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Abstract: The generation and prediction of daily human mobility patterns have raised significant
interest in many scientific disciplines. Using various data sources, previous studies have examined
several deep learning frameworks, such as the RNN and GAN, to synthesize human movements.
Transformer models have been used frequently for image analysis and language processing, while
the applications of these models on human mobility are limited. In this study, we construct a
transformer model, including a self-attention-based embedding component and a Generative Pre-
trained Transformer component, to learn daily movements. The embedding component takes regional
attributes as input and learns regional relationships to output vector representations for locations,
enabling the second component to generate different mobility patterns for various scenarios. The
proposed model shows satisfactory performance for generating and predicting human mobilities,
superior to a Long Short-Term Memory model in terms of several aggregated statistics and sequential
characteristics. Further examination indicates that the proposed model learned the spatial structure
and the temporal relationship of human mobility, which generally agrees with our empirical analysis.
This observation suggests that the transformer framework can be a promising model for learning and
understanding human movements.

Keywords: daily mobility generation; mobility prediction; transformer-based model; self-attention
mechanism; Tokyo Metropolitan Area

1. Introduction

Human mobility data have been widely applied in various domains, including urban
planning, traffic management, epidemiology, etc. The synthetization and prediction of
human mobility patterns have raised broad attention across fields, and endeavors on the
two topics are expected to address various challenges in data sharing and application. For
instance, sharing mobility data raises privacy concerns, while synthesized datasets may be
safer for public access [1]. Moreover, generative models could be applied for forecasting
mobility patterns, given various urban factors (e.g., land use) as input. Conventional
modeling approaches have attempted to address the two topics (i.e., synthetization and
prediction), while the latest studies using deep learning algorithms focus more on the first.
Mobility synthetization seems to be an easier task, as a generation model is expected to
output similar to what it has learned from the training data. On the other hand, prediction
tasks require the model to generalize what it has learned to new cases. Deep learning
models have not yet been fully explored in terms of city-wide mobility pattern predictions.
In this paper, we develop a transformer-based model and examine its performance on
mobility synthetization and prediction using datasets collected in the Tokyo Metropolitan
Area over 30 years. The output of the model varies with urban factors, such as land use
and the socio-demographic characteristics of residents.

This paper is composed of six sections. In the next section, related studies are reviewed
and summarized. Section 3 introduces the datasets and preprocessing. Section 4 provides
the methodology for mobility generation and prediction. Section 5 evaluates the generation
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results and interprets what the model has learned. Section 6 provides a discussion and
draws conclusions.

2. Literature Review

The synthetization and prediction of mobility patterns have been important topics for
decades. In this section, we briefly introduce several conventional methods for mobility
generation first, followed by a more detailed review of recent approaches using machine
learning algorithms. The position of this study is presented in Section 2.3.

2.1. Conventional Methods for Mobility Generation/Prediction

The four-step model is a conventional method for mobility estimation. It includes four
steps: trip generation, trip distribution, travel mode choice, and route assignment. Various
regression and utility models can be applied in the four steps, accounting for the impact of
population, trip attributes, etc. on travel demand [2]. Due to its significant limitations (e.g.,
lack of consideration for land use density and socioeconomic dynamics) [3], researchers
have adopted other modeling approaches for traffic forecasting. The Markov Chain model is
a popular framework. For instance, Mo et al. (2021) trained a hidden Markov Chain model
for each user, yielding an accuracy comparable to a recurrent neural network [4]. Wang
and Osaragi (2022) proposed a two-step Markov Chain model, and the spatiotemporal
characteristics of daily movements were reproduced [5]. Since travel behaviors are mostly
driven by activities, activity-based models have been developed as an alternative to the
four-step model. These models estimate the urban traffic flows by predicting what activities
will be conducted by people, when, where, for how long, etc. [6]. Utility-based and rule-
based models are two popular types of activity-based models. For the first type, individuals
are supposed to select the travel choice with the highest utility. Utility equations included
in the models allow for the examination of the relationship between activity-travel patterns
and other factors, such as land use and policies [7]. Some popular frameworks have been
developed in this category, such as CEMDAP [7], CUSTOM [8], and DATA [9]. The second
type includes if-then-else logic and offers more flexibility in decision-making processes
for travel (e.g., TASHA [10]). Due to the complexity of human mobility, conventional
approaches show relatively limited performance compared to newer methods. Many of
them are either overly complicated or lack the ability to account for all the factors that may
have potential impacts on human mobility.

2.2. Machine-Learning Based Methods

In recent years, machine learning-based methods have been applied frequently by
researchers for human mobility modeling. For instance, Drchal et al. (2019) used decision
tree and regression tree models to predict people’s daily activity agendas, where the loca-
tions of activities are determined based on the characteristics of activities and people [11].
In addition, the support vector machine and the random forest model are popular methods
that have been used for activity—travel forecasting [12-14]. Compared with conventional
methods, machine learning techniques show the advantages of handling more variables
and modeling non-linear correlations between variables and targets.

Deep learning methods are one type of machine learning approach, and they are
capable of capturing more complicated relationships between variables. Several classical
deep learning architectures have been developed and have shown satisfactory performances
in many scientific disciplines. The Recurrent Neural Network (RNN hereafter) is extensively
used to model time-series data (such as natural language). Since mobility data can be
converted into time series, the RNN framework can be comfortably applied to the domain
of mobility modeling. Huang et al. (2019) combined one RNN model (namely, Long
Short-Term Memory; LSTM hereafter) with a variational autoencoder to generate synthetic
mobility data [15]. In their model, one LSTM model converts a trajectory into a vector
as the input into the variational autoencoder, by which a hidden space is constructed.
Another LSTM model finally reconstructs trajectories using vectors sampled from the
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hidden space. Generation results were evaluated with the mean distance error between the
real and generated trajectories. A conceptually similar model was proposed by Sakuma
et al. (2021), where the variational encoder was replaced with principal component analysis
for dimension reduction and a Laplace mechanism [16]. Blanco-Justicia et al. (2022) applied
the bidirectional LSTM to synthesize mobility data [17]. Their results were validated using
several distance/visitation metrics at the aggregate level. Berke et al. (2022) used the LSTM
model for mobility generation and evaluated the results using the distributions of trip
length, locations per user, and time spent in each location [18].

