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Abstract: The clarification of the impact of human activities on vegetation in mining areas contributes
to the harmonization of mining and environmental protection. This study utilized Geographically
and Temporally Weighted Regression (GTWR) to establish a quantitative relationship among the
Normalized Difference Vegetation Index (NDVI), temperature, precipitation, and Digital Elevation
Model (DEM). Furthermore, residual analysis was performed to remove the impact of natural factors
and separately assess the impact of human activities on vegetation restoration. The experiment was
carried out in Shangwan Mine, China, and following results were obtained: (1) During the period
of 2000 to 2020, intensified huan activities corresponded to positive vegetation changes (NDVI-HA)
that exhibited an upward trend over time. (2) The spatial heterogeneity of vegetation restoration
was attributed to the DEM. It is negatively correlated with NDVI in natural conditions, while under
the environment of mining activities, there is a positive correlation between NDVI-HA and DEM.
(3) The contribution of human activities to vegetation restoration in mining areas has been steadily
increasing, surpassing the influences of temperature and precipitation since 2010. The results of this
study can provide important references for the assessment of vegetation restoration to some extent in
mining areas.

Keywords: human activities; vegetation restoration; GTWR; driving factors; NDVI

1. Introduction

As mining activities progressed, the industrialization and urbanization processes
in mining areas accelerated, resulting in the degradation of the ecological environment
and increased vulnerability of ecosystems. Consequently, the local ecosystems became
unable to recover the structure and function through self-regulation [1,2]. Therefore,
ecological restoration has become a crucial approach to regulate the ecological balance and
achieve sustainable high-quality development of the ecological environment in mining
areas. Vegetation restoration represents one of the most common measures in ecological
restoration [3], invariably influenced by the combined impacts of natural factors and human
activities in mining areas [4]. Human activities in mining areas primarily consist mainly
of mining activities and ecological restoration. Among natural factors, temperature and
precipitation exert relatively significant influences on vegetation [5,6].

Vegetation restoration in mining areas is an important and difficult task in China,
which is a crucial way to realize the construction of ecological civilization in mining areas.
Numerous scholars have conducted extensive researches in this field, and existing studies
can be categorized into four categories. The first category involves classifying the land use
of remotely sensed images in specific periods. Land use transfer matrices are constructed
to quantify the changes of different types of land use. Finally, the inflow and outflow
of the vegetation area in each period were counted to evaluate the effect of vegetation
restoration in mining areas [7,8]. The second category is to classify the vegetation cover into
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different levels, and analyze the spatial characteristics of vegetation restoration by counting
the changes of the areas and proportions for different levels [9–11]. The third category
evaluates and predicts the trend of vegetation restoration from a temporal perspective
using mathematical and statistical methods. Typical studies usually apply linear regression
analysis [12–15], trend analysis & Hurst-index [16,17], and coefficient of variation [18–20]
to assess the interannual trends, change rates of vegetation cover over the time. This
category is the most commonly used in assessing vegetation restoration effect. While
the aforementioned three categories of research partially reveal the effects of vegetation
restoration in mining areas, the first category relies on results from land use classification,
which leads to lower efficiency. The second and third categories analyze the vegetation
changes based on directly monitored vegetation indices. In these two categories of research,
vegetation changes caused by natural factors and human activities are not differentiated,
and the underlying driving factors are not quantitatively analyzed. Therefore, there is a
fourth category of research that compares the relative contributions of natural factors and
human activities to vegetation growth in mining areas utilizing multiple linear modelling
and residual analysis [21,22]. Nevertheless, the impact of driving factors on vegetation
growth varies in different time and spatial locations, i.e., there exists spatial heterogeneity
and temporal heterogeneity, which cannot be considered by multiple linear regression
modelling. Overall, existing studies lack the removal of the impact of natural factors to
separately assess the impact of human activities on vegetation restoration in mining areas.

To address the aforementioned problem, this paper constructed a quantitative model
between NDVI, temperature, precipitation, and DEM using GTWR [23,24], which consid-
ered the spatio-temporal heterogeneity of the impacts of the driving factors on vegetation
restoration in mining area. Two goals have been reached:(1) The impact of natural fac-
tors and human activities on vegetation restoration was distinguished through residual
analysis, allowing for a separate assessment of the impacts of human activities. (2) A quan-
titative comparison was conducted to evaluate the relative contributions of temperature,
precipitation, and human activities to vegetation restoration. The results of this paper can
provide data support and scientific basis to some extent for the ecological restoration and
environmental protection in mining areas.

