminaries

Table 1 lists all the symbols used in this paper.

Table 1. Notations.

Notation Description

T a A type a trajectory where the vehicle consistently remains in a “vacant” state.

T b A type b trajectory where the vehicle consistently remains in an “occupied” state.

T c A type c trajectory where the vehicle transitions from a “vacant” state to an “occupied” state.

T d A type d trajectory where the vehicle transitions from an “occupied” state to a “vacant” state.

Ig
t The grid-level taxi demand–supply imbalance Ig

t within grid g in time period t.

T̃ ag
t The sum of the type a trajectories crossing the grid g in time period t.

T̃ cg
t The sum of the type c trajectories crossing the grid g in time period t.

T̃ d
g
t The sum of the type d trajectories crossing the grid g in time period t.
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Table 1. Cont.

Notation Description

G⟨V, E⟩ A general graph, where V represents the nodes in the graph, and E represents the relationships between the nodes.

G⟨G, R⟩ The taxi demand–supply graph.

G The set of the grids {g1, g2, . . . , gn}.

R The set of the relationships {r1, r2, . . . , rm} between grids in the graph.

Xg
t∼t+T The feature vector of grid g.

Xg The traffic demand Dg or the traffic supply Sg of grid g.

Xt The spatial features within the grid g in time period t.

Dt The spatial features of the travel demand within the grid g in time period t.

St The spatial features of the travel supply within the grid g in time period t.

gc(·) The graph convolution.

gru(·) The processing using the GRU model.

D̂t The temporal features of the travel demand within the grid g in time period t.

Ŝt The temporal features of the travel supply within the grid g in time period t.

ÎG
t The predicted taxi demand–supply imbalance within the grid g in time period t.

IG
t+1∼t+T The taxi demand–supply imbalance of all the grids in all the time periods.

3.1. Taxi Demand–Supply Information within a Grid

Taxi trajectories are typically categorized into four types, as shown in Figure 3: (a) type
a trajectory T a where the vehicle consistently remains in a “vacant” state; (b) type b
trajectory T b where the vehicle consistently remains in an “occupied” state; (c) type c
trajectory T c where the vehicle transitions from a “vacant” state to an “occupied” state, and
the initial appearance of an “occupied point” signifies passengers boarding the taxi; and
(d) type d trajectory T d where the vehicle transitions from an “occupied” state to a “vacant”
state and the first appearance of a “vacant point” represents passengers disembarking.

The trajectories of these four types of taxis crossing the grid can reflect the traffic
demand–supply information within the grid. As shown in Figure 3e, a type a trajectory T a

crossing the grid can be considered a traffic supply within the grid. A type c trajectory T c

crossing the grid represents not only a taxi demand but also a taxi supply in the grid, as
in Figure 3g. A type d trajectory T d crossing the grid can be considered an added traffic
supply in the grid, as in Figure 3h.

Therefore, the taxi demand within the grid can be defined as the quantity of type c
trajectories crossing the grid. Meanwhile, the taxi supply within the grid can be defined
as the sum of the type a trajectories, type c trajectories, and type d trajectories crossing the
grid. The grid-level taxi demand–supply imbalance Ig

t within grid g in time period t can be
defined as

Ig
t =

T̃ cg
t

T̃ ag
t + T̃ cg

t + T̃ d
g
t

(1)

in which T̃ ag
t , T̃ cg

t and T̃ d
g
t are the sum of the type a trajectories, type c trajectories, and

type d trajectories crossing the grid g in time period t, respectively, and Ig
t ranges from 0

to 1. When the taxi demand-supply imbalance is equal to 0, it implies that the number of
type c trajectories is 0, while there are a significant number of type a trajectories and type d
trajectories. This means that during this time period, there is minimal taxi demand within
the grid, and taxis should be dispatched to other areas.
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When the taxi demand–supply imbalance approaches 1, it means that the proportion
of type c trajectories is increasing, while the proportion of type a and type d trajectories is
decreasing. This indicates that during this time period, the taxi demand within the grid is
becoming increasingly challenging to meet, and taxis need to be dispatched to this area.

3.2. Graph of the Taxi Demand–Supply Based on Divided Grids

G⟨V, E⟩ can be defined as a general graph, where V represents the nodes in the graph,
and E represents the relationships between the nodes. In this paper, we define the taxi
demand–supply graph as G⟨G, R⟩, where G represents the set of the grids {g1, g2, . . . , gn},
and R is the set of the relationships {r1, r2, . . . , rm} between grids in the graph.