The Generative Adversarial Network (GAN hereafter) is a popular framework for
data synthetization and has been widely used in the domain of computer vision. It includes
a generator and a discriminator. The generator learns the distribution of the data and
generates data points based on the distribution. The discriminator classifies if the data
point is from the real data or created by the generator. The trained generator is then
used for data synthetization. This framework is flexible enough to incorporate various
neural network architectures. Badu-Marfo et al. (2022) used a GAN model in which
people’s demographics and trajectories were learned and synthesized with two model
components [19]. The model was assessed with the trip length distribution and route
segment usage. Rao et al. (2021) incorporated LSTM into the GAN framework to generate
mobility data considering spatial and temporal information of trajectories [20]. Jiang et al.
(2023) proposed TS-TrajGen, which aims at generating “continuous” trajectories where
trajectory segment pairs are adjacent on a road network. Their results were evaluated using
the travel distance, radius of gyration, location frequency, and OD flow [21]. Cao and Li
(2021) converted location points into an image and applied image-generation algorithms
for mobility synthetization [22]. Regarding the other related studies, ref. [1] provides a
comprehensive review of mobility generation using deep learning models. Most of the
previous models were evaluated with statistical characteristics at the aggregate level, such
as the distribution of trip/trajectory length, visiting frequency of locations, etc., and many
of them yielded good performance with these metrics.

Transformer-based models are popular for time-series data analysis, while the ap-
plication of such models on human mobility seems to be limited compared with other
architectures. Solatorio (2023) applied a transformer model to generate human mobility,
and the results were evaluated with the Dynamic Time Warping distance and the GEO-
BLEU metric [23]. Corrias et al. (2023) compared the performance of a transformer model
and a graph Convolutional Network to predict the next location of people [24].

2.3. Position of This Study

Many models introduced in Section 2.2 synthesized mobility patterns at the individual
level and attempted to solve privacy issues when data are shared. Despite the satisfactory
performance of numerous deep learning algorithms at the aggregate level, in contrast to
conventional models, many of them do not take urban factors (e.g., land use, population
density, transportation) into account (i.e., urban factors are not used as model inputs). Such
factors have been examined extensively in previous studies, and they can be significantly
related to human mobility [25-27]. This implies that these models may synthesize mobility
patterns for a current situation (i.e., generation) but may not be applied to predict human
mobility patterns when urban factors vary (i.e., prediction). In this study, we develop a
transformer model in which the model outputs vary with urban parameters. The model
is trained using 1978-1998 data, and mobility patterns are synthesized for 1978-2008.
Generated datasets for 1978-1998 are evaluated for generation power, while those for 2008
are examined for prediction power. The contributions of this study can be summarized as
the following:

1.  The self-attention mechanism is used to create vector representations for various
urban areas. The representing vectors (and thus the model outputs) vary with urban
and societal attributes, enabling the model to make predictions for a new setting of
urban and built environments.
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2. The constructed transformer model shows excellent generation power and high
prediction power. Examinations of the transformer components suggest that the
model seems to learn the spatial structure of the city and the temporal relationships
between movements.

3. Our analyses show that the generated mobility patterns could be different from reality
even though several aggregated statistics are reproduced.

3. Datasets and Preprocessing

In this study, we mainly use survey data collected from the Tokyo Metropolitan Area.
In the next three subsections, the survey details, data preprocessing, and additional spatial
datasets are introduced.

3.1. The Person Trip Survey Data

The Person Trip survey (PT survey hereafter) has been conducted every ten years by
the Ministry of Land, Infrastructure, and Tourism of Japan in major urban areas. In 1968,
1978, 1988, 1998, 2008, and 2018, residents were randomly selected and surveyed for their
daily trips. People with no trip were not surveyed in 1968, and some groups of people
seem to be overly represented in the 2018 data. To avoid potential misinterpretations and
keep the consistency in the datasets, the 1968 and 2018 data are not used in this study.
The PT surveys were conducted on households and collected information about people’s
trips on a given day. An example of individual survey data is illustrated in Figure 1,
and details are presented in Table 1. Locations and times of departure and arrival, travel
purpose, and means of the trip, as well as personal attributes (age, gender, occupation, car
ownership, etc.), are included in the datasets [28]. In the original dataset, each person has a
“magnification value” that is calculated from census data indicating the number of people
the person represents. This value is calculated in a way such that the number of people
in each age and gender group, the average number of people in a family, the number of
commuters, and the number of cars in each administrative region agree with the census
data. The average magnification values are 44.97, 45.98, 37.25, and 47.68 for 1978, 1988,
1998, and 2008, respectively. The low magnification values suggest high sampling rates
and thus decent representativeness for the whole population. In our research, the surveys
were conducted in the Tokyo Metropolitan Area (Figure 2) from 1978 to 2008, although the
surveyed regions changed slightly over the years. The day starts at 3:00 AM and ends at
3:00 AM the next day. We further filtered out persons whose trip information, such as trip
purpose, travel time, and location, is missing.

Commuting to work ’Working |Working Fhoppini\ Returning to home »‘
R |

home office  branch office shop home

Destination

Means of trip

Time of departure
and arrival

bus stop  bus stop ﬂ bus stop  bus stop

08:00 08:10  08:40  08:50

[ M
il (i

on foot | by bus on foot by taxi by taxi éon foot Eon foot by bus on foot

14:00  14:20 -
' 16:40  17:00
] 18:00 18:10 ' ' :
’ 18:30  18:40 19:10  19:20

Figure 1. Examples of trips in Person Trip survey data.
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Table 1. Details about Person Trip survey data.

Item Content

Areas subject to survey ~ Tokyo, Kanagawa, Saitama, Chiba, and Southern Ibaraki prefectures
A total of 24 h on weekdays in October 1978, 1988, 1998, and 2008

Survey time and day excluding Monday and Friday

Object of survey Persons over the age of 5 living in the above areas
Sampling Random sampling based on census data
Valid data A total of 588,352 persons, 667,937 persons, 883,043 persons, and

594,314 persons in 1978, 1988, 1998, and 2008, respectively
Personal attributes, locations and times of departure and arrival,

Content of data .
purposes of trips, etc.

