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Abstract: Recent advances in knowledge graphs show great promise to link various data together to
provide a semantic network. Place is an important part in the big picture of the knowledge graph
since it serves as a powerful glue to link any data to its georeference. A key technical challenge in
constructing knowledge graphs with location nodes as geographical references is the matching of
place entities. Traditional methods typically rely on rule‑based matching or machine‑learning tech‑
niques to determine if two place names refer to the same location. However, these approaches are
often limited in the feature selection of places for matching criteria, resulting in imbalanced consider‑
ation of spatial and semantic features. Deep feature‑based methods such as deep learning methods
show great promise for improved place data conflation. This paper introduces a Semantic‑Spatial
Aware Representation LearningModel (SSARLM) for PlaceMatching. SSARLM liberates the tedious
manual feature extraction step inherent in traditional methods, enabling an end‑to‑end place entity
matching pipeline. Furthermore, we introduce an embedding fusion module designed for the uni‑
fied encoding of semantic and spatial information. In the experiment, we evaluate the approach
to named places from Guangzhou and Shanghai cities in GeoNames, OpenStreetMap (OSM), and
Baidu Map. The SSARLM is compared with several classical and commonly used binary classifi‑
cation machine learning models, and the state‑of‑the‑art large language model, GPT‑4. The results
demonstrate the benefit of pre‑trained models in data conflation of named places.

Keywords: knowledge graph; place entity matching; location‑based service; place data; conflation

1. Introduction
People often perceive theworld using named places. Thus, theworld of named places

can be a kind of georeferencing knowledge. As science and technology continue to pene‑
trate all levels of society, big data are continuously generated from various sources, such
as sensor systems data, user‑generated content in social networks, socio‑economic data,
and hybrid data sources, including linked data and synthetic data [1]. Most of these data
involve named places, which effectively stimulates geospatial knowledge sharing among
various sectors in cities [2]. From the ontological perspective, place entities can be for‑
malized using ontological approaches. The Semantic Web and its best practice, Linked
Data, help to publish place entities on the Web using ontologies and Resource Descrip‑
tion Framework [3]. It is feasible to organize knowledge and details about place entities
according to Linked Data principles and create a place knowledge graph on the Web [4].
The above ideas can result in a paradigm shift for Geographic Information Science [5–7].
From distributed databases accessed through Web services to knowledge represented as
graphs, place nodes serve as a powerful “glue” to link any other data to its georeference,
thus enabling integration of information across domains.

In the construction of multi‑source data knowledge graphs that utilize location nodes
as geographic references, place entity matching emerges as a pivotal technology [7–10].
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Models for matching place entities can be categorized into two primary types, based on
the nature of the data: textual matching and spatial matching. Textual matching processes
largely depend onmeasuring similarities in the text‑based attributes of entities, such as the
congruence of place names and the likeness of categories, to determine if multiple source
place entities refer to the same real‑world location [11–13]. Conversely, spatial matching
utilizes geometric measures of spatial coordinates, including spatial distances, as signifi‑
cant indicators of match suitability [14–16]. For the task of matching place entities, tradi‑
tional rule‑basedmethods necessitate the selection ofmatching factors for the computation
of similarities, setting thresholds for each to ensure proper alignment. The most prevalent
technique for amalgamating these similarities is the weighted sum approach within math‑
ematical models, which assigns scores to each matching factor according to its relative
weight. To diminish the level of manual intervention and circumvent the need for em‑
pirical weight configurations, recent advancements have been made in machine learning‑
basedmatchingmethods. Studies such as those byMcKenzie et al. [11] and Santos et al. [17]
have showcased models trained on manually annotated datasets, which serve as a substi‑
tute for manual parameter settings.

However, several challenging issues are hindering the advancement of geographical
entity matching: (1) Rule‑based methods are hampered by manual experiential interfer‑
ence and the tedious nature of feature selection and calculation, preventing the matching
models from achieving uniformity across diverse, heterogeneous geographic data sources.
(2) Existing machine learning approaches to geographical entity alignment generally de‑
pend on character distance similarity of toponyms, lacking the capability to capture deep
semantic features, and thus limiting the further enhancement of place entities matching
performance. (3) When multi‑source place data lack attribute fields, geographic entity
matching methods grounded in feature engineering may turn out to be ineffective. There‑
fore, the demands on matching models in place entity matching tasks are considerably
higher, necessitating the ability of the models to rapidly, accessibly, and accurately adapt
and align data from disparate sources for aggregation and unification [18].

With the advent of pre‑trainedmodels, newapproaches to address these requirements
and challenges have been introduced. Pre‑trained models, exemplified by Bidirectional
Encoder Representations from Transformers (BERT) [8] and Generative Pre‑trained Trans‑
former (GPT) [19], acquire a broad understanding of language through unsupervised or
semi‑supervised learning on extensive text corpora. These models, particularly leveraging
the Transformer architecture, effectively capture the bidirectional contextual information
of language. Extensive research has validated their exemplary performance across various
natural language processing downstream tasks. However, the efficacy of these models in
addressing the domain‑specific needs of place entities matching remains unverified. Place
entity matching differs significantly from general domain entity matching, primarily due
to its emphasis on spatial characteristics [20]. A critical area of investigation is integrating
spatial feature spaces with textual feature spaces within the model. This integration in‑
volves not only understanding the linguistic aspects, but also accurately interpreting and
aligning the spatial dimensions of place entities. This would entail enhancing pre‑trained
models with spatial awareness and tailoring them to better accommodate the unique re‑
quirements of geographical data representation and alignment [21].