2. Materials and Methods
2.1. Study Area and Data

Shangwan Mine is situated in Ejin Holo Banner, Ordos, Inner Mongolia, China, and
belongs to Shenfu-Dongsheng Coal Base. It was established and put into production in 2000.
The mine area covers 61.80 km2, with geological reserves of 1.23 billion tons and recoverable
reserves of 830 million tons. The approved production capacity is 16 million tons per year.
Shangwan Mine employs a combination of level mining, inclined shafts, and vertical shafts,
with an inclination angle ranging from 1◦ to 3◦. The mining focuses on three stable coal
seams: seams 1−2, 2−2, and 3−1, with average coal seam thicknesses of 5.20 m, 5.30 m,
and 2.60 m, respectively [25]. All coal seams consist of non-caking coal. The study area is
located between 39◦15′14′′~39◦19′26′′ N, 110◦2′27′′~110◦11′2′′ E, with an east-west extent
of approximately 12.20 km and a north-south extent of about 7.60 km, covering an area
of 92.72 km2. For the construction of the GTWR model, sampling points were uniformly
selected within the study area at 300 m intervals, as shown in Figure 1. The topography
within the study area is higher in the northwest and lower in the southeast, with elevations
ranging from 1072 to 1341 m. Shangwan Mine is located in the transitional zone of the Mu
Us Desert, characterized by typical sand dunes and sandy landforms, and falls within a
temperate semi-arid continental climate. The annual evaporation reaches up to 2000 mm,
while the annual rainfall is only approximately 400 mm, primarily concentrated between
the months of July and September. The average annual temperature hovers around 7 ◦C.
During the initial phase of construction, the average vegetation coverage at Shangwan
Mine was only 3–11%, predominantly comprising shrubs and grasslands.
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Guided by the overall strategic direction of China Shenhua Energy Company Limited,
Shangwan Mine has developed a comprehensive plan for the “Green Mines” target of
the mine from 2011 to 2020, encompassing scientific management, process equipment,
resource conservation and comprehensive utilization, energy conservation and environ-
mental protection, land reclamation, technological innovation, and harmonious mining
area. Remarkable achievements have been made in the ecological and environmental
management of the mining area. In March 2011, Shangwan Mine was designated as one of
the “first batch of national Green Mines pilot units” by the Ministry of Land and Resources.
In September 2014, it was awarded as one of the “first batch of national Green Mines” [26].

The data utilized in this study comprise long time-series remote sensing data, topo-
graphic data, and climate meteorological data, with detailed information in Table 1. The
meteorological data are derived from the weather station nearest to the study area (i.e.,
Dongsheng station) and serve as a representative of the climatic conditions in the study
area. Meteorological data includes all 12 months from 1986–2020. The Landsat images
are used to obtain the NDVI [27,28], and the maximum algorithm was carried out for all
eligible NDVI datasets from 1 July to 30 September. There are a total of 143 scenes Landsat
images. Furthermore, it is worth noting that data quality issues resulted in missing data for
the years 2001, 2009, and 2012.

Table 1. Datasets of the study.

Types Names Sources Description

Remotely sensed images Landsat 5/7/8 Google Earth Engine
(https://earthengine.google.com/)

Images of 1 July to 30 September from
1986 to 2020; the spatial resolution is 30 m.

Topographic data ASTER GDEM V2 Geospatial Data Cloud
(http://www.gscloud.cn/)

The horizontal resolution is 30 m and the
vertical resolution is 20 m.

Climatic and
meteorological data

Temperature &
Precipitation

China Meteorological Data Service
Centre (http://data.cma.cn/)

Monthly dataset of surface climatic
information from 1986–2020.