50 km

[ Survey regions in 1978 M Survey regions added from 1988
I Survey regions added from 2008

Figure 2. Regions surveyed (spatial units) for person trips.

3.2. Construction of Daily Mobility Sequences

The whole survey area is divided into 342 regions for 2008 (as shown in Figure 2),
and the division is kept the same for other years. These regions are the spatial units for
people’s locations. Regions outside the survey area are treated as another region. A day is
segmented into 288 slots (5 min for each slot), and for each person, we assign each slot as
the person’s location during that 5-minute interval. If the person was traveling during the
interval, the slot is assigned as “Trip”. In this manner, one mobility sequence is constructed
for one person with a length of 288. Figure 3 shows two examples of mobility sequences.
In the original datasets, 0.79% of stays and 4.69% of trips last for less than 5 min, and they
are at the risk of being ignored. On the other hand, increasing the temporal granularity
increases the computation time significantly. Considering the above, the length of the slot
is set to be 5 min.

Ferson D ion 1 Trip MOinileigoieguence Trip Region 1
a \g//\ [ 1 1/ /7| - ARy AT
b (AR \;/\ HENZEE \/?/\ Y

[[] Indicates the location of a person at a time slot
Colors indicate regions and one cell for 5 minutes.

Figure 3. Examples of mobility sequences.
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3.3. Spatial Datasets and Data Preprocessing

Two additional datasets, namely, the Land Use Mesh data (the dataset is publicly
available at: https:/ /nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-v3_1.html (ac-
cessed on 5 April 2023)) and Land Price data (the dataset is publicly available at: https:
/ /nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-LO1-v3_1.html (accessed on 5 April 2023)),
are used. For the first dataset, the map is divided into 100 m x 100 m cells, and the land use
type is provided for each cell. Table 2 shows the five classes of land uses and their details.
Neighborhood characteristics have effects on individual travel behaviors, while forests and
rivers that are far away from residential areas may have little impact on people’s mobility
patterns. Thus, when preparing the land use for each region, cells within one kilometer
of the constructed areas (the “Building” type in Table 2) are taken into account. Using
the second dataset, prices per square meter for a large number of houses are available.
The land value is further normalized so that the average value over all regions is one
for each year to eliminate the effect of inflation over the years. From the two datasets,
we obtained the proportions of land use types and the average land value for residential
houses in each region. In addition to land use and land value, three other factors are taken
into account. Using the PT data, the average family size (i.e., the number of people in a
family) is aggregated for each region; integrating person trip survey data and the land
use data, population density in the constructed area (the “Building” type in Table 2) for
each region is calculated. Following previous studies [5,29], people are classified into four
groups based on their age and occupation: workers and colleague students, household
wives/husbands and the unemployed, high school students, and children under fifteen
years old. The proportion of each age-occupation group in each region is aggregated.

Table 2. Details of land use types.

Land Use Type Subtype Description
Farmland Wet, dry, swampy lotus fields and rice fields.
Farm and forest Other farmland The land used for growing wheat, upland rice, vegetables, grassland, etc.
Forest The land densely populated with perennial vegetation.
Empty Empty Wastelands or land with cliffs, rocks, perennial snow, etc.
Buildin Buildings Residential or urban areas where buildings are densely built up.
5 Other constructions The land for an athletic field, airport, baseball field, school, harbor area, etc.
Road Road Road or railway.
River and lake Artificial lakes, natural lakes, ponds, fish farms, etc.
Water Waterfront Areas of sand, rubble, and rock bordering the beach.
Sea area Including hidden rocks and mudflats in the sea.

To summarize, five feature values are prepared for each region: (1) the proportions
of land use types, as listed in Table 2, (2) average family size, (3) population density,
(4) average land value, and (5) the proportions of people in different age—occupation
groups. The five regional characteristics may have important impacts on daily mobility.
First, land use and family structure have been shown to have critical impacts on mobility
patterns, and they are reflected by the first two factors. Second, population density and
land value can be indicators of the accessibility to various facilities, transportation services,
and the city center. Thus, they may have potential effects on population movements.
Third, previous studies [5,29] have revealed that people from different age—occupation
groups show different activity—travel patterns and their proportions should have impacts
on the mobility patterns in a region. For each region, the above statistics are called the
contextual factors in the following sections. They are used as inputs in the models for
mobility generation/prediction.


https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L03-b-v3_1.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L01-v3_1.html
https://nlftp.mlit.go.jp/ksj/gml/datalist/KsjTmplt-L01-v3_1.html
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4. A Transformer-Based Model for Mobility Generation and Prediction

In this section, we introduce a model that generates/predicts mobility patterns ac-
counting for contextual factors (e.g., land use, land value). The region (i.e., the location)
in the mobility sequences is a categorical variable, and when transformer models or RNN
models (such as LSTM) are applied, it should be embedded into a numerical vector. In
other words, regions should be converted into vectors representing the information from
the regions. They are key components for transformer models. When there is only one
scenario (one-year data in this study), the conversion can be performed with conventional
embedding methods, and the vector representations are fixed. In our case, as contextual
factors of any region have varied over the years, the vector representing a target region
should vary with contextual factors, not only those of the target region but also those of
other regions, either close or far away. This characteristic enables the constructed model
to predict the mobility patterns in a new scenario, responsive to the changes in contextual
factors in any region. After regions are embedded, conventional generation architectures
can be applied.

To convert a region (categorical variable) and its contextual factors (numerical vari-
ables) into a vector, the self-attention mechanism is applied. As an important part of the
transformer model, the self-attention mechanism identifies the importance of different
elements on the target element and outputs a comprehensive feature for the target element.
It captures the relationship between elements (i.e., regions in this study) and thus is suit-
able for our conversion task. After regions are represented by vectors, the conventional
Generative Pre-trained Transformer model (commonly called the GPT model) takes such
vectors as input and generates/predicts mobility patterns. Here, a masked self-attention
mechanism is integrated using the GPT model. The framework of the model is illustrated
in Figure 4. It includes one self-attention part for embedding (i.e., for the conversion from
regions and factors to vectors) and one GPT model (i.e., for the generation of mobility
sequences). The two parts are connected, and the parameters of them are trained together.

