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Abstract: In late 2023, the image-reading capability added to a Generative Pre-trained Transformer
(GPT) framework provided the opportunity to potentially revolutionize the way we view and
understand geographic maps, the core component of cartography, geography, and spatial data science.
In this study, we explore reading and analyzing maps with the latest version of GPT-4-vision-preview
(GPT-4V), to fully evaluate its advantages and disadvantages in comparison with human eye-based
visual inspections. We found that GPT-4V is able to properly retrieve information from various types
of maps in different scales and spatiotemporal resolutions. GPT-4V can also perform basic map
analysis, such as identifying visual changes before and after a natural disaster. It has the potential
to replace human efforts by examining batches of maps, accurately extracting information from
maps, and linking observed patterns with its pre-trained large dataset. However, it is encumbered by
limitations such as diminished accuracy in visual content extraction and a lack of validation. This
paper sets an example of effectively using GPT-4V for map reading and analytical tasks, which is a
promising application for large multimodal models, large language models, and artificial intelligence.
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1. Introduction

Maps are the core of cartography, a discipline that encompasses the conception, pro-
duction, dissemination, and study of these essential representations of space [1]. They are
fundamental tools for understanding our world, encapsulating complex spatial information
in an accessible visual format. The evolution of cartography reflects the ever-changing
human understanding and interaction with the physical environment [2,3]. The importance
of map reading and analysis cannot be overstated; it extends beyond navigation and geo-
graphical orientation. Maps are critical in a wide range of fields, from urban planning [4,5]
and environmental management [6] to geopolitics [7] and disaster response [8]. The skill
of map reading and analysis is important in interpreting these representations accurately,
enabling users to extract meaningful insights from complex spatial data. Maps are not just
literal guides but layered with context; they tell stories of land use, demographic trends,
and socio-economic patterns. In essence, maps are a blend of science, art, and storytelling.
Through careful analysis, maps can reveal unspoken histories and offer unique insights
into historical and current societal trends, helping us comprehend spatial relationships
and patterns [9]. With the advent of digital cartography and Geographic Information
Systems (GIS), maps have become more dynamic and interactive, allowing for a deeper,
more analytical engagement with spatial data [10].

The era of big data has simultaneously enriched and complicated map reading and
map analysis. While visual inspection of maps remains an indispensable research step for
recognizing spatial patterns and understanding physical environments, the sheer volume
of data now available poses significant challenges. Traditional map reading and analysis
techniques often fall short in handling the massive and complex datasets that need to be
mapped and analyzed [11]. To address these challenges, various advanced technologies
have been deployed. These include web mapping and mapping with Artificial Intelligence
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(AI), but there is a notable gap in technologies aimed at automating the process of map read-
ing and analysis [12,13]. Previously, techniques like Optical Character Recognition (OCR)
were employed in automating these tasks, but they often struggled to accurately extract
complex features from maps, limiting their application in this field [14]. AI, specifically in
the domain of image recognition, is another potential alternative, but its effectiveness in
map reading and analysis is contingent on the availability of large, high-quality training
datasets.

The introduction of advanced Large Language Models (LLMs) and Large Multimodal
Models (LMMs) marks a significant milestone in the evolution of artificial intelligence and
machine learning [15]. The Generative Pre-Trained Transformer (GPT) series, developed by
OpenAI, stands as a flagship example of LLM development in the field of natural language
processing and AI [16]. GPT models have been applied in a variety of domains and can
perform various types of tasks, such as creative writing [17], language translation [18],
extraction of location descriptions from social media [19], making maps [12], coding as-
sistance [20], and data science [21]. When additional modalities (such as image inputs)
are integrated, LLMs become a powerful visual language model and bring more func-
tionalities. With the release of the frontier LMM, GPT-4-vision-preview (GPT-4V(ision),
abbreviated as GPT-4V), on 6 November 2023, a new horizon has opened up [22]. In a
recent evaluation report of GPT-4V, researchers found that GPT-4V has superior abilities to
describe images, localize and count objects, provide dense captioning, exhibit multimodal
knowledge and commonsense reasoning, analyze scene text, tables, charts, and documents,
understand multilingual and multimodal content, and integrate coding capabilities with
visual understanding [23]. These outstanding capabilities bring potential advantages such
as automating map reading across various spatial and temporal scales, and identifying
distribution patterns that may elude human observation, such as complicated point pat-
terns. Additionally, GPT-4V relates findings from maps to its extensive knowledge base,
enhancing interpretive capabilities. For researchers, there emerges an opportunity to use
GPT-4V as a digital assistant for map analysis. For students, GPT-4V can serve as an
educational tool, teaching map reading skills. Moreover, it can help non-experts interpret
domain-specific maps, making complex information accessible to a broader audience. Such
characteristics of GPT-4V present a promising opportunity to further explorations and
refine the use of AI in map reading and analysis.