In this paper, we propose a semantic‑spatial aware representation learning model for
placematching, which is an end‑to‑end place entity matching approach based on the large‑
scale pre‑trained model. This advanced approach transcends the cumbersome manual
feature extraction steps, which are a staple in traditional machine learning models and,
instead, implements a comprehensive place entity matching pipeline system. This system
is adept at supporting swift and dynamic updates in geospatial data‑intensive tasks.

Our investigation particularly scrutinizes the multifaceted challenges that emerge
when fusing diverse datasets to construct a robust knowledge graph. These challenges
include, but are not limited to, linguistic variations, orthographic disparities, geometric
inconsistencies, temporal discrepancies, and categorical ambiguities. We meticulously
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demonstrate the refinements and advancements that are brought about by incorporating
rule‑based models, machine learning models, as well as the more recent pre‑trained large
models and extensive language models when tackling these complexities.

The experimental data for this study is sourced from the authoritative Baidu Maps,
the user‑generated OSM, and the digital gazetteer GeoNames. Utilizing the methodology
outlined herein, we publish our place entity linkage as an open data source for the place
knowledge graph (PlaceKG).

Our contributions are threefold:
• Wepresent a Semantic‑Spatial Aware Representation LearningModel for PlaceMatch‑

ing and Fusion based on a pre‑trained large model that achieves a unified mapping
of location feature spaces and textual feature spaces.

• We evaluate the capabilities of different types ofmodels for the task of placematching,
and present a granular showcase of the potential improvements offered by rule mod‑
els, machine learning models, pre‑trained large models, and large language models
in response to nine types of case challenges.

• We construct the PlaceKG and validate its utility in the realm of location querying and
Location‑Based Services, furthering the field of Geographic Information Science.

2. Related Work
The place knowledge graph in this paper is a semantic format based on linked data prin‑

ciples, which is constructed by conflating and structuring existing named place datasets. This
knowledge graph is oriented to the place field. It helps to solvemany geospatial technology
challenges, such as named entity recognition (NER) [22], toponym disambiguation [23],
and POI recommendation [24]. For example, the NER task can recognize and predict the
geographical coordinates of named place entities in text documents of web pages, blogs,
encyclopedia articles, news stories, tweets, and travel notes, and is called geographic reso‑
lution or geographic coding. This work can connect the unstructured text with GIS struc‑
tured entities [25,26]. Researchers claim that obtaining extensive gazetteer information is
central for NER [27]. A place knowledge graph that fuses various named places on the
network can help address this concern.

At the conceptual level, POI usually has the following attributes: name, current loca‑
tion, category, and identifier. As the essential requirement of spatial data infrastructure
(SDI), POI is characterized by type and often uses names rather than locations to identify
a place [28]. At the application level, POI can be used as a reference point in requesting
location‑based services, such as the destination of path navigation. The research on place
data conflation can be traced back to the early works of digital map conflation and digital
gazetteer conflation [29,30]. In the GIS context, POI data is usually the object of confla‑
tion. The term “conflation” describes integrating data from heterogeneous data sources,
combining geographical information of different scales and precisions, and transferring
or adding attributes from one dataset to another [30]. POI conflation aims to determine
whether POIs from different data sources represent the same place in a physical world,
resolve the ambiguity of attribute values such as names and geographical locations, and
integrate matched POIs. It often involves the following steps [12,13,31]:
1. Pre‑processing: unifying POI datasets into the same data structure and spatial coor‑

dinate system and mapping POI categories or types into a common taxonomy.
2. Candidate selection: using a set of conditions to select candidates from POI datasets.
3. Similarity measure: computing the attribute similarity of POI candidates, such as

spatial similarity, name similarity, and type similarity.
4. Matching evaluation: aggregating different similarity measures to obtain an overall

value that can rate the matching relevance and evaluate whether the POI candidates
are matched.
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5. Property conflation: conflating the property values from matched POI candidates.
The properties can be either overlapped or complementary. In the former case, merg‑
ing overlapping information often requires conflict‑handling strategies. In the latter
case, the final POI entity usually has various properties from different candidates.
Among these steps, the matching stage (Steps 3 and 4) is the most important in data

conflation, and receives the most attention in existing efforts. For Step 3, i.e., similarity
measures, various work has been conducted on spatial similarity, name similarity, as well
as semantic similarity [11–13]. In Step 4, i.e., matching evaluation, some methods have
been proposed, including the regression‑basedweightedmodel [11], the entropy‑weighted
model [12], the graph‑based matching approach [13], and the Random Forest Classifier‑
based matching approach [17].

This section may be divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3. Data Sources for Named Places
Named place data are available through either authorities or geographical vendors. The

former includes data provided by toponymic agencies or gazetteer services, and the latter in‑
cludes POI data provided by crowdsourcing contributions such as OSM and WikiMapia. In
this paper, we select one gazetteer, GeoNames.org (accessed on 21November 2023), which
is one of the most famous accessible geographical databases in the world. For crowdsourc‑
ing data sources, we select POIs from OSM, one of the most representative sources of Vol‑
unteered Geographic Information (VGI). Furthermore, on the local scale, we select the POI
data from one of the most significant Location Based Service (LBS) providers in China,
Baidu Map. The empirical study using these datasets helps address the challenges in con‑
flation caused by variability in language, spelling, historical changes, and feature types.
Table 1 provides a comparison of the three data sources. Detailed descriptions are given
as follows.

Table 1. A comparison of the three data sources.