1
1
1
1
1

Length d i
ID of the k-th location

. . Vector -
Region Contextua! Region Representitions Mobility
ID Factor of Regions ID of Regions Sequences
F== == | ""l""|"'|""|'l v — g""' poo T TTTTTTTTrT e !
1 0.1/02]...]0.7| wmp = | |03]1.7]...]6.6] =y : i
? : | 'Sequencel [ 1[1]..[1]
2 [o3fos[ .. Jr1]imm|  Self w2 [02fie]...[-3] = Gpp | :
; Attention | ! o 1Sequence 2 2]4a]...[2] !
3 lo2foa] .. [33] = Embedding* |™ | 3 22[04]...[2.1]: mup| Model . ----
[ [ [oc] o [ - | L] - P ;
Landluse l i i E ID of the first location l E

Land value!

*  The self-attention embedding module converts regions and contextual factors into vectors representing regions.
** The GPT model takes the vector representations to generate mobility sequences.

Figure 4. Overall architecture of the generation model.

Compared with other deep learning approaches (e.g., RNN), the proposed framework
has several advantages. First of all, most deep learning approaches (including the one
proposed in this paper) synthesize mobility sequences by predicting locations one by one.
In other words, the i-th location (i.e., location at the i-th time slot) is predicted based on
previous locations from the first to the i—1-th. Information from vector representations
of previous locations is the input to predict the next location. In our model, the vector
representation of any region (location) is created considering regional attributes from all
other regions using the self-attention embedding module. Thus, the prediction of the next
location is responsive to not only the regional factors of the previous regions but also any
region in the study area. On the other hand, most existing models do not have such a
feature, where the next location is predicted based on only regional features of previous



ISPRS Int. ]. Geo-Inf. 2024, 13, 35

8 of 23

locations. Second, the GPT model enables us to understand how the predictions are made
to a certain level, as shown in Section 5.4.2. The two components of the model are detailed
in the next two subsections.

4.1. The Self-Attention Mechanism for Embedding

For any year y, the self-attention mechanism uses three matrices: Q,, Ky, and V;.. They
are commonly named queries, keys, and values. In the following, we will introduce how Q,
is constructed from regional features. For Ky and Vj, the construction methods are basically
the same. In the following equations, capital letters indicate matrices, while lowercase
letters indicate vectors.
Region is a categorical variable (regions are represented by region ID), and any region
has numerical features (i.e., contextual factors) that vary over the years. For any region i
(i=1,2,...), we denote its numerical features in year y as x; ;. The self-attention module
first converts the categorical variable and the numerical features into two vectors of the
same length, d:
Ye,i = EC,Q(i)/ EC,Q € RnXd/ Gei € R4 1)

fiy = xi,yEf,Q, Xiy € Rle, Ef,Q € Rle, Gfiy € R1xd @)

where E (i) is the i-th element of the region-embedding matrix, which is a vector (i.e., 4. ;)
of length d representing the categorical variable for region i; 1 is the number of regions; x; ,
is the numerical feature of length [; and Ef g is a 2-D matrix of size | x d, which projects x;
into a vector of length d. E; g and Ef ¢ are parameters that will be learned for constructing
queries (i.e., Q). q.; and gy, are then added into a vector:

Tiy =Ydei t9f,iy Qiy € R4 3)

where g; , is called the “query” element in the self-attention mechanism. For n regions,
the query elements are stacked together to form the queries, Q,, a 2-D matrix of size
n x d. Using the same procedure, but replacing (E. o, Ef,g) with (E.k, Efk) and (Ev,
E f,v), we obtain the “keys” matrix, Ky, and the “values” matrix, V, for the self-attention
mechanism. Ideally, we want E. o, E. x, and E.y to account for regional characteristics that
are not included in the contextual factors, such as some regional-specific conventions or
correlations that do not vary over the years. E¢ g, Ef k, and Ey y are intended to account
for numerical (i.e., contextual) factors input into the model. Using Qy, Ky, and V,, the
self-attention model then outputs the vector matrix representing all regions:

2k

Vd

where Ry is a matrix of size n x d, and each row is a vector representing a region, which
varies with the contextual factors of all regions. In addition, regions outside the survey
area are treated as one region and its contextual factors in a certain year are set to the
average value of contextual factors of all regions in the year. Travel behavior (“Trip”) is
treated as a region. Its contextual factor is set to be a zero vector. Since travel behavior may
have a relationship with regional attributes in a year, it is processed in the same manner
as regions, and its vector representation is included in R,. Moreover, when generating
mobility sequences, there is a start patch according to which the first location is generated.
The start patch is also treated as a region class. Since the probability of the first location
should vary with the features of different regions, the representation vector of the start
patch is also calculated using the above procedure. Its contextual factor is set to be a zero
vector of length d, and the final vector representation is also one row in Ry. In conclusion,
there are 345 region vectors in Ry (i.e., n = 345), including 342 vectors for regions in Figure 2,
one vector for regions outside the survey area, one for the travel behavior, and one for the
start patch.

Ry = softmax( ) Vy, Qu. Ky, Vy € R"X‘i, R, € R"*4d @)
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! Next Location !
i Prediction** i

The matrix Ry, can be used as the vector representation of regions, the travel behavior,
and the start patch. To include more complicated patterns, in our study, Ry is further
linearly projected twice, and the final projected matrix (also of size n x d) is the matrix
representing regions, travel, and the start patch. In addition, the dimension of value
elements (that form V}) can be different from that of the query/key elements (that form Q,
and Ky). For simplicity, we use the same dimension (i.e., d) for all of them.

Moreover, the self-attention model could include multiple “patterns” of relationships
between regions by generating multiple R, matrices using different parameter settings of
(Ec,0, Ef,0), (Eck, Ef k), and (E. v, Efy). The Ry matrices could be concatenated to a 2-D
matrix of size n x (hd), where the number of parameter settings (patterns) is h.