2.2. Methodology
2.2.1. Data Acquisition and Pre-Processing

The acquisition of NDVI was achieved using the Google Earth Engine (GEE) plat-
form. Firstly, the vector boundary file of the study area was imported. Subsequently,

https://earthengine.google.com/
http://www.gscloud.cn/
http://data.cma.cn/
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preprocessing steps, including cloud filtering, cloud removal, and cropping, were applied.
Further filtering was conducted to select images from the period between 1 July and
30 September each year. NDVI was calculated based on Equation (1). Finally, the maximum
algorithm was carried out for all eligible NDVI datasets. Maximum algorithm refers to the
superposition of multiple raster images of the same spatial scope, and the value of each
raster cell is taken as the maximum of multiple images. In addition, to eliminate the effects
of unit and scale differences in multi-source data, all temperature, precipitation, and DEM
data were normalized to a range of 0 to 1, calculated as in Equation (2).

NDVI =
NIR − R
NIR + R

(1)

where NIR and R represent the surface reflectance of the near-infrared band and the
red band.

x0 =
x − xmin

xmax − xmin
(2)

where xmax and xmin correspond to the maximum and minimum of the original data
respectively, x represents the original data and x0 represents the normalized data.

2.2.2. Selection of Meteorological Data

To determine the optimal time period for the correlation between NDVI and meteoro-
logical data, this paper performed partial correlation analysis [29] and significance test for
the correlations between NDVI and temperature as well as precipitation. The partial corre-
lation coefficient was an indicator to assess the strength of the correlations. The calculation
formula and t-test for the partial correlation coefficient are presented in Equation (3).

RXY,Z = RXY−RXZ×RYZ√
(1−R2XZ)(1−R2

YZ)

T =
RXY,Z√

1−R2
XY,Z

√
n-q-2

(3)

where RXY,Z denotes the correlation coefficient between the X and Y after determining for
Z. In this paper, with Z representing temperature, X and Y respectively represent NDVI
and precipitation. With Z representing precipitation, X and Y respectively represent NDVI
and temperature. The value of RXY,Z ranges from −1 to 1, where a positive value indicates
a positive correlation between the two variables, and a negative value indicates a negative
correlation. The magnitude of the absolute value signifies the strength of the correlation
between the variables. Additionally, n represents the number of samples, while q represents
the order.

2.2.3. Extraction of NDVI-HA

Vegetation in mining areas is impacted by the coupling of multiple factors [30], in-
cluding temperature, precipitation, topography, mining activities, manual restoration, et al.
Furthermore, the extent of these impacts on vegetation varies across different times and
geographical locations [31,32], leading to spatiotemporal heterogeneity. Therefore, GTWR
was selected in this paper to construct the quantitative model between NDVI and the
driving factors. GTWR is a local linear regression model that can consider the temporal
non-stationarity and spatial non-stationarity at the same time. The model expression is
shown in Equation (4).

Yi = β0(ui, vi, ti) +
n

∑
k

βk(ui, vi, ti)Xik + εi (4)

where (ui,vi,ti) represents the spatio-temporal coordinates of the ith point, β0 (ui,vi,ti) is the
constant, βk (ui,vi,ti) denotes the regression coefficient of the kth variable for the ith point,
and εi is the error for the ith point.
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The model was utilized to extract the vegetation changes caused by human activities,
with the specific implementation process shown in Figure 2. Firstly, according to remote
sensing imagery and the available information, we found that there was almost no human
activity during the period 1986–1995. Therefore, data from 1986–1995 characterized by the
absence of mining activity were inputted into the model for training. During the training
process, temperature, precipitation, and DEM were utilized as explanatory variables, while
NDVI was considered the response variable. Mean Relative Error (MRE) was used to
measure the model accuracy, and the accuracy was calculated to be 86% according to the
Equation (5). Further accuracy validation of the model was conducted by inputting the
data of 1996 and 1997 into the trained model, and comparing the predicted NDVI with
the observed NDVI. The average MRE of these two years was 0.30, hence, the validation
accuracy of the trained model was 70%. The scatter plot in Figure 3 illustrated the predicted
NDVI and observed NDVI for the years 1996 and 1997, with the y = x contours in blue. It
can be seen that the scatter points were relatively uniformly distributed on both sides of
the contour line, which indicated that the model was credible to some extent. After the
validation, the temperature, precipitation, and DEM from 2000 to 2020 were input into the
trained model to obtain the predicted NDVI in the study area.