Feature Type Fields Alternative
Names Geometry Language Change History

GeoNames 9 types/680
subtypes

administrative
information Yes

lat/long
coordinates
(WGS84)

multilingual modification
date Yes

OpenStreet
Map

24 types/free
subtypes

creation and
tag

information
Yes

nodes, ways,
and relations
(WGS84)

multilingual version and
changeset Yes

Baidu Map 23 types/153
subtypes city and heat Not Applicable

(N/A)

lat/long
coordinates
(BD09)

Chinese N/A N/A

3.1. Data Sources
3.1.1. GeoNames

GeoNames is a free geographical database for named geographical features [32]. The
dataset currently includes up to 13 million places, and the places are divided into nine
categories and 680 subcategories. The fields in the dataset include some basic administra‑
tive information, such as administrative divisions, populations, and country codes. Some
place entries in this dataset have aliases, such as names in different languages, short names,
historical names, and colloquial or slang names. As for historical names, the start and end
time stamps (valid dates) should be considered. All position coordinates are in World
Geodetic System 1984 (WGS84).

GeoNames.org
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3.1.2. OSM
OSM is a free online map built through crowdsourcing VGI [33]. The geometries of

geographic features are represented by essential data elements, i.e., nodes, ways, and re‑
lations. A node is a specific point on Earth by its latitude and longitude using the WGS84
standard. A way is an ordered list of nodes. A relation records relationships between two
or more data elements, such as a polygon relation. Each data element has some common
attributes related to creation information, such as users modifying the element (user/uid),
the time of the last modification (timestamp), the version number of the edit (version), and
the changeset number for a group of changes (changeset). Feature attributes are repre‑
sented using tags attached to the data elements. A tag is a key–value pair with free‑format
texts. The communities can agree on certain key and value combinations for the most
commonly used tags as consensus‑based informal standards, such as a classification tag
“highway = footway”. Currently, 24 types of primary point features are defined using
well‑accepted tags [33]. The primary features used as keys in tags can act as types, and
their values in tags can be regarded as subtypes. This paper selects 1511 frequently used
subtypes. Although tags can be invented and used as needed, tags used by at least one
wiki page can usually be used as types/subtypes. It is noted that historical changes are
also tagged as significant features of a particular type. OSM also allows for additional
properties to be defined using tags, such as “name”, “name:<lg>” for names in different
languages, “alt_name” for alternative names, and “old_name” for historical names. The
free tagging system makes OSM flexible, but hard to work with. Usually, these tags are
used to serve as de facto standards.

3.1.3. Baidu Map
LBS services have beenwidely used in China. Baidu Inc., a Chinese‑language internet

search company, provides LBS services [34] and is rated as one of the top 10 LBS providers
in the world. Baidu offers POI data in China in the Chinese language. Assigned by the
governmental agency in China, most domestic online map services use the “GCJ02” coor‑
dinate system, and Baidu uses the encrypted coordinate system “BD09” converted from
“GCJ02” to provide Chinese POI data, which is unique to Baidu. Currently, Baidu Chi‑
nese POI data provides 23 categories and 153 subtypes. Each piece of data includes the
city where the POI is located, the popularity of searching (i.e., heat), and some optional
detailed attribute information.

3.2. Challenges
When researching the three datasets, several challenging issues need to be faced. Tak‑

ing named places entities in China as examples, our paper lists the issues that need to be
solved during the named place matching and conflating process in Table 2. The differ‑
ences are highlighted in the bold style, and the Chinese–English translation is provided in
Appendix A.

Issue I1 concerns the multilingual problem of place names in different data sources.
For example, the placeGuangzhouEast Railway Station is expressed as “GuangzhouDong”
in English in GeoNames and presented as “广州东站” in Chinese in both OSM and Baidu
Map. Issues I2‑I6 focus on the spelling changes of place names in different data sources,
including case sensitivity (“Sultan Turkish Restaurant” vs. “SULTAN TURKISH RESTAU‑
RANT”), misspelling (“珞瑜路” vs. “珞喻路”), word order (“地铁浔峰岗站” vs. “浔峰岗
地铁站”), abbreviation (“广州火车站” vs. “广州站”), and synonym (“从化区办证中心” vs.
“从化区政务服务中心”). I7 and I8 are location variability issues in different data sources,
such as the location values corresponding to different coordinate systems and how coordi‑
nate precisions will change. I9 shows the type variability that the same named places from
different data sources can have different type names in different categories.
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Table 2. Challenging issues of the conflation.

Challenging
Issues

Examples

GeoNames OSM Baidu Map

I1: names
expressed in
different
languages
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GeoNames OSM Baidu Map 

I1: names expressed 
in different lan-

guages 

 
Guangzhou Dong 

 
广州东站 

 
广州东站 

I2: names with dif-
ferent cases 

N/A 
 

Sultan Turkish Restaurant  
SULTAN TURKISH RESTAURANT 

Sultan Turkish Restaurant
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S: RSTN 

 
public_transport: station; railway: station 

 
交通设施: 火车站 

(Transportation facilities: train station) 

Issue I1 concerns the multilingual problem of place names in different data sources. 
For example, the place Guangzhou East Railway Station is expressed as “Guangzhou Dong” 
in English in GeoNames and presented as “广州东站” in Chinese in both OSM and Baidu 
Map. Issues I2-I6 focus on the spelling changes of place names in different data sources, 
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N/A
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Table 2. Cont.

Challenging
Issues

Examples

GeoNames OSM Baidu Map

I7: named places
using different
coordinate
systems

WGS84 WGS84 BD09

I8: the same
named places
with different
coordinates
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4. Approach
Based on the preceding context, it is evident that the matching process necessitates

addressing the disparities in names, locations, and types of named places in GeoNames,
OSM, and Baidu Map. Our experiment primarily focuses on resolving such issues flexibly
and conveniently.