4.2. The GPT Model

When the vector representations of regions are obtained, we apply the conventional
GPT model for mobility generation. Figure 5 shows the architecture of the GPT model.
For an incomplete mobility sequence of length m, the vector representations of its regions
(region vectors hereafter) from Section 4.1 are prepared first. Second, the positions of
regions (1,2, ...,288) on the sequence (i.e., time) are embedded into vectors of length d
(position vector hereafter), the same as the length of region vectors. The position vectors
and region vectors are added (“Vector Addition” in Figure 5), creating m vectors of length
d. The series of vectors is appended with zero vectors so that there are 288 vectors of length
d (if the start patch is included, there are 289 vectors). They are the standard input into
the transformer model (“Transformer Encoder” in Figure 5), which outputs the probability
of the location at the next time slot (i.e., the m + 1 slot). The structure of the transformer
encoder is on the right-hand side. Interested readers may refer to the work by Vaswani et al.
(2017) [30] for more details on the transformer model and the self-attention mechanism.
When generating mobility sequences, the start patch is input into the model, and the
probabilities of locations at time one are calculated. The first location is randomly selected
based on the probabilities. The start patch and the first location are then input into the
model, and the probabilities of the next locations are the outputs. After random selection
on the second location, the start patch and the two locations are input into the model. By
iterating the above steps 288 times, one mobility sequence is constructed, and more can be
generated using the same procedure.

I Transformer Encoder

Probabilities of
Locations in the Next )J
Time Slot (at Position 4

|
""""""""" ' I Head 6
|
Transformer Model Transformer Encoder ’ I
I Perceptron
1 1 1 ! 1 —
Vector Addition [ + [ + [ + [ + + + I
|
Position 1
Embeddings [ﬁ 1 Masked Multi-
1 Head Attention
Vecftr(;rlflf;ireI::lgfi-ons ( Start ) { Regionl ) | (_Regionl ] ( Trip Zero vector) | (Zero vector) | [ 1 1
attention embedding | (231 [72] | [l 7] | 2l et | [l Joo] | [ LTo ] [[oTTo ||:
Sioaatign 1 L] l l I l R
E Incomplete Mobilityi [ i) H Region 1 Region 1 Tri Appended zero Ve.actors so that the] 1 Embedded
: Semionce* : art patc egion H egion H Tip H Jength is 288 | xr\l]eztore

* In the above example, the incomplete mobility sequence includes the first three locations for positions one, two, and three (i.e, indices of time slots).
** In the above example, the output probabilities are used to determine the location at position four.

Figure 5. Architecture of the GPT model.
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The grey block in Figure 5 is also called a head. It can be duplicated in parallel, as well
as stacked, multiple times to increase the complexity of the model. The number of parallel
duplication of heads is the same as the number of parameter settings (i.e., i) in Section 4.1,
and different heads receive different vector representations of regions (R, matrix) and
position vectors. The number of layers of heads (stack) is denoted by L hereafter. i, L, and
d are three hyperparameters that determine the complexity of the model.

5. Experiments and Results

The model is trained using datasets from 1978 to 1998. Datasets are generated for 1978,
1988, 1998, and 2008 with different contextual factors for different years. The generative
power of the model is evaluated by comparing the similarities between the real and
generated datasets from 1978 to 1998. Generation results for 2008 are examined for the
prediction power of the model because the 2008 data are not used during the training.

5.1. Setup and Evaluation Metrics

The five factors for each region mentioned in Section 3.3 are concatenated into a
vector of length [ and serve as the input to the self-attention model for region embedding.
The three hyperparameters, h, L, and d, are set to be 3, 3, and 24, respectively (i.e., three
heads, three layers, and twenty-four dimensional vectors for queries, keys, and values).
These hyperparameters are set with multiple experiments so that the increase in them
does not lead to significant improvements in terms of the generation results. The model is
trained until the loss is small enough and additional training does not improve the model
performance on the training dataset (i.e., the 1978-1998 data).

To evaluate the mode performance, we also apply an LSTM-based model to generate
and predict mobility data. As stated in Section 2.2, the LSTM model is one of the widely
adopted frameworks for mobility generation. However, most existing models for mobility
synthetization do not consider contextual factors and thus cannot be used for mobility
prediction given different scenarios (i.e., different settings of contextual factors). To make
a fair comparison, the vector representation for a region used in the LSTM-based model
is created using the contextual factors of this region (using a linear transformation) and
a categorical embedding. This enables the LSTM model to predict mobility patterns for
new cases. The dimension of vector representations of regions, which is also the number
of input features of the LSTM model, and the number of features in the hidden state of
the LSTM model are set to 64. The number of recurrent layers in the LSTM model is set
to 3. Our multiple experiments indicate that larger LSTM models show slightly better
performance on the training datasets but worse performance in predicting the 2008 mobility.
Thus, larger models are not used.

In line with existing studies, three aggregate statistics are used to evaluate the gener-
ation accuracy: the distribution of the number of trips, the distribution of the number of
distinct regions visited, and the distribution of travel time for travelers. However, these
three measurements can be insufficient. Even if aggregated statistics are perfectly synthe-
sized, the generated datasets could be potentially very different from the original ones.
Following Wang and Osaragi (2022) [5], the sequential characteristics are evaluated for the
generated datasets. Sequential characteristics indicate which regions are traveled by people
in which order, which is evaluated by counting the number of distinct region sequences. A
region sequence is similar to a mobility sequence, as defined in Section 3.2, but the duration
of stays and trips are ignored. For instance, the two examples in Figure 3 are converted
to be the two region sequences: (1) region 1 — trip — region 2 — trip — region 1 and
(2) region 3. For the first sequence, the start times and durations of trips/stays (temporal
information) are discarded. Different people may have the same region sequences, and the
number of distinct region sequences is counted for the real and the generated datasets. The
count of region sequences is a stricter metric than aggregated statistics. A region sequence
generally has fewer counts if it includes more trips, and the counts of sequences may vary
for several orders of magnitude. Thus, it is improper to plot all the distinct region sequences
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on the same plot. We classify them into three types: region sequences with no trip (i.e.,
people stay in the same location for the whole day, Type 1 hereafter), region sequences
with two trips whose start regions are the same as end regions (Type 2), and other region
sequences (Type 3). The results are compared separately.