For each grid g,we can obtain its feature vector Xg
t∼t+T =

[
Xg

t , Xg
t+1, . . . , Xg

t+T

]
, where

the feature Xg can be the traffic demand Dg or the traffic supply Sg within the grid. And
the feature matrix XG

t∼t+T =
{

Xg1, Xg2, . . . , Xgn
}

can be obtained for all the grids.
In addition, for each pair of girds gi and gj (i, j ≤ n), the relationship between them

falls into two categories in most studies [30,31]. The first category involves considering the
spatial topology between grids, typically measured using distance. The second category
measures the similarity between features within two grids. As shown in Figure 4a, for a 3×
grid region, it is possible to construct graphs based on the effective grids A, B, E, F, and G.

The first kind of graph formed is illustrated in Figure 4b, where the distances between
A and B, B and E, and E and F are all equal to the length of the grid, while the remaining
distances are greater than this value. For grid pairs with smaller distances, wider edges are
assigned to represent a higher likelihood of mutual influence between them. The second
kind of graph formed is illustrated in Figure 4c, where A, E, and G exhibit high feature
correlations, and B and F also display high feature correlations. Grid pairs with greater
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feature correlations are assigned wider edges to represent their high likelihood of changing
simultaneously. We will discuss in detail how to quantify these two types of relationships
in Section 4.2 to better predict the grid-level taxi demand–supply imbalance.
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3.3. Prediction of the Grid-Level Taxi Demand–Supply Imbalance

In this article, we use predictions of the future traffic demand and supply to predict
the taxi demand–supply imbalance within the grid. This mainly consists of three steps:

Step 1 in the spatial dimension, spatial features within the grid Xt−T′ , Xt−T′+1, . . . , Xt
are computed using graph convolution, as shown in the following equation.

Xt−T′ , Xt−T′+1, . . . , Xt = gc(Xt−T′ , Xt−T′+1, . . . , Xt) (2)

where gc(·) represents the graph convolution. The features within the grid discussed in
this article mainly refer to the traffic demand and supply, which are represented by the
following two equations.

Dt−T′ , Dt−T′+1, . . . , Dt = gc(Dt−T′ , Dt−T′+1, . . . , Dt) (3)

St−T′ , St−T′+1, . . . , St = gc(St−T′ , St−T′+1, . . . , St) (4)

Step 2 in the temporal dimension, we use the GRU model to predict the future traffic
demand D̂t+1, D̂t+2, . . . , D̂t+T and supply Ŝt+1, Ŝt+2, . . . , Ŝt+T from time period t + 1 to
t + T based on the spatial features, as represented by the following two equations.

D̂t+1, D̂t+2, . . . , D̂t+T = gru
(

Dt−T′ , Dt−T′+1, . . . , Dt
)

(5)

Ŝt+1, Ŝt+2, . . . , Ŝt+T = gru
(
St−T′ , St−T′+1, . . . , St

)
(6)

Step 3 Using the predicted demand and supply, along with the historical demand and
supply, the predicted taxi demand–supply imbalance within the grid Îg

t+1 can be obtained,
as indicated by the following equation.

Ît+1 = f
(

D̂t+1, Ŝt+1, (Dt−T′ , Dt−T′+1, . . . , Dt), (St−T′ , St−T′+1, . . . , St)
)

(7)

and then, the taxi demand–supply imbalance of all the grids in all the time periods can be
obtained as follows:

IG
t+1∼t+T =

{{
Îg1
t+1, . . . , Îg1

t+T

}
,
{

Îg2
t+1, . . . , Îg2

t+T

}
, . . . ,

{
Îgn
t+1, . . . , Îgn

t+T

}}
(8)



ISPRS Int. J. Geo-Inf. 2024, 13, 34 9 of 21

4. Methodology
4.1. Overall Structure

Figure 5 depicts the spatial–temporal prediction network introduced in this paper.
The left side of the diagram shows the prediction of the grid-level features using graph
convolution and time-series forecasting. This process involves two rounds of graph convo-
lution and one round of GRU prediction. The initial graph convolution utilizes the static
grid relationships, which are the distances between grids. The second graph convolution
exploits the dynamic grid relationships and considers the correlations of grid features
during previous time periods. A GRU model predicts the future attribute values within
the grid for the following T time periods. On the right side of Figure 5, a forecast of the
grid-level taxi demand–supply imbalance for time period t + 1 is presented. This part first
predicts the taxi demand D̂t+1 and supply Ŝt+1, and then combined them with historical
data Dt−1, Dt and St−1, St to forecast the demand–supply imbalance It+1 for time period
t + 1.
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4.2. Graph Convolutional Network Part
4.2.1. Geographic Graph