The construction process of PlaceKG, as illustrated in Figure 1, beginswith data cleans‑
ing to obtain preliminary data from these three sources. Given that there will be n×m
potential matches between two data sources containing n and m named locations, respec‑
tively, the sheer volume of data can make the precise matching process exceedingly labori‑
ous. To mitigate this, we initially filter these pairs based on threshold values to reduce the
number of mismatched pairs. Then, this section introduces the SSARLM for data merging
of named places from diverse data sources, to simplify and enhance the performance of
similarity measurement. We have the spatial awareness of a large‑scale pre‑trained model
with a location encoding strategy and utilize the candidate set data to fine‑tune the model.
The overall framework of the SSARLMmodel is depicted in Figure 2.
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4.1. Place Entity Serialization
In general, natural language tasks, pre‑trained models accept token sequences (i.e.,

text) as input. Similarly, for named place entity data, serialization processing is required
before feeding into the matching model, which facilitates subsequent encoding by the
model. For multi‑source heterogeneous geographic entity data, effective serialization is
crucial for the model to optimally assimilate and process the data information. This step is
fundamental in ensuring that the model accurately interprets and utilizes the geographic
information embedded within these diverse data streams.

For data pairs composed of two places from two different data sources, such as their
names, types, and location attributes, are transformed into token sequences. This transfor‑
mation optimizes the model’s encoding process, thereby enhancing its capacity to ascertain
if the candidate pair signifies identical geographical features. In serializing the attributes and
values of a place entity from a specific data source, a [COL]marker is used to denote each at‑
tribute and its value for an individual place. If A, B, C represent the attributes of name, type,
and location, respectively, and their lowercase forms denote the corresponding attribute val‑
ues, then a geographic entity can be represented as SE = [COL]Aa[COL]Bb[COL]Cc. This
structured representation is instrumental in the model’s processing and analysis of the geo‑
graphical data.

For a pair of place entities constituting a data pair, upon joint input into the model,
[CLS] and [SEP] tokens are generated for separation and subsequent classification compu‑
tations. It is key to note that [CLS] and [SEP] are Bert model‑specific notations for the start
and separation of entities. The [SEP] token serves as a delimiter marking the boundary be‑
tween the two entities in the data pair, with the beginning and end of the data pair marked
by [CLS] and [SEP], respectively. Once processed by themodel, the vector generated at the
[CLS] position is fed into a fully connected layer for classification calculation. Therefore,
the serialization result of a data pair can be represented in the following format:

S = [CLS]SE1[SEP]SE2[SEP] (1)

This structure ensures that the model effectively discerns the start, separation, and end
of each data pair, facilitating accurate classification and analysis of the geographic entities.

4.2. Fine‑Tuning Pre‑Trained Language Models
This study proposes an end‑to‑end approach for place entity matching models using

pre‑trained models, wherein the matching model is trained by fine‑tuning these existing
pre‑trained architectures. Typical pre‑trained models like BERT and GPT demonstrate
robust performance across various Natural Language Processing (NLP) tasks. These mod‑
els are usually composed of deep neural networks with multiple transformer layers, and
are trained using unsupervised techniques on extensive text corpora, such as Wikipedia
articles. During this pretraining phase, the models enhance their ability to understand
sentence semantics by autonomously learning to predict missing tokens and subsequent
sentences. This capability stems from the Transformer architecture’s ability to generate
token embeddings from all tokens in an input sequence, thereby producing highly con‑
textualized embeddings that encapsulate both the semantic and contextual understand‑
ing of words. Consequently, these embeddings adeptly capture polysemy, recognizing
that a word can have different meanings in different phrases. For example, place names
such as “Wuhan Station” and “Wuhan Railway Station”may still acquire similar word em‑
beddings, despite the former lacking the key phrase ‘railway’. This similarity arises from
training on extensive corpora, as the embeddings in pre‑trained models are based on the
semantic theories they have assimilated.
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In this experiment, we utilized the case‑sensitive pre‑trained model DistilBERT pro‑
vided by Hugging Face as the foundational model. The BERT pre‑trained model is funda‑
mentally developed through self‑supervised training on a large‑scale corpus, essentially
constructed using a stacked architecture of multiple transformer layers. DistilBERT, as a
distilled version of the BERTmodel, employs the same training corpus. However, it boasts
a parameter size that is only 60% of that of BERT, while retaining 97% of its language
understanding capability. Additionally, the model speed is enhanced by 60%. This ef‑
ficient architecture of DistilBERT ensures a balance between computational resource re‑
quirements and the retention of substantial language processing proficiency, making it a
suitable choice for our experiment’s objectives.

4.3. Semantic‑Spatial Aware Representation Learning Model
It is well‑known that locations are typically represented by latitude and longitude co‑

ordinate values. In multi‑source data, issues such as coordinate drift and inconsistencies
in decimal places among different data sources are common. When pre‑trained models
are used to directly encode these positional coordinates, a non‑regular expression method
based on an arithmetic foundation is adopted. This approach often fails to adequately
address the aforementioned coordinate issues, consequently hindering its ability to ef‑
fectively represent spatial location similarity. This limitation underscores the necessity
for more sophisticated methodologies or preprocessing steps to ensure models accurately
capture and reflect spatial relationships and similarities, particularly when dealing with
diverse and inconsistent geographical data sources.