5.2. Evaluation of the Generation Power

Generation power is examined by comparing the real and generated mobilities for
1978, 1988, and 1998. Figure 6 shows the aggregated statistics for the original datasets and
the generated datasets using the transformer-based (GPT in Figure 6) and the LSTM-based
(LSTM in Figure 6) models. Figure 7 shows the sequential evaluation (i.e., comparison of
the real and generated region sequences) for 1978-1998 for the transformer-based model.
To save space, the same evaluation for the LSTM-based model is shown in Appendix A

(Figure Al).
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Figure 6. Evaluation of the number of trips (proportion of trip counts), the number of distinct regions
visited (proportion of region counts), and travel time for travelers. “ave” in the legend indicates the
average value, and the bin size of travel time is 10 min. (a) 1978, (b) 1988, and (c) 1998.
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Figure 7. Sequential evaluation of three types of region sequences using the transformer-based
models. (a) Results for 1978, (b) results for 1988, and (c) results for 1998.

Regarding the distribution of trip counts (i.e., figures at the top of Figure 6), the

generated results are good for both models. The proportion of people with four trips
is underestimated by a tiny amount using the transformer-based model, while that of
two trips is undervalued using the LSTM model. The average values reproduced with
the transformer model are slightly more accurate than the LSTM model. Overall, the
distribution of the number of trips seems to be stable from 1978 to 1998. In terms of the
distribution of the number of distinct regions visited (figures in the middle), the transformer
model seems to outperform the LSTM model. From 1978 to 1998, the percentage of
individuals who visited only one location dropped from 60% to 55%, while that of people
who visited two locations increased from 33% to 39%. Consequently, the average number of
regions visited ascended from 1.50 to 1.54. This variation is captured with the transformer
model. On the other hand, the LSTM model does not seem to have learned the differences
precisely, as evidenced by the unvarying generations of distributions and average values
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Proportion of occurrence

Generated proporiton

over the years. The distribution of travel time for travelers (figures at the bottom) varied
over time. Short-time daily travel declined, and the average daily travel time rose. The
distribution of travel time is replicated using the two models, while the transformer-based
makes a better prediction of the average values than the LSTM-based model. In terms of
the sequential evaluation in Figure 7, it can be observed that all types of region sequences
are well-reproduced, especially for Type 1 and Type 2. These observations suggest that the
generation power of the transformer-based model is satisfactory. The comparison of R?
values in Figures 7 and A1l indicates that the transformer-based model outperforms the
LSTM-based model.

5.3. Evaluation of the Prediction Power

Figure 8 (for the two models) and Figure 9 (for the transformer model) show the
aggregated distribution of three measurements and the sequential evaluation for 2008.
The sequential evaluation for the LSTM-based model for 2008 is shown in Figure A2 in
Appendix A. At first glance, the generation of aggregated statistics (Figure 8) is not bad. In
terms of the sequential evaluation (Figures 9 and A2), compared with those in Figures 7
and Al, there are significant differences between the real and generated region sequences,
especially for Type 1 and Type 2 sequences.
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Figure 8. Evaluation of aggregated statistics for 2008. (a) The number of trips, (b) the number of
distinct regions visited, and (c) travel time for travelers.
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Figure 9. Sequential evaluation of the three types of region sequences using the transformer-based
model for 2008. (a) Type 1 sequences, (b) type 2 sequences, and (c) type 3 sequences.

From the sequential evaluation, the difference between the real and generated datasets
is remarkable. This suggests that the two models are not capable of predicting what regions
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are traveled by people in what order. Thus, the estimated Origin—-Destination matrix using
such data can be significantly different from reality. A further analysis shows that the
proportions of people being in different regions at the start time (3:00 a.m.) are different
from the real data. In other words, the probabilities for locations at time one are incorrectly
predicted when the start patch is input into the model. If we knew the start location of
people (at 3:00 a.m.), better predictions could have been made. Researchers have developed
various models to predict the distribution of the nighttime population with high accuracy,
and such information could be one of the scenario settings for mobility prediction. Given
the nighttime population (i.e., the distribution of people at 3:00 a.m.), the generated mobility
data can be modified. We assign each mobility sequence a weight such that the proportions
of people in different regions at time one agree with the real data. For a mobility sequence
s, the weight assigned to it is:

M,y /M

Vvl (5)
My /M

w(s) =
where w(s) is the weight assigned to sequence s; s(1) is the first location of sequences
s; M,(q) is the number of original sequences whose first location is 5(1); M is the total
number of original sequences; M;(l) is the number of generated sequences whose first

location is s(1); and M’ is the total number of generated sequences. Sequences with the
same start location are assigned the same weight. This operation is equivalent to specifying
the probabilities of the regions at time one (i.e., the output probabilities when the start
patch is the input) and generates mobility sequences accordingly. The evaluations of
weighted mobility sequences are shown in Figure 10, Figure 11 (for the transformer-based
model), and Figure A3 (in Appendix A for the LTSM-based model). For the sequential
evaluation (Figures 11 and A3), the accuracy is visually improved, and the transformer
model performs better.
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Figure 10. Evaluation of aggregated statistics for 2008 with weighted mobility sequences. (a) The
number of trips, (b) the number of distinct regions visited, and (c) travel time for travelers.

Noticeably, the proportion of people who visited one distinct region dropped (60%,
56%, 55%, and 49% for 1978, 1988, 1998, and 2008, respectively) and those who visited
two regions increased (33%, 37%, 39%, and 43% for 1978, 1988, 1998, and 2008). The
variations from 1978 to 2008 are significant. The transformer-based model synthetizes these
attributes accurately, while the outputs of the LSTM-based model do not change much with
contextual factors. The transformer model also performs better in terms of the generated
distribution of travel time, especially the predicted average value for 2008 (Figure 10c). The
sequential evaluations (R? values in Figures 11 and A3) further validate its superiority. Such
observations suggest that the transformer model has captured some essential relationships
between inputs and outputs while the LSTM model has not. However, the reasons why
the transformer-based model outperforms the LSTM-based model are not yet apparent.
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Type 1, Adjusted Start 2008

From Figures 6 and 10, it can be observed that the average number of trips is stable over the
years, while the average number of regions visited and the average travel time increased.
This implies that the average trip distance has increased, probably due to the development
of transportation services and the change in urban structures (related to urban land use
and land value). One of the possible theories explaining the superior performance of the
transformer model is that people’s travel behaviors originating from one region are not only
related to the characteristics of the region but also to other regions nearby or even far away,
as they can be potential destinations. The proposed transformer-based model captures
such relationships with self-attention embedding and thus makes accurate predictions.
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Figure 11. Sequential evaluation of the three types of region sequences using the transformer-based
model for 2008 with weighted mobility sequences. (a) Type 1 sequences, (b) type 2 sequences, and
(c) type 3 sequences.