According to Tobler’s First Law of Geography [55], grids that are closer in geographical
location exhibit stronger spatial correlations. Additionally, traffic flow naturally exhibits a
propensity to propagate more readily between adjacent grids [31]. Therefore, the primary
consideration when mining spatial correlations between grids is the distance between them.
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Hence, we define the geographical adjacency matrix as AGeo, and each element aGeo
ij can be

calculated as follows:

aGeo
ij =

{
1 deu(gi, gj) ≤ µ
0 otherwise

(9)

where deu(gi, gj) is the Euclidean distance between grid gi and grid gj, and µ is the distance
threshold to pick out the closer grids. In this paper, we only consider the influence between
adjacent grids, and thus the value of µ is set to

√
2 · l, where l represents the side length of

a grid. As shown in Figure 3, to calculate the spatial features of grid E, only the influences
of the eight adjacent grids, A, B, C, D, F, G, H, and I, are considered, while other grids that
are farther away are not within the scope of consideration.

4.2.2. Dynamic Feature Correlation Graph

Considering the correlation of vertex features in graph construction has become one
of the hot topics in graph convolution research [43]. In this paper, we investigate the
travel features within a grid, which exhibit certain distribution patterns over time. For
example, residential areas have a high taxi demand during the morning rush hour but a
lower demand during the evening rush hour, whereas commercial areas show the opposite
pattern. Setting larger connection weights for grids with similar traffic travel patterns
enables them to mutually complement information during the convolution process.

Furthermore, traditional research has only considered the static correlations of features
within the grids, which is not accurate enough [56,57]. This is because the geographical
features within the grids are complex, and travel patterns exhibit strong randomness, such
that two grids with high daytime correlation may have different patterns at night. Thus, it is
necessary to consider the dynamic correlations and establish a dynamic feature correlation
graph. Based on this, the present paper defines the dynamic feature correlation matrix as
ADyn.t

ij , ADyn.t+1
ij , . . . , ADyn.t+T

ij . Taking the matrix ADyn.t
ij for time period t as an example,

each element is defined as follows:

at
ij =

 ρ
(

Xt−T∼t
gi ,Xt−T∼t

gj

)
+1

2 aGeo
ij ̸= 0

0 otherwise
(10)

where ρ
(

Xt−T∼t
gi , Xt−T∼t

gj

)
represents the Pearson correlation coefficient between the feature

vector
[

Xt−T
gi , Xt−T+1

gi , . . . , Xt
gi

]
of grid gi and the feature vector

[
Xt−T

gj , Xt−T+1
gj , . . . , Xt

gj

]
of

grid gj, which is calculated as follows:

ρt−T∼t
ij =

T
∑

t′=1

(
Xt′

i − Xt−T∼t
i

)(
Xt′

j − Xt−T∼t
j

)
√

T
∑

t′=1

(
Xt′

i − Xt−T∼t
i

)2
×

T
∑

t′=1

(
Xt′

j − Xt−T∼t
j

)2
(11)

Xt−T∼t
i =

Xt−T
i + Xt−T+1

i + . . . + Xt
i

T + 1
(12)

Xt−T∼t
j =

Xt−T
j + Xt−T+1

j + . . . + Xt
j

T + 1
(13)

It is important to note that the value of at
ij falls within the range [0, 1], and the

higher its value, the more it signifies that feature predictions between two grids can be
mutually influential, leading to a greater impact during the graph convolution process.
Additionally, at

ij is a dynamic variable, signifying that the feature correlation graph is
subject to dynamic changes.
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4.2.3. Graph Convolution Layer

For the travel features within the grids, two graph convolution layers are designed to
perform spatial feature extraction operations twice. In the first convolution, it is based on
the geographic graph, and it filters the influence between adjacent grids. The output of this
convolution layer H(Geo) is defined as follows:

H(Geo) = τ

(
D̃Geo

−1/2 ˆAGeoD̃Geo
−1/2

Xθ(Geo)
)

(14)

where τ(·) is the activation function, D̃Geo is the degree matrix of the geographic graph,
and ˆAGeo is the sum of geographical adjacency matrix AGeo (defined as Equation (8)) and
identity matrix. X is the input travel feature matrix, which can be either the traffic demand
D or traffic supply S. θ(Geo) is the set of all the parameters of this convolution layer.