In addition, the use of location similarity calculation formulas presents challenges in
integrating their computed outcomes with pre‑trained models. This arises from the fact
that similarity calculations require the separate extraction of coordinate values to obtain
corresponding results, while pre‑trained models typically process the entire data pair in
a unified manner. Moreover, approaches based on location similarity calculations often
neglect the original location information, relying solely on the outcomes derived from em‑
pirical formulas. This can lead to an over‑reliance on empirical methods, potentially result‑
ing in inaccuracies. Even small location deviations can inadvertently lead to the incorrect
exclusion of candidate pairs. This highlights the need for a more balanced approach that
integrates empirical calculations while retaining inherent location data.

Therefore, this study introduces an embedding fusion module designed for the uni‑
fied encoding of semantic and spatial embeddings. In the previous work by Mai et al. [35],
a distributed location encoding approach is constructed to generate spatial embeddings.
This approach employs methods such as unit vector inner product and periodic functions
to transform two‑dimensional positional coordinates into dense vectors of the same di‑
mensionality as the pre‑trained model. These vectors, when combined with other vectors
encoded by the training model, are designed to convey data information more effectively,
thereby enabling the training of a more precise overall similarity measure. Fundamen‑
tally, this approach can overcome the limitations of pre‑trained models in location encod‑
ing, avoiding excessive reliance on empirical formulas, and thus enhancing the accuracy
of place entities matching tasks. The specific encoding method is as follows:

LEs,j(x) =

[
cos

(
< x, aj >

λmin·(λmax/λmin)
s/5

)
; sin

(
< x, aj >

λmin·(λmax/λmin)
s/5

)]
(2)

LE(x) =
[

LE(t)
0 (x); . . . ; LE(t)

s (x); . . . ; LE(t)
S−1(x)

]
∀s = 0, 1, 2, . . . , S − 1 (3)

For a positional coordinate x = (x, y), the process begins by assigning a specified num‑
ber of unit vectors a and then performing dot product calculations < x, a >, resulting in
a new spatial representation. Subsequently, each dot product value undergoes scaling to
a specified dimension. This study adheres to the six‑dimensional choice as utilized in the
original work, leading to a periodic expansion through different frequency sine and cosine
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functions. As illustrated in Equation (2), where s = 0, 1, . . . , 5 represents the scale coeffi‑
cients and λ is the scale value, this method effectively transforms the spatial coordinates
into a more nuanced and dimensionally rich representation.

As depicted in Figure 2, the token sequence is processed through our location en‑
coder and text embedding layer, formally generating the input for training within the
transformer architecture. Finally, the output obtains a binary classification result of 0 or 1
through linear layers and softmax functions.

5. Experiment and Discussion
In this section, we first introduce how named place pairs are selected and labeled

as experimental data, then evaluate the SSARLM model for named place pair matching.
Based on the matched entities, a provenance‑aware place knowledge graph is constructed,
using named places in China from the three data sources in Section 2.

5.1. Data Preparation
The datasets used in this paper include 758,860 gazetteer entities from Chinese GeoN‑

ames, 287,182 POIs from Chinese OSM, and 1,127,582 POIs from Baidu Map covering six
cities in China, i.e., Guangzhou, Hangzhou, Shanghai, Shenzhen, Zhuhai, and Wenzhou.
Our goal is to establish equivalent associations between POIs from the three data sources.
The basis of model training is whether the data is correlated or not. Therefore, each train‑
ing data instance consists of two POIs from distinct sources (named place pair), alongwith
a binary label (0/1) indicating whether they match. In theory, any two POIs from different
sources can be used for model training. However, considering all possible combinations
would result in excessively large datasets, not only significantly increasing the task of label‑
ing annotations, but also imposing a burden onmodel training. Therefore, it is necessary to
impose certain limiting conditions to ensure that we obtain relatively high‑quality named
place pairs.

To reduce the number of candidates matched named place pairs, our approach first
filters mismatched named place pairs with a 1000 m distance threshold, a 0.4 place name
similarity threshold, and a 0.5 place type similarity threshold. Then, for match prediction
model training and test, this paper manually labeled matched and mismatched (similar
but not matching) place pairs in Guangzhou and Shanghai from filtered candidates as pos‑
itive and negative samples, as shown in Figure 3. Table 3 shows the statistics of matched
and mismatched samples of place entity pairs from three data sources in two areas. It is
observed that, despite the filtering process, the quantity of negative samples remains sub‑
stantially large, with the ratio of positive to negative samples approaching 1:50. To mit‑
igate the adverse effects caused by this imbalance, we extracted 15,000 data entries from
the Guangzhou and Shanghai datasets, maintaining a ratio of approximately 1:3 between
positive and negative samples.

Table 3. Statistics of the match and mismatched samples of named place pairs.

Area Named Place Pair Source Matched Sample Count Mismatched Sample Count

Guangzhou
Baidu Map—OSM 1550 82,279

Baidu Map—GeoNames 575 36,863
OSM—GeoNames 106 812

Shanghai
Baidu Map—OSM 1767 79,579

Baidu Map—GeoNames 900 51,937
OSM—GeoNames 135 2730
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5.2. Model Evaluation
The named place pair matching can be regarded as a classification problem with two

possible outcomes (match or mismatch). We use Precision (P), Recall, and F1 as measure‑
ment indexes to evaluate the models’ performance. They can be calculated using Formu‑
las (4)–(6), where TP is the number of true positive results, FP is the number of false positive
results, FN is the number of false negative results.