Despite the prediction accuracy, it is still in question if the transformer-based model
has learned enough to predict mobility patterns given a new scenario. For the number
of trips in Figure 10a, the proportion of people with three trips is underestimated. The
generated distribution of trip counts for 2008 looks similar to those in 1978-1998, suggesting
that the model made limited responses to the contextual factors in 2008. For distinct regions
visited in Figure 10b, the pattern generated with the transformer model looks similar to the
real pattern in 2008 and different from patterns in other years. This suggests that the model
made an accurate extrapolation for the number of regions visited based on the contextual
factors. For the distribution of travel time, the generated pattern is similar to that in 1998,
and short daily travel times are overestimated. More datasets are needed to validate the
prediction power.

5.4. Interpretation of the Transformer Model

In this subsection, we provide a deeper analysis of what the model has learned.
Specifically, the spatial similarity and temporal relationship of daily mobility are evaluated.

5.4.1. Spatial Similarity of Regions

Vector representations for regions imply the meaning of regions (locations) for human
daily mobility. We would expect that regions that are close, or regions that have similar
accessibility to various facilities, should be represented similarly. We select nine regions,
four from the city center (Chuo-ku, Tokyo; Chuo-ku, Chiba; Nishi-ku, Kanagawa; and
Arakawa-ku, Tokyo) and five from the suburban areas (Hachioji, Tokyo; Tsukuba, Ibaraki;
Oi-machi, Kanagawa; Hanyu-shi, Saitama; andAsahi-shi, Chiba) to analyze what was
learned by the model. The R, matrices in Equation (4) are concatenated into a 2-D matrix
of size n x (hd). For any of the selected regions, the cosine similarities between the vector
representations (i.e., rows of the 2-D matrix) of the target region and other regions are
calculated and visualized on the map for 1998. The results are shown in Figure 12. It can be
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observed that the vector representations of regions are similar to those of regions that are
close to them. For a suburban region, its vector representation can be similar to those of
other suburban regions, even if they are far away.
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Figure 12. Cosine similarity of vector representations between the target region and other regions for
1998. Red pentagons are the target regions and green dots are the centroids of building areas for other
regions. (a) Nishi-ku, Kanagawa, (b) Chuo-ku, Tokyo, (c) Chuo-ku, Chiba, (d) Hachioji-shi, Tokyo,
(e) Arakawa-ku, Tokyo, (f) Tsukuba-shi, Ibaraki, (g) Oi-machi, Kanagawa, (h) Hanyu-shi, Saitama,
and (i) Asahi-shi, Chiba.

Using principal component analysis, vector representations are visualized in the 2-D
space with the first two principal components (Figure 13). The colors indicate the distance
between the region and the city center (the Tokyo Station). It is observed that regions close
to the city center are on the right side and those far from the center are on the left. On the
other hand, regions on the upper side are mostly on the east, while the lower side contains
more on the west. Visually, regions seem to be evenly distributed, and no significant
clusters are observed. This may imply that human mobilities in different regions mostly
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vary smoothly. The analyses of Figures 12 and 13 suggest that the model learned the spatial
structure of regions, which generally agrees with our common sense.

= . Chuo-ku, Chiba

O

g Asahi-shi, ¢ Arakawa-ku, Tokyo

Q.| Chiba < »

g o

o e o° o

© >

'c_é ‘. Q".

R

8 e®e Chuo-ku, Tokyo

= °

= o ® Nishi-ku, Kanagawa e <20km

"g Oi-machi, o . . 20km—40km
& | Kanagawa N Tsukuba-shi, Ibaraki 40km—60km
5] e

% Hachioji-shi, Tokyo >60km

Hanyu-shi, Saitama

First principal component

Figure 13. Visualization of the first two principal components for vector representations for 1998.

5.4.2. Temporal Relationship of Daily Mobility

The self-attention mechanism in the GPT model enables us to explore the relationship
between the current location and previous locations by analyzing the attention matrix.
Using a conceptually similar approach as [31], we examine the temporal relationship among
people’s locations. Suppose that the input into the GPT model (after “Vector Addition” in
Figure 5) is a sequence of vectors Z; € RN*4 where N is the number of vectors (equal to
289 in this study including the start patch) and s indicates the sequence. In the transformer
encoder (“Transformer Encoder” in Figure 5), Z; is projected to three matrices of size N x d,
namely, Qs, K;, and Vi:

[Qs,Ks, Vs] = ZsU, U € R, Q, K, Vs € RN ©)

The attention matrix is:

QsKsT Nxd
As = softmax | mask Nz , Qs,Ks €eR (7)

The i-th row of A, indicates the “attention” paid to previous locations to predict the
i 4 1-th location on sequence s. It indicates the weights of previous locations to predict
the next location. The higher the value, the more attention is paid. For multi-head and
multi-layer self-attention models, there is one attention matrix for each head on each layer.
These attention matrices are summed into one matrix for the simplicity of interpretation.
Since attention can be only paid to previous locations and the sum of attention values
equals one in each row of Ag, locations early in the day have fewer previous locations and
thus more attention (weights) to each of the previous locations. For a fair comparison, each
row is weighted with the average attention (value) for previous locations. Figure 14 shows
the average weighted attention matrix for randomly selected 10,000 mobility sequences.
Attention is usually paid to locations that are temporarily nearby, as the values are higher
near the diagonal. This might be because people are likely to stay in the same place for
consecutive time slots, and thus the current location is powerful in predicting the next
location. To predict locations from 8:00 to 15:00, the location around 4:30 and the locations
after 8:00 are paid the most attention. Locations at night (after 18:00) are mostly predicted
by the location around 4:30 and locations after 15:00. The model paid little attention to
locations in the morning (from 6:00 to 12:00) when predicting night locations, probably
indicating the weak correlation between them. It should be noted that low attention values
to some time slots do not always imply low temporal correlations between the target and
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these slots—it only suggests that the model made the prediction based on little information
from these slots. We expect that the model should generally pay more attention to time
slots with high temporal correlations, but not necessarily.