The second convolution layer is based on the dynamic feature correlation graph, with
its input being the output from the first convolutional layer H(Geo). Its output H(t) is
defined as follows:

H(t) = τ

(
D̃t

−1/2
ÂtD̃t

−1/2
H(Geo)θ(t)

)
(15)

where H(t) represents the output of the second convolution layer during time period
t, D̃t is the degree matrix of the feature correlation graph during t, Ât is the sum of
feature correlation matrix At during t (defined as equation 9) and identity matrix, and θ(t)

represents all the parameters of the second convolution layer.

4.3. Gated Recurrent Unit Part

After extracting the spatial features of the taxi demand and supply within the grids, it
is also necessary to capture the features in the temporal dimension. The Gated Recurrent
Unit model is applied to accomplish this task. The GRU model is widely used and has
been proven to have significant advantages in terms of predictive accuracy [42], mitigating
gradient disappearance and explosion problems [58].

Given the feature sequence H(t−T′), . . . , H(t−1), H(t) after 2 rounds of graph convo-
lution operations, it is possible to recursively predict future the taxi demand and supply
using Equations (12)–(15).

rt = σ
(

Wr

[
H(t), h(t−1)

]
+ br

)
(16)

zt = σ
(

Wu

[
H(t), h(t−1)

]
+ bu

)
(17)

h̃t = tanh
(

Wh̃

[
H(t), (rt ⊙ h(t−1))

]
+ bh̃

)
(18)

ht = zt ⊙ h(t−1) + (1 − zt)⊙ h̃t (19)

where σ(·) is the sigmoid activation function, h(t−1) is the outer hidden state during t − 1,
h̃t is the inner hidden state during t, Wr, Wu and Wh̃ are the weight sets, br, bu and bh̃ are
the biases, ⊙ represents the dot product between two tensors, and all the the weights and
biases are learnable.

4.4. Full Connected Layer

After two rounds of graph convolution operations and one round of prediction using
the GRU model, we can obtain the taxi demand D̂t+1 and supply Ŝt+1 for time period t + 1,
respectively. This allows us to calculate the taxi demand–supply imbalance for this time
period, i.e., D̂t+1/Ŝt+1, as described in Section 3.1. However, to mitigate the short-term
random fluctuations in urban traffic, we apply smoothing to it using the values from the
past two time periods.
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In the final part of the model, as shown in Figure 4, we establish a fully connected layer
to map the taxi demand–supply imbalance Ît+1 to the taxi demand vector

(
D̂t+1, Dt, Dt−1

)
and taxi supply vector

(
Ŝt+1, St, St−1

)
, i.e., Ît+1 ∼ f c

((
D̂t+1, Dt, Dt−1

)
,
(
Ŝt+1, St, St−1

))
, to

facilitate training and forecasting.

5. Experiment
5.1. Data Description

The dataset used in this article is the real taxi GPS data from Shenzhen, China, includ-
ing the date, time, taxi ID, longitude, latitude, and passenger status (vacant or occupied).
The data were collected in January 2019 and processed to obtain nearly 88.62 million taxi
trajectories. Furthermore, we opted for Futian District in Shenzhen city as the experimental
area. Futian District lies in the heart of Shenzhen, stretching 10 km in a north–south direc-
tion and 12 km in an east–west direction. It spans nearly 80 square kilometers, as depicted
in Figure 6.

ISPRS Int. J. Geo-Inf. 2024, 13, x FOR PEER REVIEW 13 of 23 
 

 

term random fluctuations in urban traffic, we apply smoothing to it using the values from 
the past two time periods. 

In the final part of the model, as shown in Figure 4, we establish a fully connected 

layer to map the taxi demand–supply imbalance +


1tI   to the taxi demand vector 
( )+ −1 1, ,t t tD D D   and taxi supply vector ( )+ −1 1, ,t t tS S S  , i.e., 

( ) ( )( )+ + +− −
 1 1 11 1, , , , ,t t tt t t tI fc D D D S S S ., to facilitate training and forecasting. 