MRE =
1
n

n

∑
i=1

∣∣∣∣NDVIi − ND̂VIi
NDVIi

∣∣∣∣ (5)

where NDVIi and ND̂VIi denote the observed NDVI and the predicted NDVI for the ith
point, respectively.
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Comparing the predicted NDVI with the observed NDVI, as shown in Figure 4, which
demonstrates the interannual changes of the observed NDVI and predicted NDVI from 2000
to 2020. These two curves have similar fluctuating trends, which are impacted by climatic
conditions. In addition, there is a deviation between the two curves, with the observed
NDVI being larger than the predicted NDVI. In this paper, vegetation in mining areas
was influenced by a combination of natural factors and human activities. The observed
NDVI reflect the vegetation growth under the joint influence of these factors, while the
predicted NDVI represent the vegetation growth driven only by natural factors. Hence,
the discrepancy between the observed NDVI and the predicted NDVI is regarded as the
vegetation changes induced by human activities (NDVI-HA), as shown in Equation (6). The
results demonstrate that vegetation in the study area exhibits better growth conditions in
the presence of human activities compared to natural conditions. The analysis of NDVI-HA
can find out the impact pattern of human activities on the vegetation growth, and then
make a reasonable evaluation of the vegetation restoration in the mining area.

NDVIpre = β0 + β1 × P + β2 × T + β3 × DEM
NDVI-HA = NDVIobs − NDVIpre

(6)

where NDVIpre and NDVIobs denote the predicted NDVI and the observed NDVI.
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2.2.4. Evaluation of Trends in Vegetation Growth

Trend analysis was utilized to predict the changing trends of NDVI over the time by
performing a linear regression [33]. The calculation formula is defined in Equation (7).

Slope =
n∑n

i=1 iNDVIi − ∑n
i=1 i∑n

i NDVIi

n∑n
i=1 i2 − (∑n

i=1 i)2 (7)

where i corresponds to the monitoring year, ranging from 1 to 32. n represents the total
number of years, which is set at 32. NDVIi denotes the NDVI for the ith year. A positive
Slope value reflects vegetation improvement, whereas a negative Slope value indicates
vegetation degradation. The significance of the trend is examined through the F-test, which
assesses the confidence level. Notably, the significance is only concerned with the degree of
reliability in the trend change, regardless of its speed. The calculation of F-test is presented
in Equation (8). 

U = ∑ n
i=1 (ŷi − yi)

2

Q = ∑ n
i=1 (yi − ŷi)

2

F = U × n−2
Q

(8)

where U represents the regression sum of squares errors, Q denotes the sum of squared
errors, yi corresponds to the observed value for the ith year, ŷi represents the regression
value, and ӯ is the annual average of NDVI.
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Referring to the p-value selection of existing publications [34–36], vegetation changes
were classified into six classes in this paper: Slope < 0 & p < 0.01 (extremely significant
degradation), Slope < 0 & 0.01 < p < 0.05 (significant degradation), Slope < 0 & p > 0.05
(no evident degradation), Slope > 0 & p > 0.05 (no evident improvement), Slope > 0 & 0.01
< p < 0.05 (significant improvement), Slope > 0 & p < 0.01 (extremely significant improvement).

3. Results
3.1. Spatio-Temporal Characteristics of Vegetation Cover

Figure 5 illustrates the average NDVI in the study area from 1986 to 2020, exhibiting
fluctuations ranging from 0.16 to 0.49. A linear regression was conducted to fit the mean
NDVI values, yielding a slope of 0.0092. The R2 was 0.81, indicating a significant fit.
The positive slope indicated an overall upward trend in NDVI throughout the research
period, signifying vegetation improvement. Furthermore, the standard deviation (SD) was
calculated for each year and subjected to linear regression analysis. The resulting slope was
0.0031, with an R2 of 0.52, indicating a significant fit. The positive slope indicates that the
standard deviation of NDVI generally increased, and the NDVI values in the study area
became more dispersed, reflecting the increased spatial heterogeneity of vegetation cover
in the study area.
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To further quantify the spatio-temporal characteristics of vegetation growth trends
within the mining area, the trend analysis was utilized to perform linear fitting and signifi-
cance tests for each pixel, revealing the temporal variations of NDVI. Figure 6a illustrates
the spatial distribution of Slope in the study area. It is observed that most of the areas
exhibits positive values, indicating an improving vegetation trend. The areas with negative
Slope values are the open-pit mining areas in the lower right corner and the vicinity of the
transfer site and building area of the Shangwan Mine. The vegetation change trends in
the study area were classified into 6 types: extremely significant degradation, significant
degradation, no evident degradation, no evident improvement, significant improvement,
and extremely significant improvement, as shown in Figure 6b. Furthermore, a statistical
analysis is conducted to determine the pixel count and area proportion for six trend types
(Table 2). The degraded areas account for 8.47% of the total area, with 4.91% exhibiting a
“no evident degradation”, while more than 90% of the area showed an improving trend,
with 84.68% demonstrating an “extremely significant improvement”. The results indicate
that the vegetation cover of the study area has demonstrated a trend of great improvement
over the past three decades.
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Table 2. Statistics of pixels and percentage of area for 6 trend types.