This study serves as a pilot work to systematically explore and evaluate GPT-4V’s
capabilities in map reading and analysis. Our investigation includes two sections: first, we
test GPT-4V’s proficiency in retrieving information from the map content, legend, scale,
colors, symbols, labels, and other map elements, in comparison with two other LMMs (base-
lines); second, we assess its effectiveness in common map analysis, including recognizing
spatial distribution patterns, e.g., point pattern and bivariate point pattern recognition, and
analyzing the differences between maps with (1) same spatial scale but different temporal
scales and (2) the same temporal scale but different spatial scales. Considering that there
are some other competitive LMMs developed by other companies, such as Gemini Pro
Vision by Google Inc. (USA) and Sphinx by OpenGVLab, we conducted a comparison
between the three LMMs regarding their map reading abilities. However, due to a lack
of functionality to handle multiple images, Gemini Pro Vision and Sphinx can only read
one image at a time, making it difficult to compare several images. Thus, in the second
part (map analysis), we focus on testing GPT-4V’s capability. In summary, our approach
aims to test GPT-4V in reading and analyzing a series of sample maps from various sources
through supported API. Through these experiments, we seek to provide a comprehensive
assessment of GPT-4V’s capabilities in this uncharted territory. We conclude with our
findings about how it may potentially revolutionize the way we examine geographic maps,
as well as handling and understanding spatial data.
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2. Map Reading

Professional digital maps are created through a process of data selection, classification,
generalization, and symbolization to illustrate geographic information in a certain area [24].
Users interpret these maps through a process akin to information retrieval, extracting
and understanding data from the cartographer’s visual representation. The map reading
process typically involves the detection of symbols, their discrimination, understanding
their meanings, recognizing these symbols, interpreting them by adding meaning, and
retaining their relationships [25,26]. In the past, challenges in OCR and image processing
hindered the extensive use of these techniques for map reading due to the complexity of
map features. However, advancements in LLMs, LMMs, and AI have now made it feasible.
For instance, GPT-4V, representing the next evolution in this field, integrates multi-sensory
skills to surpass the general intelligence of traditional LLMs, such as GPT-4 (no vision) [23].
Referring to multiple references and previous literature [24,26–29], we conducted several
map reading experiments on GPT-4V to evaluate its capability in recognizing various map
elements, including legends, symbols, and spatial scales, and in comparing different types
of domain-specific maps.

Specifically, Figure 1 illustrates the process of using GPT-4V to read map images and
make corresponding responses. Similarly, Gemini Pro API (Gemini Pro Vision, version 1.0,
through generativeai package) and Sphinx API (http://llama-adapter.opengvlab.com,
accessed on 20 February 2024 through gradio_client package) were used to test the map
reading abilities of these LMMs. We opted for the GPT-4 API over the ChatGPT interface
on the OpenAI webpage due to its ability to simultaneously recognize multiple images and
monitor processing times. This study focused on evaluating the textual responses from
GPT-4V (currently limited to text-only outputs). Despite Dall-E 3, OpenAI’s generative AI
model on image generation, having the capability to produce image outputs, its limited
image recognition abilities restrict its use in map reading and analysis [30], especially when
compared to GPT-4V. Our experiments included a variety of map images sourced from
both manually created maps, which were subsequently hosted and shared publicly on a
cloud drive, and online map images from different hosting servers. Leveraging the fact
that the GPT-4 API does not store uploaded files but can process image URLs, we chose
Google Drive to host the tested images and created URLs accordingly. In the message
sent to GPT API, the role parameter determines which contents should be pre-set in the
model and which contents are user requests. The input information for GPT-4V in a request
includes textual instructions (prompt) and images. In this study, we employed several types
of requests to assess GPT-4V’s capabilities in map reading, which involves information
retrieval, and in map analysis, which pertains to visual analytics.
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Figure 1. Map image reading and analysis process using GPT-4V in OpenAI API.

We also carefully considered the prompt engineering process before inputting our
textual prompts according to the guidelines given by OpenAI that prompts should be clear,
detailed, and structured [31]. We made an example of Prompt 2.1 and 2.2 to illustrate how
different prompts can lead to a different answer. However, since most of the tasks tested in
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the first section are straightforward and do not involve complexity, prompt engineering
did not significantly improve the response from LMMs (see Figure S1).

2.1. Map Element Recognition

We first tested the ability of LMMs in map element recognition using the prompt
below. Figure 2 is a map from the book ‘Map use: reading, analysis, interpretation’ [24], which
predicts the habitat of owls in Oregon. It includes a range of common map elements, such
as legend, scale bar, title, subtitle, sources/credits, and figure caption. Specifically, the
map illustrates the spotted owl in Oregon using a sequential color scheme to represent
predicted habitat from None to Good. Two line types were used to distinguish ecoregional
boundaries from county boundaries. By phrasing our prompt as shown below to test
the ability of LMMs to recognize map elements in Figure 2, we obtained the response as
follows.
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Figure 2. Prompt 1.1 and answers from three LMMs regarding to the map of spotted owls and its
predicted habitats in Oregon, retrieved from [24], with proper answers highlighted in green, and
incorrect answers highlighted in red.

In Answer 1.1, GPT-4V explicitly described all the map elements that appeared on
the map. Gemini Pro Vision also interpreted the figure correctly but with less information,
such as missing the figure number and author name in the figure caption. Sphinx only
described the map but gave a false interpretation of the figure. By checking the details of the
answers, the descriptions from GPT-4V and Gemini Pro Vision were mostly accurate and
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correct, indicating their capabilities in extracting textual information from a map. Moreover,
GPT-4V can link different elements to its use on the map. For example, it can first detect
scales in two measurements and then explain that both scales (km and mile) provide a
reference on the map. GPT-4V also interpreted the legend and explained how it works in
layman’s terms, while Gemini Pro Vision only listed the elements without explanation.