5. Experiment 
5.1. Data Description 

The dataset used in this article is the real taxi GPS data from Shenzhen, China, in-
cluding the date, time, taxi ID, longitude, latitude, and passenger status (vacant or occu-
pied). The data were collected in January 2019 and processed to obtain nearly 88.62 million 
taxi trajectories. Furthermore, we opted for Futian District in Shenzhen city as the experi-
mental area. Futian District lies in the heart of Shenzhen, stretching 10 km in a north–
south direction and 12 km in an east–west direction. It spans nearly 80 square kilometers, 
as depicted in Figure 6. 

 
Figure 6. Experimental area: (a) the Futian District area in Shenzhen; and (b) The Futian District 
area divided into square grids of 1 km × 1 km. 

We perform the following data preprocessing to meet the experimental requirements. 
(1) Based on the longitude, latitude, and passenger occupancy information contained in 
the taxi GPS data, we compute four types of trajectories, as illustrated in Figure 3, namely, 
type a trajectory a , type b trajectory b , type c trajectory c , and type d trajectory 

d . (2) We grid the entire experimental area according to the 1 km × 1 km standard, and 
then select 10 min as the minimum statistical time period. Therefore, a total of 102 grids 
and 4464 periods can be obtained. (3) Based on this, we count the type a trajectory a , 
type b trajectory b , and type d trajectory d  in each grid in each period. Further sta-
tistical analysis reveals that the average number of valid taxi trajectories in each grid 
within a single period is 215, and the number of type a, type c, and type d trajectories is 
118, 50, and 47, respectively. (4) According to Formula 1, we compute the dataset of the 
imbalance index for taxi demand–supply across all the grids and all the time periods. (5) 

Figure 6. Experimental area: (a) the Futian District area in Shenzhen; and (b) The Futian District area
divided into square grids of 1 km × 1 km.

We perform the following data preprocessing to meet the experimental requirements.
(1) Based on the longitude, latitude, and passenger occupancy information contained in
the taxi GPS data, we compute four types of trajectories, as illustrated in Figure 3, namely,
type a trajectory T a, type b trajectory T b, type c trajectory T c, and type d trajectory T d.
(2) We grid the entire experimental area according to the 1 km × 1 km standard, and then
select 10 min as the minimum statistical time period. Therefore, a total of 102 grids and
4464 periods can be obtained. (3) Based on this, we count the type a trajectory T a, type
b trajectory T b, and type d trajectory T d in each grid in each period. Further statistical
analysis reveals that the average number of valid taxi trajectories in each grid within a
single period is 215, and the number of type a, type c, and type d trajectories is 118, 50, and
47, respectively. (4) According to Formula 1, we compute the dataset of the imbalance index
for taxi demand–supply across all the grids and all the time periods. (5) In the end, the data
from the first 21 days of January 2019 are utilized as the training set, while the remaining
10 days’ data serve as the testing set.

5.2. Baseline Methods

We select several classic prediction models to compare with our model, including the
Historical Average (HA), Auto-Regressive Moving Average (ARIMA), Graph Convolu-



ISPRS Int. J. Geo-Inf. 2024, 13, 34 13 of 21

tional Network (GCN), Gated Recurrent Unit model (GRU), Temporal Graph Convolu-
tional Network (T-GCN), Temporal Multi-Spatial Dependence Graph Convolutional Net-
work (TmS-GCN) [48], and Multi-Attribute Graph Convolutional Network (MAGCN) [59].

5.3. Results

To evaluate the predictive performance of our model and the baseline models, we use
metrics such as the Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE)
and Root Mean Square Error (RMSE):

MAE
(

I, Î
)
=

1
N

N
∑

i

∣∣Ii − Îi
∣∣ (20)

MAPE
(

I, Î
)
=

1
N

N
∑

i

∣∣Ii − Îi
∣∣

Ii
(21)

RMSE
(

I, Î
)
=

√√√√ 1
N

N
∑

i

(
Ii − Îi

)2 (22)

where I and Î are the actual and predicted values of the taxi supply–demand imbalance,
respectively, and N is the number of predictions.

Table 2 presents the results of evaluating our model and the baseline models on the
dataset described in Section 5.1. We can draw the following conclusions:

• The overall predictive performance of deep-learning models is much better than
traditional time-series models, which aligns with our expectations. This indicates that
the grid-level taxi demand–supply exhibits nonlinear periodicity over time, a feature
that traditional time-series models are unable to capture.