Slope p-Value Trend Types Number of Pixels Percentage

Slope < 0 p < 0.01 Extremely significant degradation 3214 2.35%
Slope < 0 0.01 < p < 0.05 Significant degradation 1652 1.21%
Slope < 0 p > 0.05 No evident degradation 6727 4.91%
Slope > 0 p > 0.05 No evident improvement 7004 5.11%
Slope > 0 0.01 < p < 0.05 Significant improvement 2382 1.74%
Slope > 0 p < 0.01 Extremely significant improvement 116,002 84.68%

3.2. Driving Processes of Vegetation Growth in Natural Conditions

Under natural conditions, the optimal growth period for vegetation in the study area
is from July to September. Therefore, temperature and precipitation data before September
were selected for correlation analysis with NDVI. As shown in Table 3, the results indicated
that NDVI exhibited the strongest correlation with the precipitation in July, with a partial
correlation coefficient of 0.879, and the strongest correlation with the average temperature
in July-August, with a partial correlation coefficient of 0.702. Hence, the precipitation in
July and the average temperature in July-August were selected as the driving factors to
participate in the construction of the model in this paper.

Table 3. Correlation of NDVI with temperature and precipitation.

NDVI & Precipitation NDVI & Temperature

Months Correlation Months Correlation

7 0.879 ** 7 0.424
8 0.522 8 0.433
9 0.797 9 −0.235

1–7 0.266 1–7 0.257
1–8 0.322 1–8 0.242
1–9 0.341 1–9 0.177
7–8 0.832 * 7–8 0.702
8–9 0.430 8–9 0.204
7–9 0.768 * 7–9 0.294

“**” and “*” are significant correlations at the 0.01 level and the 0.05 level, respectively. Cumulative precipitation
and the average temperature are used in cumulative months.

The modelling results of GTWR are shown for the years 1990, 1991, and 1995 as
examples. As shown in Figure 7, Figure 7a,b show the spatial distribution of the coefficients
for temperature (β2) and precipitation (β1) in the driving model, respectively. It can be
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observed that the coefficients for temperature and precipitation generally exhibit positive
values, indicating a positive impact on NDVI. Within a certain range, higher temperatures
and greater precipitation levels correspond to improved vegetation growth conditions.
From 1990 to 1995, there is an increasing trend in the coefficients for temperature and
precipitation, suggesting a progressive amplification of their influence on NDVI over the
years. Figure 7c shows the driving equations of the predicted NDVI for some sample
points. The variables T and P in the equations represent temperature and precipitation,
respectively. The same point has different driving equations at different times, and the
driving equations of the points in different spatial locations are also different. For example,
the driving equation for sample point No.2 in 1991 is NDVI = 0.0645 × T + 0.0786 × P +
0.0691 × DEM + 0.0246. Upon analyzing this equation, it is evident that all coefficients are
positive, indicating the positive influence of temperature, precipitation, and DEM on the
sample point. Moreover, precipitation has the greatest impact on NDVI at this point as the
absolute value of the coefficient for precipitation is the largest.
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spatial distribution of the coefficients for temperature (β2) and precipitation(β1) in the driving model,
respectively, (c) are the driving equations of the predicted NDVI for some sample points.

The above results show that the GTWR can simultaneously consider temporal hetero-
geneity and spatial heterogeneity to obtain the quantitative relationship between NDVI and
temperature, precipitation, and DEM, which provides a quantitative model basis for the
subsequent separation of the impacts of natural factors and human activities on vegetation
restoration in mining areas.