Furthermore, considering the possibility that existing maps from public sources were
used for training the LMMs, we performed an additional element recognition test using
newly generated maps. One hundred thematic maps were generated using demographic
data collected from the 2019 American Community Survey through Census API, which
includes 20 US states, 3 types of symbology (i.e., choropleth maps, graduated symbol maps,
and dot density/distribution maps), and 3 different themes (i.e., population, unemployment
rate, and per capita income). Notably, due to the limited capacity of Python packages in
cartography, the maps used graticules/latitude and longitude grids to represent scales and
north. Details of the thematic maps created can be found in the Supplementary Material.

Figure 3 shows an example of the prompt response from three LMMs. We evaluated
the accuracy of each LMM’s response to the question based on specified criteria, e.g.,
whether the response mentioned the legend. The results of this evaluation are summarized
in Table 1. Among the models, GPT-4V demonstrated superior performance, and delivered
a proper response that was more detailed than the other two LMMs. Detailed information
about the images tested and the responses provided is available in the data repository.
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Table 1. Performance of LMMs in the map element recognition task; the total number of maps tested
in each LLM is 100.

LMM Answer
Correctly

Mention
Title

Mention
Legend

Mention
Symbol

Mention
Boundary

Mention
Capital

Mention
Graticule

GPT-4V 95/100 100/100 100/100 97/100 77/100 32/100 100/100
Gemini Pro
Vision 14/100 99/100 100/100 26/100 32/100 25/100 85/100

Sphinx 0/100 0/100 13/100 1/100 1/100 1/100 0/100

2.2. Thematic Map Recognition

We further tested the ability of LMMs in reading different types of thematic maps.
The first example tested in this prompt was retrieved from the ‘Geographic Information
Science & Technology Body of Knowledge’ [27]. Four different types of maps are included
in Figure 4, which are (1) dot density/distribution map, (2) proportional symbol map,
(3) choropleth/graduated colored map, and (4) isoline/isarithmic map. We purposely
hid the titles on the four maps, in order to concentrate on evaluating the image-reading
capability rather than the text-recognizing capability of LMMs. In Answer 1.3, GPT-4V and
Gemini Pro Vision correctly answered the questions, and GPT-4V further elaborated on
different types of map representations and mentioned all four types of thematic maps in the
example given. Furthermore, GPT-4V can explain how different types of thematic maps are
related to the given axis labels, while Sphinx also tried to explain the relationship between
axis and quadrants but failed. In this example, the responses by GPT-4V and Gemini Pro
Vision can sufficiently meet our criteria for differentiating among the thematic map types,
while the answer given by Sphinx lacked informative value.
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In addition, we tested the ability of LMMs to recognize different types of thematic
maps using the same image set in Prompt 1.2 with the deliberate omission of their titles to
focus purely on image interpretation capabilities. The results are summarized in Table 2
and reveal that GPT-4V accurately identified the symbology of 98 images, outperforming
Gemini Pro Vision and Sphinx, which recognized 70 and 1 images, respectively. Based on
the results above, GPT-4V exhibits a significant advantage in map reading, demonstrating
exceptional performance that aligns with observations from other studies [32,33].

Table 2. Performance of LMMs in thematic map recognition tasks by types of maps tested (the rate of
correct thematic map recognition indicated in the table).

LMM Choropleth Maps Proportional Symbol Map Dot Density Map

GPT-4V 60/60 19/20 19/20
Gemini Pro Vision 60/60 1/20 9/20
Sphinx 1/60 0/20 0/20

As GPT-4V showed outstanding performances in the map reading tasks, we further ex-
plored other auxiliary tests for its map reading capabilities. Specifically, we tested map pro-
jection recognition (Prompt S1), map comparison with different scales (Prompt S2), domain-
specific map reading (climate maps with Köppen climate classification in Prompt S3 and
Local Indicators of Spatial Association in Prompt S4), optical illusion (Prompt S5), and
high-resolution map reading with overwhelming information (Prompt S6). Due to the page
limit, the prompts and results are attached in the Supplementary Material (Figures S2–S7).
Compared with traditional map reading with human eyes, GPT-enabled map reading can
save labor and time and provide an easier way to read large amounts of maps within a
short time period.

3. Map Analysis

Map analysis involves precise measurements and the examination of spatial patterns
from maps. Thematic maps are commonly used to discern spatial patterns. For instance, a
graduated color map can be used to analyze precipitation variation across the contiguous
United States (e.g., map image used in Figure 1), which reveals non-random, regional
high and low clusters. Map analysis extends to examining spatial correspondences and
differences in patterns between maps, revealing the complexity and insight of maps. In
this section, four types of map analysis were used to evaluate the performance of GPT-4V,
including (1) point pattern recognition, (2) bivariate pattern analysis, (3) visual detection of
changes, (4) time-series analysis, and (5) comparison between different spatial scales.