• Predictive models that comprehensively consider the spatial correlation of the taxi
demand–supply and temporal variation features, including T-GCN and our model,
outperform time-series models such as HA, ARIMA, and GRU. They also outperform
models that only consider spatial correlation features, such as GCN. This indicates
that the grid-level taxi demand–supply imbalance is also a typical spatial correlation
data, with neighboring grids influencing each other.

• Our model, which considers the dynamic correlation features between grids, outper-
forms T-GCN, TmS-GCN and MAGCN, which only consider static spatial features.
This confirms our hypothesis stated in the introduction that the influences on the
taxi demand and supply vary over time, even among adjacent grids. The impact is
sometimes significant and at other times minimal.

Table 2. Comparison of the performance of the different models across temporal scales.

Models

Metrics

10 min 20 min 30 min

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

HA 0.0476 1.5375 0.0769 0.0476 1.5375 0.0769 0.0476 1.5375 0.0769
ARIMA 0.0902 0.5552 0.1108 0.0928 0.7627 0.1066 0.0980 1.3971 0.1225
GCN 0.0462 0.3286 0.0728 0.0473 0.3373 0.0736 0.0483 0.3463 0.0745
GRU 0.0439 0.2902 0.0678 0.0443 0.3072 0.0743 0.0446 0.3159 0.0853
T-GCN 0.0428 0.2826 0.0669 0.0439 0.2792 0.0684 0.0441 0.2867 0.0684
TmS-GCN 0.0431 0.2845 0.0680 0.0433 0.2880 0.0695 0.0441 0.2865 0.0692
MAGCN 0.0421 0.2812 0.0653 0.0453 0.2881 0.0702 0.0462 0.2907 0.0713
our model 0.0413 0.2716 0.0643 0.0425 0.2855 0.0659 0.0438 0.2932 0.0672
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We carry out the comparison between the actual and predicted taxi demand–supply
imbalance during specific time periods on January 23rd, including the morning peak hours
(7:30–9:30 am), daytime (9:30 am–4:30 pm), and evening peak hours (4:30–7:30 pm). The
results are shown in Figure 7. The figure shows that the majority of the grid cells have an
imbalance value of 0.6 or less, which means that the demand for taxi rides is less than half
of the available supply of taxis. This is due to the use of only taxi GPS data to estimate
both the demand and supply. If separate data sources were available to track taxi demand,
such as order data from DiDi or Uber, this imbalance information could be more accurately
determined. However, this does not affect our evaluation of the model. From this, we can
draw the following conclusions:

• Based on the imbalance index, it is divided into five categories, namely [0, 0.2], [0.2,
0.4], [0.4, 0.6], [0.6, 0.8], and [0.8, 1.0], where the closer the value is to 1, the more
difficult the demand is to meet. Based on this, the number of grid cells with prediction
errors during the morning peak, daytime, and evening peak is 7, 7, and 10, respectively,
accounting for only 6.86%, 6.86%, and 9.8%.

• From the figure, it is noticeable that within certain areas, the imbalance between the
taxi demand and supply changes from morning to evening. For example, within the
area highlighted by the solid red ellipse in the figure, there is a pronounced imbalance
during the morning peak hours, while it tends to stabilize during the midday and
evening peak hours.

• We further analyze the grid cells with prediction errors, particularly those within the
green dashed box during the morning peak hours. In this particular grid, there is a
significant discrepancy between the predicted results and the ground truth. The grid
corresponds to the area of Meilin Mountain Park, which is characterized by few roads
and a low traffic volume, resulting in an average number of taxi trajectories within the
grid mostly below 10 during most periods. Grids with a low number of trajectories
are bound to affect the predictive accuracy. We will specifically discuss this issue in
Section 6.2.

Taxi companies or other city traffic management authorities can use the model’s pre-
dicted results to proactively conduct taxi dispatching, which includes short-term scheduling
and long-term allocation strategies:

• For short-term scheduling, when taxi companies or other city traffic management
authorities become aware of an expected demand–supply imbalance in a specific
grid, they can proactively dispatch information to available taxis in the surrounding
grids, urging them to support that particular grid. This approach aims to address the
upcoming imbalance within the grid. Based on our model, we predict the specific
travel demand and supply within each grid in addition to the imbalance index. This
information can help taxi companies and city traffic management authorities determine
the number of taxis needing to be redirected, preventing an excess supply over demand
within the grid and avoiding wastage of resources.