P = TP/(TP+ FP) (4)

Recall = TP/(TP+ FN) (5)

F1 = 2P/(P+ Recall) (6)

5.2.1. Overall Performance Evaluation
The named place matching model SSARLM in our paper is compared with several

classical and commonly used binary classification machine learning models, including
Support Vector Classifier (SVC), Random Forest Classifier (RFC), and Multilayer Percep‑
tron (MLP). The prerequisite for utilizing these models is the computation of various sim‑
ilarity measures, including string similarity, phonetic similarity, and bag‑of‑words simi‑
larity, as well as location similarity and type similarity. It is important to highlight that
type similarity relies on the type fusion system we have constructed. This system inte‑
grates types from three different data sources, referencing the national POI classification
standards. Consequently, each type from every data source can find its corresponding
representation within our system. Simultaneously, we conducted a comparative analysis
with the MMCNN, which is a multi‑layer neural network model specifically devised to
place entity matching. The MMCNN consists of a two‑layer architecture: the first layer
is trained on features associated with the names of geographic entities, including string
similarity, phonetic similarity, and bag‑of‑words similarity; the second layer is trained on
a composite feature set that includes name similarity, type similarity, and location simi‑
larity. We contend that this model offers a comprehensive empirical representation of the
pivotal attributes of geographic entities.
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Weutilized data from theGuangdong region to conduct quintuplicate experiments on
eachmodel. The datawas partitioned into training, validation, and test sets in an 8:1:1 ratio.
For the SSARLM model, we set the learning rate at 5 × 10−7, with a batch size of 32, and
epochs capped at 50. The maximum sequence length was configured to 256. Because the
experiment’s objective is to compare the optimal performance differences among various
models, the hyperparameters for the other four models were not uniformly constrained.

Existing research has substantiated that large language models, exemplified by Chat‑
GPT and GPT‑4, achieve superior performance in a variety of natural language down‑
stream tasks, even attaining state‑of‑the‑art (SOTA) status [36,37]. In our study, we evalu‑
ated the performance of GPT‑4 (zero‑shot) and GPT‑4 (20‑shot) in the task of place entity
matching. This approach enables direct testing on the test dataset without the necessity
for training data.

For the GPT‑4 model, we engineered a high‑quality prompt specifically tailored to
optimize its performance in the location entity matching task. In the case of GPT‑4 (20‑
shot), we additionally selected examples from the training dataset that comprehensively
covered all cases, employing these as in‑context learning materials.

The final averaged evaluation metrics for each model are presented in Table 4. No‑
tably, SSARLM emerges as the only model achieving an F1 score of 0.95, while the other
four machine learning models consistently fall within the 0.93–0.94 range. Despite GPT‑
4’s status as the most powerful current large language model, it demonstrates a relatively
lower F1 score in the domain‑specific task of entity matching. These results validate the
efficacy and advancement of SSARLM. Given that the ultimate goal of our experiment is to
achieve geographic entity matching across six cities and construct a knowledge graph, we
further assessed the generalization performance of each model on data from other regions.

Table 4. Performance of different models in Guangzhou.

Model Precision Recall F1

RFC 0.9338 0.9310 0.9323
SVC 0.9353 0.9434 0.9393
MLP 0.9353 0.9444 0.9398

MMCNN 0.9239 0.9414 0.9325
GPT‑4 (zero‑shot) 0.8820 0.5850 0.7034
GPT‑4 (20‑shot) 0.8916 0.6156 0.7284

SSARLM 0.9268 0.9829 0.9539

5.2.2. Generalization Performance Test
We have archived the training outcomes of each model based on the Guangdong re‑

gion data and applied these models to data from the Shanghai region. This approach is
employed to evaluate the generalization capabilities of each model. The results, presented
in Table 5, are derived from averaging five test iterations for each model.

Table 5. Test results for different models in Shanghai.

Model Precision Recall F1

RFC 0.8814 0.7876 0.8319
SVC 0.9039 0.8024 0.8501
MLP 0.8945 0.8062 0.8480

MMCNN 0.8926 0.8116 0.8501
SSARLM 0.8521 0.8633 0.8574

Upon a holistic consideration of various performance metrics, it is observed that our
proposed SSARLMmodel exhibits enhanced overall effectiveness on the Shanghai dataset.
It surpasses the F1 scores of the other four models, notably outperformingMMCNN,MLP,
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and SVC by 0.7 to 1 percentage points, and RFC by 2.6 percentage points. When compar‑
ing Precision and Recall values, the SSARLMmodel demonstrates a more balanced perfor‑
mance across all indicators. Furthermore, in the context of our entity matching task, the
probability of accurately predicting positive samples emerges as a crucial metric.

Analysis of the results indicates that SSARLM effectively learns the common features
of geographic entities. It robustly and comprehensively assesses thematching degree across
data sources with regional differences, demonstrating strong generalization capabilities.

5.2.3. Statistics on the Resolution of Challenging Issues
Utilizing the predictive results from Shanghai, we statistically assessed the ability of

five models to address the first six challenging issues described in Section 3.2. The remain‑
ing three issues, which are common to nearly all data pairs, will not be separately discussed
further. Our analysis focused on original positive samples, with issue annotations for these
samples obtained through both automated methods and manual verification.

Figure 4 presents the statistical distribution of various issues, revealing that Issues
I1 and I5 have the highest proportions. While other issues have smaller shares, they still
appear dozens of times in the positive samples from Shanghai and can be considered for
evaluation purposes. Given that each model underwent five tests, to ensure reliability, we
consider a model to accurately classify a data pair only if it predicts correctly in three or
more tests.
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Table 6 presents the probability statistics of correctly classified positive samples by five
models under various challenging issues. In the first six scenarios, SSARLM outperforms
the other four models. Notably for I2, SSARLM shows a distinct advantage, exceeding the
other models by nearly 40 percentage points. Furthermore, in case I4, SSARLM’s perfor‑
mance is more than double that of the other models. In the other scenarios, SSARLM also
consistently surpasses the others to varying degrees. Among the remaining four models,
the performance differences are minimal, with MMCNN exhibiting relative superiority.