3.3. Spatio-Temporal Patterns of Impact of Human Activities on Vegetation Restoration

Taking 2010 as an example, Figure 8 shows the extraction results of NDVI-HA.
Figure 8a displays the observed NDVI monitored by remote sensing, and Figure 8b rep-
resents the NDVI predicted by the model. As can be seen from Figure 8b, the predicted
NDVI values are not uniform, this can be attributed to two main reasons. Firstly, the
GTWR modeling utilized in this study takes into account the spatiotemporal heterogeneity,
leading to different driving equations for individual sample points. Secondly, there is
spatial variability in the topography of the study area, characterized by higher elevations
in the northwest and lower elevations in the southeast.
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By subtracting the observed NDVI from the predicted NDVI on a per-sample point,
the difference in NDVI can be calculated, thereby separating the vegetation growth changes
caused by natural factors. The resulting NDVI difference represents the vegetation changes
caused by human activities. Figure 8c illustrates the spatial distribution of NDVI-HA.
NDVI-HA > 0 indicate a positive impact of human activities on vegetation, while NDVI-HA
< 0 indicate a negative impact.

To examine the temporal patterns of impact of human activities on vegetation restora-
tion in the Shangwan Mine, this study conducted box plot statistics on the NDVI-HA from
2000 to 2020, as depicted in Figure 9. The results reveal that NDVI-HA values are generally
positive, indicating vegetation has been improving due to the human activities in the
mining area. Furthermore, the average of NDVI-HA exhibits a year-by-year increase, signi-
fying a progressive enhancement in the degree of vegetation improvement in the mining
area. The range of 1.5 times the interquartile range (IQR) gradually increases, suggesting a
growing spatial heterogeneity of NDVI-HA and an intensified vegetation heterogeneity
resulting from human activities in the study area. Overall, the vegetation was significantly
improved under the environment with mining activities from 2000 to 2020 where human
activities were intense. It indicates that there are obvious vegetation restoration activities
in the study area and significant restoration effects have been achieved. Additionally, it
is notable that the NDVI-HA in the period of 2013−2020 is noticeably higher than that in
2000–2012, indicating better vegetation restoration after 2013.
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The spatial characteristics of impact of human activities on vegetation restoration are
further analyzed. As can be seen from Figure 9, it is clear that the average NDVI-HA for
the period from 2013 to 2020 exhibit a significantly increase compared to the period from
2000 to 2012. Therefore, the analysis for vegetation changes was divided into two stages:
the first stage spanning from 2000 to 2012 and the second stage covering 2013 to 2020, as
shown in Figure 10. Figure 10a,b show the spatial distribution of NDVI-HA in two stages,
respectively. The NDVI-HA was classified into 4 restoration grades: I (degraded): −0.60~0,
II (slightly improved): 0~0.20, III (moderately improved): 0.20~0.40, and IV (significantly
improved): 0.40~0.65. Statistical analysis was performed on sample points with different
restoration grades in two stages. The results are shown in Figure 11, most of the points in
two stages were classified into the restoration grades of II, III and IV, and the sums of the
proportion for two stages were 80.39% and 87.05%, respectively. The degraded areas in two
stages were concentrated in the open-pit mine in the lower right corner, and the vicinity of
transfer site and building area of the Shangwan Mine.
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Among the points showing improvement trends, the points improved in the first stage
were concentrated in the restoration grade II (slightly improved), accounting for 79.45%. In
the second stage, the improved points were primarily concentrated in the restoration grades
II (slightly improved) and III (moderately improved), accounting for a total of 84.24%, with
39.31% of the points in the grade III (moderately improved). From the first stage to the
second stage, the area where NDVI-HA increased was concentrated on the left of the study
area, i.e., near the mineral rights of Shangwan Mine.