• For long-term allocation, when a particular area is expected to have an imbalance
between the taxi demand and supply in the next half-hour, or even within an hour,
it means that residents attempting to hail a taxi within this area during this time
may face difficulties and delays. Upon receiving this predictive information, taxi
companies or other city traffic management authorities can use platforms such as Uber
or Didi to disseminate this information to potential users. This can encourage users
to avoid hailing a taxi within this area during the specified time frame. Furthermore,
for specific events such as concerts, school dismissal times, or other occasions causing
severe imbalances, taxi companies or other city traffic management authorities may
designate particular taxis to wait in advance to meet the anticipated high demand for
travel in the future.
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during 9:30~16:30; (e) ground truths during 16:30~19:30; and (f) predictions during 16:30~19:30.



ISPRS Int. J. Geo-Inf. 2024, 13, 34 16 of 21

6. Discussion

This section begins by discussing whether the assumptions presented in the introduc-
tion have been validated. Then, we focus on discussing several factors that influence the
prediction of taxi demand and supply imbalances, including the number of trajectories
within a grid, the size of the grid, and the number of GRU units.

6.1. Verification of the Hypothesis

In the introduction section of this paper, we postulated that the dynamic variations in
the taxi demand and supply within a grid are crucial factors influencing the prediction of
the grid-level equilibrium indices. Based on this premise, we proposed our model. Based
on the experimental results, as shown in Table 2, we can discuss the following aspects:

• Overall, solely exploring the static feature correlations between grids, such as the grid
adjacency (T-GCN) and static intra-grid feature correlations (TmS-GCN, MAGCN),
performs worse in terms of predictive accuracy compared to considering the dynamic
intra-grid feature correlations (our model). According to Table 2, particularly at the
optimal prediction scale of 10 min, our model shows an improvement of approximately
3.5%, 4.2%, and 1.9% over T-GCN, TmS-GCN, and MAGCN, respectively.

• As the prediction scale increases, the performance of the model considering the dy-
namic intra-grid feature correlations (our model) deteriorates. This pattern is similar
to other models, indicating that long-term predictions are more challenging compared
to short-term predictions.

However, compared to the T-GCN model, the improvement of our model diminishes.
Specifically, at the 10 min scale, the improvement is 3.5%, reducing to 3.2% at the 20 min
scale and further down to 0.7% at the 30 min scale. This is because, in our model, predicting
the demand and supply separately from the rolling forecast introduces an additional
unknown compared to T-GCN, which predicts traffic flow directly from the rolling forecast.
The accumulation of errors in predicting more values leads to a decrease in the overall
prediction quality. Therefore, the model proposed in this paper exhibits a limitation in its
predictive performance on long-term scales.

6.2. Effect of the Number of Trajectories within a Grid

The effect of three types of trajectory counts on the prediction performance is analyzed,
as shown in Figure 8. It is obvious that as the number of taxi trajectories within a grid
increases, the overall prediction performance improves. When the number of trajectories
is less than 10, the predictive performance is the worst, which can explain the worse
prediction results for certain grid mentioned in Section 5.3. In addition, compared to type c
and type d trajectories, increasing the number of type a trajectories significantly improves
the predictive performance. In other words, a higher number of vacant taxis within a grid
leads to better predictive performance in terms of the imbalance index. This indirectly
highlights the feasibility of using taxi GPS data for prediction, as information about vacant
or occupied states is a fundamental aspect of most urban taxi GPS datasets.

Based on the analysis presented above, it is possible to achieve relatively high pre-
dictive accuracy in practical applications of this model, as long as the number of taxi
trajectories within a grid exceeds 10. To ensure that the prediction results are applicable
across most areas of the city, the prediction time scale can be extended or the grid’s range
can be expanded. Alternatively, a specific analysis for each scenario can be conducted in
practical applications. Prediction results from grids with a higher number of trajectories
can be used directly. However, for remote areas with fewer internal taxi trajectories, the
prediction results may need to be selectively adopted.
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6.3. Effect of the Grid Size