Table 6. Statistic results of challenging issues evaluation accuracy.

SSARLM MMCNN MLP SVC RFC

I1: names expressed in different languages 0.7953 0.7776 0.7824 0.7671 0.7694
I2: names with different cases 0.5385 0.1077 0.1385 0.1077 0.1385
I3: names with spelling errors 0.9000 0.8000 0.7000 0.8000 0.7000

I4: names with different word orders 0.7500 0.3333 0.3333 0.1667 0.3333
I5: names with abbreviations 0.9602 0.8898 0.8759 0.8735 0.8607
I6: names with synonyms 0.9070 0.7907 0.7209 0.8140 0.7209
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5.3. Discussion
The implementation results in Section 5.2 show that the similarity measure methods

and the SSARLM model presented in this paper can help find similar named places from
different data providers with high accuracy. The matched named places conflation and
PlaceKG construction methods help to create a merged place dataset.

In Section 5.2.1, this paper compares the SSARLM based on a large‑scale pre‑trained
model, various machine learning‑based models, and models based on GPT‑4. We initially
conducted multiple training sessions for SSARLM and other machine learning models, us‑
ing the training dataset from Guangzhou. In the case of the GPT‑4 models, testing was
directly performed using the test dataset. Subsequently, in Section 5.2.2, we conducted
a generalization performance test for SSARLM and machine learning models using data
from Shanghai.

The machine learning models, including MMCNN and MLP, realize alignments au‑
tomatically between sources and targets. However, implementing such methods requires
the use of empirical formulas for calculating various features, undoubtedly leading to a
relatively substantial workload. At the same time, in our practice, a mature and complete
place type category with full semantic information is required for type alignments of all
named place datasets. Due to the limited types in the three data sources, manual creation
and alignment is feasible. Unfortunately, one typical drawback of the manual method
is that it may cause some extension problems when more named place data sources are
included. Furthermore, manually assigning types to them requires a certain standard as
the basis and relies on the builder’s extensive experience. Each type of mapping needs to
undergo careful verification, resulting in a heavy workload.

Our proposed SSARLMmodel develops an end‑to‑endmodel based on the large‑scale
pre‑trained model to replace manual feature selection. This provides a more streamlined
and efficient approach, eliminating the need for separate feature engineering steps. Fur‑
thermore, whether tested within Guangzhou or using the trainedmodel on Shanghai data,
our model exhibits a higher F1 score performance compared to others. It demonstrates
a significantly higher Recall than competing models, indicating its superior accuracy in
identifying matching geographical entities.

Both the SSARLM model and other machine learning models require high‑quality
sample data. Despite demonstrating the model’s generalization capabilities in location
matching across different regions in Section 5.2.2, we remain curious about whether it can
replace training samples to reduce the resources needed for location matching. Several
existing studies have shown that large models like ChatGPT and GPT‑4 can be directly
applied to downstream natural language tasks without any fine‑tuning or training to up‑
date model parameters [38]. Large language models are more robust than large‑scale pre‑
trainedmodels, possessing greater parameter volume and advanced language comprehen‑
sion capabilities. In our experiments, wedid not use training datasets; instead, we obtained
location‑matching results by engaging GPT‑4 in dialogue using high‑quality prompts. The
experiment results show that the GPT‑4‑based model (zero‑shot) achieved high Precision,
but lower Recall. This suggests that GPT‑4 might not effectively recognize that two names
refer to the same location in certain specific scenarios or subtle differences, indicating that
high‑quality training data is still a necessary option for location entity matching tasks.
Based on the concept of domain‑specific fine‑tuning for large models, substantial improve‑
ments in performance on specific tasks and enhanced tracking of human instructions can
be achieved through extensive fine‑tuning with a large volume of high‑quality, location‑
matching‑related training data. Ultimately, fine‑tuning techniques for large models could
enable an out‑of‑the‑box place entity matching functionality based on natural human lan‑
guage instructions.
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In Section 5.2.3, our statistical analysis of the six challenging issues presented demon‑
strates a distinct advantage of SSARLM in addressing complex geographical entity match‑
ing problems. Specifically, for names with different cases (I2) and different word orders
(I4), SSARLM’s metrics significantly exceed those of other models several times. These
outcomes are likely attributed to the strengths of the pre‑trained model DistilBERT. We
selected a case‑sensitive version of the model, thereby enhancing its focus on the variation
in the capitalization of place names and their relevance to geographical entity matching
during the training phase. Furthermore, BERT‑based models utilize an attention mecha‑
nism to capture context without emphasizing the necessity of word order. This feature
is beneficial for place name matching, as the inversion of word order typically does not
alter the description of a location. Such reversals are common across various data sources.
Overall, SSARLM demonstrates greater flexibility in representing place names, showing a
clear performance advantage.