3.1. Point Pattern Recognition
3.1.1. Point Pattern Analysis

Point pattern is one of the most common topics in map analysis. Point pattern analysis
focuses on the spatial distribution of point data, usually including three types: clustered
pattern, dispersed pattern, and random pattern. In this section, GPT-4V was tested for
recognizing different types of point patterns. Figure 5, which indicates three types of point
distribution, was retrieved from the book ‘Mapping, Society, and Technology’ [29]. Points
in blue circles indicate clustered distribution, points in yellow circles indicate random
distribution, and points in red circles represent dispersed distribution. In Prompt 2.2
(Figure 6), we directly test GPT-4V’s ability to distinguish between three types of point
distribution. It turns out that point patterns in red and yellow circles cannot be recognized
by GPT-4V. Considering that the map did not give any additional information on the
colors of each circle, we conducted prompt engineering and added additional information
explaining that each color of the circle represents a specific point distribution pattern. The
response to our revised prompt (Prompt 2.2) was improved and could accurately point out
each type of distribution. The step of adding additional information is also recommended in
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the official prompt engineering guide [31]. Thus, when given enough information, GPT-4V
could recognize different types of point patterns and can be used to expedite data analysis.
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3.1.2. Bivariate Point Pattern Analysis

In addition to simple point pattern analysis, we also tested if GPT-4V can recognize
different types of bivariate point patterns. Similar to previous prompts, we tested three
types of bivariate point patterns, namely, clustered, regular, and random (Figure 7), using
the figure from a relevant publication [34]. GPT-4V’s answer can correctly point out the most
likely pattern for each point distribution. Additionally, GPT-4V uses its extensive language
model to explain the characteristics of clustered, regular, and random distributions. Then,
we used the crime and income data in Chicago as the case study (Figure 8). We collected
point data from the crime dataset in Chicago and collected income data in each census
block group. Then, we overlaid the selected two crime types (burglary and theft) on a
graduated color map of income and tested if GPT-4V can recognize such a complex map.
To our surprise, GPT-4V not only accurately described that the distribution of theft and
burglary over the map is more concentrated in certain areas, but also gave a guess that
theft data may be more related to income based on visual inspection. We later examined
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the result given by GPT-4V by calculating the Pearson correlation coefficient and p-value
between the number of burglary/theft and income at the census block group level, and the
result showed that GPT-4V’s guess was correct in that both correlations are significant, and
theft has a stronger correlation with income than burglary (see Table S1).
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Figure 8. Prompt 2.4 and GPT-4V’s Answer regarding the map of bivariate point distribution
(burglary and theft) overlaid with income background layer, with crime data collected from
https://data.cityofchicago.org/Public-Safety/Crimes-2022/9hwr-2zxp/data, and income data col-
lected from American Community Survey 2021 5-Year Estimates, both of which were accessed on
30 December 2023.

https://data.cityofchicago.org/Public-Safety/Crimes-2022/9hwr-2zxp/data
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3.2. Comparison between Maps

The comparative analysis of maps is a fundamental aspect of cartographic evaluation,
going beyond mere visual inspection to understand the underlying patterns, changes, and
inconsistencies between different map representations. This process is critical in discerning
how various mapping techniques, data sources, and temporal changes impact the portrayal
of geographic information. For instance, comparing topographic maps from different eras
can reveal landscape changes, while juxtaposing thematic maps derived from different
classification algorithms might highlight variations in environmental monitoring. In this
section, the map comparison is organized into three distinct yet interconnected categories:
Firstly, visual detection of changes in maps, focusing on the temporal scale with a pair of
maps (n = 2), to identify and analyze alterations over time. Secondly, time-series analysis,
which extends the temporal scale to multiple maps (n > 2), allows for a more dynamic and
longitudinal understanding of changes. Lastly, the comparison across different spatial scales
examines how geographic information is represented and interpreted differently depending
on the areal unit used in the map. Each category leverages GPT-4V’s advanced capabilities
to offer insightful and comprehensive map comparisons, enhancing the understanding of
geographical data and their implications.

3.2.1. Visual Detection of Changes in Maps

We first start our map analysis and comparison test with the visual detection of
changes in maps. Prompt 2.5 is based on the high-resolution nighttime light (NTL) images
(30 m) in the Houston area before and during the 2021 Winter Storm Uri (in Figure 9). We
georeferenced the NTL images from NASA with labels provided by ArcGIS. The answer
by GPT-4V demonstrates the capability to accurately identify areas experiencing power
outages. GPT-4V can not only deduce from the information presented in the maps which
locations are more or less affected by power outages, e.g., southwest near Missouri City
experienced a decrease in NTL intensity, but can also infer the power outage status of
certain areas that are not explicitly marked on the map, e.g., northwest near Cypress
experienced an NTL intensity reduction. GPT-4V also integrates its large training data to
assess the outage situation in specific areas, e.g., industrial areas near Baytown and La
Porte maintain consistent lighting. Moreover, GPT-4V offers concrete analytical suggestions
and identifies several limitations of assessing power outages using NTL data in the answer,
such as cloud cover, time of image capture, and sensor used.