In fact, we can expect that as the grid size increases, the number of taxi trajectories
within the grid will also increase, resulting in an improvement in predictive accuracy.
However, grid sizes that are too large become meaningless for taxi dispatching by taxi
companies, because drivers would not be assigned a specific destination. Therefore, finding
an appropriate grid size is crucial to ensuring both effective prediction models and clear
destinations for taxi drivers. We conducted an analysis on this issue, and the results are
shown in Figure 9. It is obvious that as the grid size increases, metrics such as the MAE,
MAPE, and RMSE gradually decrease, indicating better predictive performance. However,
when the grid size is around 1 km, the prediction performance is comparatively better, and
the improvement becomes less significant. Therefore, we recommend using a grid size of
1 km × 1 km for regional partitioning in model applications.
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The grid size is a crucial factor in the practical application of this model. If the
grid size is too small, it may provide more precise but unreliable prediction results due
to fewer trajectories within the grid. On the other hand, if the grid size is too large, it
may offer accurate predictions but may result in overly generalized predictions, making
it challenging for taxi companies or other city traffic management authorities to devise
precise taxi dispatching strategies.

Therefore, we suggest that for most cities, considering cost-effectiveness, the adoption
of a 1 km × 1 km grid division method could be suitable. However, if possible, it may be
beneficial to conduct a customized analysis of the density across different regions of the city.
In densely trafficked areas, smaller grid sizes, such as 250 m × 250 m or 500 m × 500 m,
may be more suitable, while larger grid sizes, such as 1 km × 1 km or 1.5 km × 1.5 km,
may be more appropriate for sparsely trafficked areas.

6.4. Effect of the Number of Units of GRU

Based on previous research, we know that the number of hidden units in the GRU can
affect the effectiveness of traffic prediction. Therefore, we conducted a detailed analysis
of this factor, and the results are shown in Figure 10. We observed that as the number of
hidden units increases, the predictive performance gradually improves. However, when the
number of hidden units reaches 120, the improvement in predictive performance becomes
less significant. Therefore, considering these results, we recommend that using 120 hidden
units in the model is the optimal choice.
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This is likely to improve the predictive accuracy, although it may impact the computa-
tional efficiency and speed. Based on the analysis above, it is recommended to increase the
number of hidden units in the GRU to 160 or more, if economic conditions allow and suffi-
cient computational power is available. For scenarios with average economic conditions,
it is recommended to set the number of hidden units in the GRU to at least 120. Having
fewer than 120 units could significantly reduce the predictive performance.

7. Conclusions

The purpose of this paper is to predict imbalances between the taxi supply and demand
at a grid level. To achieve this, a prediction model is proposed that utilizes dynamic Graph
Convolutional Neural Networks (GCNs) and Gated Recurrent Units (GRUs). The model is
designed to capture the dynamic influence of the taxi demand–supply between adjacent
grids, which is affected by the mobility of taxis and changes in other transportation modes.
The study utilized the GRU model to capture the temporal trends and cyclical characteristics
of the supply and demand for taxis. Experiments were conducted using taxi trajectory data
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from Futian District in Shenzhen city starting in January 2019 to compare the model against
several baseline models, including HA, ARIMA, GCN, GRU, and T-GCN. The data indicate
that our model performs better than the baseline models in predicting at different scales
(10, 20, and 30 min) based on metrics such as the MAE, MAPE, and RMSE. To improve
the practical application of our model, we conducted an ablation study to examine the
impact of various factors on the predictive performance. The study findings indicate that
better performance in real-world applications is associated with an increased volume of taxi
trajectories, a larger grid size of 1 km × 1 km, and more than 120 hidden units in the GRU.

The method proposed in this paper has certain limitations that need to be improved in
future research. Firstly, due to the difficulty of data acquisition, we only utilized taxi GPS
data from Shenzhen city to validate our method, which itself is a limitation. It would be
beneficial to include data from other cities, such as those in North America or Europe, if
the opportunity arises, to demonstrate the universality of the method we have proposed.
Second, after discussion, it has been observed that as the prediction scale increases in our
model, the involvement of more unknowns in the intermediate calculations leads to an
increase in errors. This poses a limitation in the application of our model. In the future, we
intend to address this issue and make improvements accordingly.

Author Contributions: Haiqiang Yang: Conceptualization, methodology, software, writing—original
draft, writing—review and editing. Zihan Li: Software, validation, visualization. All authors have
read and agreed to the published version of the manuscript.
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