5.4. PlaceKG Construction
Using the SSARLM model, we can obtain matched named places through the three

datasets. The statistical results are shown in Table 7. In total, 1365 similar named places ap‑
pear simultaneously in all three datasets, and 7264, 8663, and 97,453matched namedplaces
separately in the pairwise matching of the three datasets. OSM has the most matched
named places with other datasets, where 36.9 percent of POIs fromOSM can findmatched
named places in GeoNames and BaiduMap. Only 1.5 percent of POIs from BaiduMap can
find matched entities in other datasets. Since POIs from Baidu Map only cover six cities,
and Baidu Map is a well‑localized company, it has stronger capabilities in collecting POIs
in China than other data providers. It is then necessary to conflate the matched named
places and resolve conflicts when creating a place knowledge graph.

Table 7. Statistic results of entities matched among three datasets.

Named Place Pair Source Matched Named Place Pairs Count

Baidu Map—OSM 7264
Baidu Map—GeoNames 8663

OSM—GeoNames 97,453
Baidu Map—OSM—GeoNames 1365

As a result, a provenance‑aware place knowledge graph named PlaceKG is developed
using the conflation strategies and the provenance model recording source entities. The
PlaceKG contains 2,076,693 PlaceEntity instances in China and their provenance informa‑
tion. It is encoded using RDF format and currently includes 57,801,364 statements.

The PlaceKG can be further published on the SPARQL server and queried by the
SPARQL. Figure 5 provides examples of SPARQL queries on the PlaceKG with Web UI.
The examples show how entities in the PlaceKG be searched and how their provenance in‑
formation can be tracked for analysis. In Figure 5a, a PlaceEntity instance is queried by its
Chinese name. In Figure 5b, matched named places from three data sources that generate
the PlaceEntity instance can be traced; In Figure 5c, the strategies exploited for handling
conflicts when conflating place names can also be explored. Finally, in Figure 5d, other
properties, like the location of the PlaceEntity instance, can be obtained from the PlaceKG.
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6. Conclusions and Future Work
This paper utilizes three geospatial data sources, encompassing different construc‑

tion groups, organizational forms, and both Chinese and English languages, to perform
high‑performance fusion and transfer of heterogeneous data, ultimately leading to the for‑
mation of the PlaceKG knowledge graph.

Differing from traditional rule‑matching and machine learning approaches, we pro‑
pose a Semantic‑Spatial Aware Representation LearningModel for PlaceMatching and Fu‑
sion based on a pre‑trained large model. This model is built upon the case‑sensitive Distil‑
BERT pre‑trainedmodel, enhancedwith distributed positional encoding for fine‑tuning. It
is adept at expressing textual features such as names and types, while accurately represent‑
ing the spatial characteristics of geographical entities. This approach avoids the manual
type alignment and formula‑based biases typically encountered in traditional methods.

Experimental results demonstrate that the SSARLMmodel outperforms various types
of baseline models, showing superior performance and providing methodological guid‑
ance for similarity calculations of geographical entities. Additionally, SSARLMexhibits ad‑
vantages over traditional methods in multiple metrics during generalization performance
tests on data from other regions, showing that methods based on large‑scale pre‑trained
models have stronger transferability and generalization capabilities in place matching and
fusion. This enhances the potential for extending our approach to a broader range of place
data linking and constructing a comprehensive place knowledge graph. It is hoped that
this work can draw attention to the problem of multi‑data source conflation to reduce the
deviation at the pattern level of knowledge graphs.

The paper leaves several extensions for future research. First, only structured POI
data sources have been studied in our work, and more multimodal data can be studied
to enrich place knowledge graphs, such as texts, trajectory data, remote sensing images,
and vector maps. Second, POI data are constantly updated and changing, and the con‑
flated place knowledge graph should also be updated to ensure its timeliness. While the
provenance can help track historical changes, it is necessary to investigate approaches in
the future to keep the place knowledge graph updated with the VGI sources.
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Appendix A. Chinese‑English Translation
Chinese English
咖啡厅 Cafe
茶座 Teahouse
从化区办证中心 Conghua District Government Licence Application Center
从化区政务服务中心 Conghua District Government Service Center
地铁浔峰岗站 Xunfenggang Metro Station
火车站 Railway Station
珞瑜路 Luoyu Road
珞喻路 Luoyu Road
公交车站 Bus Station
购物 Shopping
广州东站 Guangzhou East Railway Station
广州火车站 Guangzhou Railway Station
广州站 Guangzhou Railway Station
交通设施 Traffic Facilities
美食 Fine Food
三林镇 Sanlin Town
商铺 Store
收费站 Toll Booth
新华书店 Xinhua Bookstore
新华书店(北京路一店) Xinhua Bookstore, Beijing Road No. 1 Store
浔峰岗地铁站 Xunfenggang Metro Station
越秀公园A Exit A, Yuexiu Park Subway Station
越秀公园‑A口 Exit A, Yuexiu Park Subway Station
越秀公园C Exit C, Yuexiu Park Subway Station
越秀公园‑C口 Exit C, Yuexiu Park Subway Station
中餐厅 Chinese Restaurant
地址 Address
电话 Telephone
坐标 Coordinate
途径地铁 By Subway
广州市天河区东站路1号 No.1 Dongzhan Road, Tianhe District, Guangzhou

广东省广州市越秀区环市东路367号白云宾馆 Baiyun Hotel, No. 367 Huanshi East Road, Yuexiu District,
Guangzhou City, Guangdong Province

湖北省武汉市洪山区 Hongshan District, Wuhan City, Hubei Province
地铁6号线 Subway Line 6
中国铁路广州局集团有限公司 China Railway Guangzhou Group Co., Ltd
广州市越秀区环市西路159号 159 Huanshi West Road, Yuexiu District, Guangzhou City

广州市从化区河滨北路128号城晖大厦 Chenghui Building, No. 128 Hebin North Road, Conghua District,
Guangzhou City
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