3.2.2. Time-Series Analysis

Extending the temporal scale from two to more, the test of time-series analysis on
GPT-4V is conducted to evaluate its ability for visual detection of changes. We used the
annual precipitation maps generated from the interactive mapping platform, Climate at
the Glance, under the Climate Monitoring product provided by NOAA National Center
for Environmental Information (NCEI) from 2000 to 2020 at a 5-year interval (i.e., 2000,
2005, 2010, 2015, 2020). Five maps were included in the message to GPT API by attaching
URLs to their cloud location in Google Drive (Figure 10). Prompt 2.6 shows that GPT-4V
can accurately provide a comprehensive qualitative assessment of the maps provided.
Specifically, GPT-4V can provide the visual detection of changes between multiple map
sets within a short amount of time, which is superior to human beings when reading
multiple maps. Moreover, its outstanding ability of textual content extracting gives an
additional correction for GPT-4V to understand and correct its answer to the prompt,
like giving detailed changes in numbers shown on maps. As GPT-4V explained in its
answer, it can only provide qualitative assessment (highlighted in bold in Figure 10) and
may still lack accuracy in quantities. In most cases, data behind maps are rarely given
simultaneously, making GPT-4V’s accurate qualitative assessment more valuable. However,
without massive experiments for quality assurance and quality control, GPT-4V should be
carefully applied when conducting a time-series analysis.
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Figure 10. Prompt 2.6 and GPT-4V’s Answer regarding the map for time-series analysis using
divisional precipitation data from 2000 to 2020 at a 5-year interval (i.e., 2000, 2005, 2010, 2015, 2020),
retrieved from the interactive mapping platform, Climate at the Glance, under the Climate Monitoring
product provided by NOAA NCEI (https://www.ncei.noaa.gov/access/monitoring/climate-at-a-
glance/divisional/mapping, accessed on 30 December 2023).

3.2.3. Comparison across Different Spatial Scales

Spatial scale is important in spatial analysis, and comparison across different spatial
scales can not only show a detailed view of spatial aggregation, but also address the
modifiable areal unit problem (MAUP), one of the popular and important questions in
geography, which is a statistical bias that can significantly affect the interpretation of data
in geospatial analysis. Here, we tested GPT-4V’s ability to distinguish spatial patterns
across different spatial scales in the same temporal scale. Similarly, maps in three spatial
scales, i.e., state, divisional, and county, generated from Climate at the Glance under the
Climate Monitoring product provided by NOAA NCEI, were collected and applied in
Prompt 2.7 (Figure 11). GPT-4V’s answer illustrates that it can tell the differences in scales
when comparing three maps, and the differences lead to a variation in resolution whereby
maps with a smaller scale have a higher resolution. Specifically, it mentioned localized
patterns in variability, which is a key component in the map comparison across three
spatial scales. Thus, we followed up with Prompt 2.8 (Figure 12) to ask GPT-4V to identify
which areas have the largest variability. The answer first provides a workflow on how to
observe areas with the largest variability. Then, it gives some potential candidate states,
like Texas, California, and Midwestern states, but it does not firmly confirm its observation
on areas with the largest variability. The answer additionally introduced the concept of
microclimates, which was absent from our original prompt, indicating that GPT-4V may
use its pre-trained large language model to improve its map reading and analysis results.

https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/divisional/mapping
https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/divisional/mapping
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By following up with specific questions, GPT-4V can provide a relatively vague answer and
phrases its answer with high uncertainties, like using “seems”, “relatively”, “might not”,
etc. Overall, GPT-4V could distinguish differences across spatial scales, but its assessment
on maps stays preliminary and qualitative.
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insights for different locations were highlighted in bold.

4. Discussion

This study evaluated the latest version of GPT for vision, GPT-4V, across various
facets of map reading and analysis and compared the map reading ability of GPT-4V with
other LMMs. The findings demonstrate that GPT-4V is not only proficient in executing
fundamental map reading and analysis tasks but is also skillful at identifying complex
spatial patterns. Based on our results, we have summarized several advantages and
disadvantages of GPT-enabled map reading and analysis in Table 3.

Table 3. Pros and cons of GPT-4V’s application in map reading and analysis with supporting prompts.

Pros/Cons Map Reading Map Analysis

Pros

1. Accurate info retrieval All Prompts All Prompts
2. Geographic knowledge Prompt 1.3, S3 Prompt 2.5
3. Comprehending complex symbology Prompt 1.3, S6 Prompt 2.4, 2.6
4. Spatial pattern recognition Prompt 1.2 All Prompts
5. Picking up details Prompt S6 Prompt 2.4, 2.5
6. Understanding domain-specific maps Prompt 1.2, S3, S4 Prompt 2.4
7. Efficiency All Prompts All Prompts

Cons

1. Constraints in precision Prompt 1.2 Prompt 2.4, 2.6
2. Dependence on prompt engineering N/A Prompt 2.1, 2.2
3. Difficult results validation All Prompts All Prompts
4. Limited explicability All Prompts All Prompts
5. Reproductivity concern All Prompts All Prompts
6. Refusal behavior All Prompts All Prompts
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4.1. Advantages

1. Accurate Information Retrieval

GPT-4V demonstrates a remarkable capability of information retrieval from maps,
especially embedded textual information. Throughout all prompts in the map reading
and analysis sections (Sections 2 and 3), GPT-4V consistently and successfully extracted
the textual information, and provided a precise description of map elements, such as
legend items, figure caption, and scales. This skill is particularly important when reading
domain-specific maps with complicated scales and legend items, where precision is crucial.

2. Geographic Knowledge

GPT-4V can connect places observed from a map to its pre-trained geographic knowl-
edge. For instance, as demonstrated in Prompt 2.5, GPT-4V was able to extend beyond
the map’s displayed content and reference geographical information about locations not
shown in the image, such as Cypress near the Houston area. Similarly, in Prompt S2, the
geographical relationship between Hollywood and North Miami Beach was not explic-
itly mentioned on the map, yet GPT-4V was able to acquire position information about
Hollywood and North Miami Beach. Although there was an error in our experimental
results (the correct statement should be that Hollywood is north of North Miami Beach),
such a capability in map reading is rare and noteworthy. This suggests that GPT-4V’s
training model encompasses the geographic location information of these places, and that
it understands how such information is interrelated. Consequently, GPT-4V is able to
establish spatial connections, which proves to be incredibly useful in the context of map
reading and analysis. By drawing from its large background information, GPT-4V can
relate to and incorporate external geographic information, thereby enhancing the depth
and accuracy of its interpretations within the map’s framework.