3:00
6:00 |
9:00 0.3

12:00

0.2

Time of the next locations
o
()
(]

30001t 6:00 9:00 12:00 15:00 18:0021:00 24:00 3:00

Time of previous locations
Figure 14. Average weighted attention to previous locations (x-axis) to predict the next (y-axis).

Vector representations of time slots (i.e., position vectors) are input into the model
to predict future locations. When making predictions for the next location, much of the
attention is paid to previous time slots that are nearby. If two time slots are represented by
similar vectors (position vectors), we would expect that their following locations might be
similar (but not necessarily). To justify that the model has learned something reasonable, the
temporal similarity in daily mobility is examined by investigating the vector representations
of time slots (i.e., the position vector). Figure 15 shows the cosine similarities between
position embeddings. The vector representations for time slots nearby are similar, probably
suggesting their consecutive locations are similar. This agrees with the fact that most stay
last for more than one time slot. The embeddings at nighttime (from 21:00 to 6:00) are
similar to each other, indicating that people’s locations after these slots (perhaps several
slots later than them) are likely to be the same. Visually, there seem to be several time
blocks that have higher similarities for time slots within them (black boxes in Figure 15):
6:00 to 8:00, 9:00 to 12:00, 13:00 to 17:00, and 18:00 to 24:00. Their consecutive slots are
likely to correspond to the daily time before work/school in the morning, during morning
work/school, during afternoon work/school, and in the evening. The high embedding
similarity suggests that people are likely to be at the same location during these periods. In
addition, vectors for time slots from 7:00 to 9:00 are similar to those even for slots in the
afternoon, suggesting that destinations for morning trips are likely to be the same for the
location during the daytime. The above analysis provides intuition about what might have
been learned by the model, which mostly agrees with our experience. Since we cannot
yet fully understand the transformer model and the model may not capture everything
correctly, the above inferences should be validated with other statistical methods.
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Figure 15. Cosine similarity between position vectors. Four black boxes indicate four time intervals:
6:00 to 8:00, 9:00 to 12:00, 13:00 to 17:00, and 18:00 to 24:00.

6. Discussion and Conclusions

In this paper, we applied the transformer-based model to learn human daily mobilities
using 1978-1998 data. The model includes one self-attention mechanism to output vector
representations for regions and one GPT model that takes these vectors as input and outputs
daily mobility patterns. The performance of the model is evaluated using aggregated
statistics (i.e., the distribution of the number of trips, distinct regions visited, and travel
time) and sequential characteristics. Our evaluations indicate that the generation and
prediction powers of the model are satisfactory and superior to an LSTM-based model.
Analyses of the results for 1978-1998 suggest that the model generated daily mobility with
high accuracy. Regarding the prediction for 2008, the three aggregated measurements
are well reproduced, but the sequential characteristics are different from the real data.
After applying weights to mobility sequences so that the generated number of people in
each area at nighttime (i.e., 3:00 a.m.) agrees with the real data, significant improvements
are observed in terms of sequential characteristics. This observation suggests that if the
start location could be correctly predicted, higher prediction accuracy would be achieved.
This also implies that the vector representation of the start patch is not well-learned, and
perhaps more contextual factors or other learning algorithms should be used. In addition,
the predicted frequency of trips and the distribution of travel time for 2008 look similar
to those from the training data, while the distribution of distinct regions visited is well-
reproduced for 2008 and is different from other years. This indicates that the model made
some reasonable predictions based on the contextual factors, but not comprehensively.
It is worth noting that the model was trained using only 3-year data (three contextual
factor settings), and its full prediction power may not be unlocked due to the limitation of
datasets. If more datasets were available, the prediction accuracy could be improved, and
deeper evaluations could be made.
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Moreover, by evaluating the vector representations of regions and positions (i.e., time
slots), the spatial structures of regions, as well as the temporal relationship of mobility,
seem to have been learned by the transformer model. The learned structure basically agrees
with our common sense. Interpretations from the self-attention mechanism are unique to
the transformer model, and further analyses can be conducted using other formations of
the model. This suggests the promising potential of using the model for mobility modeling
and probably knowledge extraction.

Previous studies have used various deep learning frameworks to generate human
mobility patterns, and synthetic datasets were mostly evaluated with several aggregate
statistics. Our study shows that aggregated statistics can be limited. For example, three ag-
gregate measurements are well reproduced for the 2008 data (Figure 8) while the sequential
features (at a “more disaggregate level”) can be remarkably different from reality (Figure 9)
if the weighting procedure is not applied. On the other hand, the accurate synthetization of
sequential characteristics could be critical when constructing the Origin-Destination matrix
for traffic analysis. This work shows that, when mobility data are generated and evaluated,
metrics that reveal more detailed spatial-temporal characteristics could be helpful for a
comprehensive evaluation.

There are several future topics for this study. First of all, one of the purposes of
generating synthetic data is to share mobility data while protecting individual privacy.
Although the generation power is high, there is still a question of to what extent privacy is
protected. This will be examined in future studies. Second, since there are only three years of
data for training the model, the learning ability cannot be investigated comprehensively. If
sufficient data are available, a universal model might be constructed for mobility generation
and prediction under a wide range of scenario settings.
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Figure Al. Sequential evaluation of three types of region sequences using the LSTM-based model.
(a) Results for 1978, (b) results for 1988, and (c) results for 1998.
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Figure A2. Sequential evaluation of the three types of region sequences using the LSTM-based model
for 2008. (a) Type 1 sequences, (b) type 2 sequences, and (c) type 3 sequences.
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Figure A3. Sequential evaluation of the three types of region sequences using the LSTM-based
model for 2008 with weighted mobility sequences. (a) Type 1 sequences, (b) type 2 sequences, and
(c) type 3 sequences.
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