3. Comprehending Complex Symbology

GPT-4V’s advanced capabilities in map reading, particularly in understanding com-
plex map symbology (e.g., thematic maps with different symbology types, color schemes,
and classifications), give it a significant advantage over traditional methods. Complex
legends can often confuse human readers, but GPT-4V, supported by a large pre-trained
language model, consistently identifies similar or analogous information to use as refer-
ences. This allows for a more accurate interpretation of the information in the legends. For
instance, as seen in Prompts 1.3 and 2.4, GPT-4V was able to discern color information
corresponding to different grades or symbols representing various data representations.
GPT-4V goes beyond merely extracting this information; its real value lies in utilizing the
large language model to comprehend and elucidate the significance of this information. In
an example like Prompt S6, GPT-4V did not just list the content indicated by the legend
but also inferred conclusions about the data, such as associating darker shades with higher
income levels.

4. Spatial Patterns Recognition

GPT-4V also exhibits an outstanding capacity for pattern recognition, as evidenced by its
performance in experiments involving point patterns. In scenarios such as those presented
in Prompts 2.1 and 2.2, GPT-4V successfully identified different point patterns—dispersed,
regular, and random—matching the discernment capabilities of the human eye. Moreover,
in tasks related to comparison, GPT-4V proved its mettle, as seen in Prompt 2.5, where it
accurately detected changes in nighttime light before and during the winter storm. While there
were occasional instances where it could not provide image comparison responses, generally,
when provided with ample contextual conditions and after some prompt engineering, GPT-4V
could effectively recognize and compare images.

5. Picking Up Details

GPT-4V shows an exceptional ability to process maps with high-resolution and precise
information, outperforming human capabilities in certain aspects. For example, in Prompt
S6, where maps contain an overwhelming number of elements, humans may struggle to
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quickly locate the necessary information amidst the complexity. GPT-4V, on the other hand,
can identify textual information promptly with a wide range of associated background
knowledge. This capability presents a significant opportunity, particularly considering the
vast archives of historical maps that remain unused due to their complexity. The widespread
application of GPT-4V to such historical maps could extract and weave together a wealth
of information, creating a new network of interconnected map information. This network
has the potential to inspire novel findings, transforming the way we comprehend historical
cartography and its narratives.

6. Understanding Domain-Specific Maps

GPT-4V has the potential to greatly assist laymen in reading domain-specific maps,
which often come with a steep learning curve due to map complexity. Maps rich in special-
ized content, like Local Indicators of Spatial Association (LISA) maps (Prompt S4) or those
employing the Köppen climate classification (Prompt S3), typically require a solid back-
ground in the subject matter to be fully understood. Prior to GPT-4V, a person would need
to turn to search engines to supplement their understanding with background knowledge.
GPT-4V, however, can streamline this process by directly providing relevant information,
paving a new pathway for understanding domain-specific maps. By leveraging its pre-
trained large language model, it can offer comprehensive and related information, aiding
people from non-specialized fields in quickly grasping the content of complex maps. This
feature of GPT-4V not only enhances the accessibility of specialized geographical data
but also enriches the user’s learning experience by simplifying the acquisition of domain
knowledge.

7. Efficiency

GPT-4V improves the efficiency of reading and analyzing maps when compared with
humans. In most of our tests, the response time from OpenAI API is less than 20 s, which
is notably faster than what it typically takes for a person to observe a map and type the
descriptions, e.g., ranging from 30 to 95 words per minute (wpm) with a mean around
50 wpm [35]. A sample response in our test is around 200 words, which may take 4 min
to type, and the GPT-4V’s response time is approximately 12 times faster than that of a
human, while this calculation does not even factor in the additional time humans require for
organizing and structuring their responses. Furthermore, in scenarios that require reading
or analyzing multiple maps, the time saving becomes even more pronounced. Humans may
require substantially more time to comprehend each map individually, whereas GPT-4V
can be set to process multiple requests simultaneously through the GPT-4 API.

4.2. Disadvantages

1. Constraints in precision

In the evaluation of GPT-4V’s performance, a notable concern is its accuracy in quan-
titative assessments. During tests, such as those associated with Prompt S2, GPT-4V
demonstrated limitations in providing precise scale measurements from two maps. In
response to Prompt 2.6, GPT-4V excels in qualitative analysis, suggesting its suitability
for descriptive tasks rather than accurate quantitative evaluations. GPT-4V consistently
indicated that it does not support quantitative analysis on maps, which implies that GPT-4V
can effectively interpret and describe map content but remains restricted for quantitative
tasks. Users should be aware of this limitation and may prefer to utilize GPT-4V in contexts
where descriptive insight and qualitative interpretation are the primary objectives.

2. Dependence on Prompt Engineering

The application of GPT-4V in map analysis often requires careful prompt engineering.
In most cases, initial inquiries rarely yielded comprehensive answers (e.g., Prompt 2.1).
Thus, refining the prompts is essential to guide the AI toward the desired range of responses,
enhancing the relevance and accuracy of the information provided. In other words, prompt
engineering is a cornerstone of effective AI deployment. This iterative approach of fine-
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tuning prompts is a critical step to effectively leverage GPT-4V’s capabilities in map reading
and analysis, necessitating significant effort and collaboration as an additional step.

3. Difficult Results Validation

The current version of GPT-4V encounters technical difficulties, particularly with
analyzing graphs or text involving varying colors or styles, such as solid, dashed, or dotted
lines. This challenge might be caused by the way data are parsed and fed into the GPT
model. While immediate improvements on this front may be challenging, future updates
and releases from OpenAI could potentially address and alleviate these issues.

4. Validation Concern

The validation of results provided by GPT-4V presents a concern. Currently, the vali-
dation of its experimental outcomes is conducted by the authors, which could potentially
introduce biases. Consequently, our experiments do not definitively conclude that GPT-4V
always delivers high-quality results. A solution in future studies could be to increase the
number of experiments to further explore the stability and reliability of GPT-4V.

5. Limited Explicability

GPT-4V is like a “black box”, with its underlying principles and logic challenging
to explain. In essence, it relies on its large pre-trained language model and deep neural
networks in transformers to generate responses. The architecture of GPT-4V is conceptually
straightforward, yet providing a clear explanation of its internal process is complex. The
responses it generates can vary, sometimes depending more on the information extracted
directly from the map, and at other times, leaning heavily on its pre-trained data. The
balance between extracting visual content from the map and utilizing information from its
large language model training is not easily controllable. This variation in results further
complicates the explanation of GPT-4V’s mechanism.

6. Reproducibility Concern

The reproducibility and performance of GPT-4V in our experiments raise concerns.
Due to the nature of large language models and GPT’s characteristics, consistent results
cannot be expected. Thus, there is a possibility that our current findings could be coin-
cidental. Moreover, the scope of our experiments may be limited, indicating GPT-4V’s
capabilities only under specific conditions. Its performance in more complex tasks remains
uncertain and requires further experiments. Although GPT-4V uses complicated algorithms
to predict the next word, which may impact reproducibility, it is likely to produce similar
outcomes when given the same prompts and images. However, there is still a need for
more experiments to help better understand and validate GPT-4V’s capabilities in map
reading and interpretation.

7. Refusal Behavior

It is noteworthy that in our experiment, there were several instances where GPT-
4V refused to respond to our map-related queries. As outlined in the GPT-4V system
card, such non-responsiveness can be triggered by issues like harmful content, privacy
concerns, cybersecurity, or multimodal jailbreaks [22]. Yet, in our case, these triggers did
not evidently apply to our prompts. This discrepancy suggests a possible misidentification
of such triggers by the system. While revising the phrasing of our prompts sometimes
resulted in an effective response from GPT-4V, this inconsistency highlights a need for
clearer guidelines in GPT-4V’s future documentation, particularly regarding what types of
prompts the system can process.

4.3. Recommendations

Based on the aforementioned advantages and disadvantages, we produce the fol-
lowing recommendations for when and how to best use GPT-4V for map reading and
analysis:

First, GPT-4V can be a great assistant with fast information retrieval from large-volume,
high-frequency, high-resolution maps with complex symbology. Our experiments have
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demonstrated its capabilities of correctly reading maps of various types, styles, and topics.
Thanks to its machine nature that allows for programming and automation, it is safe to rec-
ommend using GPT-4V for processing batch maps for reading and analysis simultaneously.
This multi-processing capability is particularly valuable in fields that require processing
a large volume of map data in a short time, such as real-time monitoring of hotspots of
crime incidents, car accidents, or disease outbreaks. Similarly, it is beneficial for long-
term large-scale map-based monitoring, such as coastal erosion detection from time-series
satellite-image maps, or drought monitoring from daily precipitation maps. Automating
the process of examining batches of maps and summarizing observable patterns in writing
using GPT API is practical low-hanging fruit benefiting from this new technology.

Second, it significantly lowers the learning curve of map reading for many. Proper
map reading requires basic knowledge of cartography and geography, and it takes practice.
Even for someone who is skillful and experienced, it is still challenging to read reference
maps of unfamiliar geographic regions, or thematic maps of unfamiliar topics. GPT-4V can
well address such challenges thanks to its pre-trained geography and domain knowledge.
For instance, GPT-4V serves as a “local guide” to explain map labels of unfamiliar places
or place names in a foreign language. It can also translate jargon that appears in maps to
layman’s terms to ease the way of understanding spatial patterns.

Third, though GPT-4V showed spectacular performance in most tasks tested, it still
presents some limitations in recognizing patterns in maps (Figure S8). Such mistakes do not
always occur, making it hard to identify the core issue. Thus, our recommendation for the
use of GPT-4V in reading and analyzing maps is to run it more than once and synthesize the
results derived from responses to avoid using casual false interpretations from the model.

Fourth, GPT-4V can facilitate the research process in geographic information science.
Spatial pattern recognition from maps often serves as the first step of exploratory spatial
data analysis, especially in the big data era. Various research hypotheses can be formed
based on the observed patterns. And these hypotheses can be further validated with
confirmatory analysis using real-world data to form new empirical findings or even new
theories. GPT-4V can significantly enhance this process by mining spatial patterns from
maps, summarizing the patterns in writing, and comparing them with the literature in its
pre-trained database to suggest which patterns are worth further study.

5. Conclusions

This study explores using the latest GPT-4V for map reading and analysis. Our
experiments focused on map element recognition, thematic map recognition, and advanced
map analysis including point pattern recognition and comparative analysis across different
spatial and temporal scales, which demonstrate GPT-4V’s capability to efficiently extract
information from various maps and perform basic visual analytics. We also discussed
and summarized its pros and cons in map reading and analysis. Its effectiveness in
tasks, such as identifying changes in satellite images between and during a winter storm,
suggests a promising application in automating map analysis. However, there is room for
improvement in relation to its diminished accuracy in visual content extraction, need for
prompt engineering, technical difficulties, validation concerns, “black box” nature, and
issues with reproducibility and performance.

GPT-4V’s strengths, like its ability to rapidly process high-resolution images and
assist non-experts in understanding complex maps, are offset by its limitations in providing
precise quantitative analysis and the need for carefully engineered prompts to yield accurate
results. Moreover, technical challenges and the inherent complexity of its algorithm make
it difficult to fully understand and predict its behavior. Despite these challenges, the
future of GPT-4V in map reading and analysis is promising. With anticipated technological
advancements and updates, many of the current limitations could be mitigated, potentially
expanding the scope and effectiveness of GPT-4V in geospatial analysis.

The dynamic evolution of GPT-4V, influenced by both technological progress and
policy changes, indicates a future where its capabilities could be significantly enhanced.
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This study lays the groundwork for further exploration and application of GPT-4V and
similar AI tools in the field of cartography and geospatial analysis, ushering in a new era of
AI-enabled map interpretation. There exists a future possibility in data science in which the
steps of making and reading maps may be bypassed. When AI tools advance to a certain
level, they can be used to directly retrieve useful patterns and information from abundant
geospatial data, without the necessity for designing maps, and then visual observations
can be made.

The advantages and limitations discussed are specific to the GPT-4-vision-preview ver-
sion and its training data as of September 2023. With anticipated updates, the highlighted
advantages could be enhanced, and the current limitations might be mitigated. Conversely,
future policy updates might impose restrictions on certain map interpretation functionali-
ties that are presently available. This dynamic nature of AI development suggests that the
effectiveness and scope of GPT-4V in map analysis will continue to evolve, influenced both
by technological advancements and policy decisions.

There are several meaningful future directions to extend the current study of GPT-
enabled map reading and analysis. First, it is worth testing reading maps in formats other
than static images. All the experiments conducted in this study use maps in common
digital image file formats such as JPEG. However, modern maps are presented in many
other ways, including the animated maps in Graphics Interchange Format (GIF) or in
videos, interactive maps in web browsers, and maps embedded in smartphone applications.
Evaluating how well GPT-4V can read and comprehend maps in such other formats can
likely enhance its applicability. Second, reading maps can be more inclusive. By leaving
on the latest voice control feature of GPT, it is a natural next step to have it read maps
for vision-impaired people. Such a special group of users can use voice commands to ask
what a map shows and hear map descriptions instead of seeing them. Last, but not least,
combining GPT-enabled map analysis with more advanced spatial analysis is a promising
direction to enhance future research. For instance, a plausible approach is to transfer
the spatial patterns inspected by GPT-4V from maps to advanced analytical or modeling
toolkits for further validation. In that scenario, GPT-enabled map reading and analysis
will be a critical step of the research pipeline, in which observing, analyzing, processing,
thinking, reasoning, summarizing, and writing will all be highly automated with future
AI tools.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ijgi13040127/s1, Figure S1: Comparison between responses using dif-
ferent prompts (Prompt S1.1, S1.2, S1.3) after prompt engineering; Table S1. Pearson Correlation Coeffi-
cient and p-value between crime and income level in Chicago at block-group level; Figure S2: Prompt S2
and GPT-4V’s Answer regarding to the map projection, image retrieved from The nature of geographic
information (https://www.e-education.psu.edu/natureofgeoinfo/c2_p26.html, accessed on 30 De-
cember 2023) [36]; Figure S3: Prompt S3 and GPT-4V’s Answer regarding to the map comparison with
different spatial scales, image retrieved from Google Maps (https://www.google.com/maps, accessed
on 30 December 2023); Figure S4: Prompt S4 and GPT-4V’s Answer regarding to the reading of domain-
specific maps, making Köppen climate classification system as an example, image retrieved from
Wikipedia (https://upload.wikimedia.org/wikipedia/commons/thumb/1/1e/World_K%C3%B6
ppen_Classification_(with_authors).svg/675px-World_K%C3%B6ppen_Classification_(with_authors)
.svg.png, accessed on 30 December 2023); Figure S5: Prompt S5 and GPT-4V’s Answer regarding to
the reading of domain-specific maps, making map of Local Indicators of Spatial Association (LISA)
as an example, image retrieved from StackExchange (https://stats.stackexchange.com/questions/
335919/how-to-interpret-lisa-clustering-maps, accessed on 30 December 2023); Figure S6: Prompt
S6 and GPT-4V’s Answer regarding to the optical illusion, image retrieved from Scientific American
(https://www.scientificamerican.com/gallery/optical-illusion-by-land-or-by-sea/, accessed on 30
December 2023); Figure S7: Prompt S7 and GPT-4V’s Answer regarding to the map information
extraction from high-resolution image with overwhelming labels, image generated from data from
American Community Survey 2021 5-Year Estimates in Texas at the county level; Figure S8: Mistakes
in GPT-4V’s answer in additional experimented prompts, highlighted in red.
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