As can be seen from Figure 10, there is spatial heterogeneity in the vegetation changes
caused by human activities in the study area, with different NDVI-HA at different spatial
locations. To investigate the underlying causes, the elevations within the study area were
divided into seven levels at 40 m intervals, as shown in Figure 12. The average of predicted
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NDVI within each elevation level was counted to quantify the relationship between DEM
and NDVI in natural conditions. As shown in Figure 12, it was found that there was
a significant negative correlation between the predicted NDVI and DEM in two stages,
and the vegetation growth was poorer in the higher elevation areas in natural conditions.
Moreover, the average of NDVI-HA for multi-year and many points in each elevation
level was further counted to establish the functional relationship between the NDVI-HA
and DEM in two stages. The results are shown in Figure 13, the NDVI-HA of the two
stages showed a significant positive correlation with the DEM, and the NDVI-HA increased
with the increase of the DEM. Therefore, DEM may be the main reason for the spatial
heterogeneity in vegetation restoration, with higher elevations being more impacted by
human activities.
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3.4. Comparison of the Impacts of Natural Factors and Human Activities on the
Vegetation Restoration

Between 2000 and 2020, the growth of vegetation in the Shangwan Mine was influenced
by a combination of natural factors and human activities. To compare the impacts of natural
factors (temperature, precipitation) and human activities on vegetation restoration, the
relative contribution is used to quantify the impact extent of temperature, precipitation,
and human activities on vegetation restoration in this paper. The definition of relative
contribution is shown in Equation (9).

CHA = NDVI−HA
NDVIobs

Ct =
NDVIt

NDVIobs

Cp =
NDVIp

NDVIobs

(9)

where NDVI-HA, NDVIt, NDVIp denote the changes of NDVI caused by human activities,
temperature, and precipitation, and CHA, Ct, and Cp denote the relative contribution of
human activities, temperature, and precipitation, respectively.
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Figure 14 shows the relative contributions of temperature, precipitation, and human
activities to the vegetation growth in the mining area. It can be found that from 2000 to
2020, the contribution of human activities shows an overall upward trend. After 2010, its
contribution exceeds that of temperature and precipitation as the dominant factor impact-
ing the vegetation growth in the mining area, and reaches a maximum of 42.78% in 2019.
However, negative contributions of human activities are observed in 2002 and 2003. This
can be attributed to the initial stages of mining when intense mining activities and limited
restoration measures resulted in overall vegetation degradation during those years. The
contributions of temperature and precipitation display significant interannual fluctuations,
with an average of 12.66% and 15.74%, respectively. In general, the contribution of precipi-
tation was greater than that of temperature, and the contribution of temperature showed a
subtle decreasing trend.
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4. Discussion
4.1. Associations between Restoration Measures and NDVI-HA

Shangwan Mine has consistently practiced the concept of “Green mining” of “Three
Phases and Three Circles” in the mining process [37]. The “Three Phases” involve com-
prehensive pre-mining management to enhance the ecological environment’s resilience
against mining disturbances, the implementation of innovative green mining technologies
to minimize the ecological impact during mining, and the establishment of a sustainable
and stable regional ecosystem after mining for the perpetual utilization of ecological re-
sources. The “Three Circles” encompass extensive sand and dust control measures and the
construction of a “green cover “around the mining area to form an “outer protective circle”,
the establishment of ecological protection forests and the management of small watersheds
in the surrounding areas to create a “peripheral evergreen circle” for the mining area,
and the implementation of landscaping and reconstruction projects to develop a “central
beautification circle” within the industrial and residential zones. Guided by the “Green
mining” concept, Shangwan Mine has carried out the following restoration measures [19]:

1. Preventing surface subsidence and cracks: Regular observations are conducted on
the cracks and sinkholes that emerge on the surface as a result of mining, and timely
backfilling of surface subsidence and cracks is undertaken. The gangue produced
by the coal preparation plant is transformed into filling material and used to fill the
underground sinkholes, thereby reducing the ecological impact of gangue discharge
and reducing the extent of surface subsidence in the sinkholes.

2. Reforestation and reclamation of the mining area: Approximately 50,000 trees and
shrubs, along with green hedges, are planted in the industrial site. In reclamation
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areas susceptible to soil erosion and land desertification, locally suitable shrubs and
grass species that thrive in the local environment are carefully chosen.

3. Establishing a green safeguard mechanism: To ensure the geological environmental
protection and land reclamation of the Shangwan Mine, a long-term green safeguard
mechanism has been implemented. The mine has developed various guidelines and
protocols, including the “Safe Management Measures for Tree Pruning”, “Green Main-
tenance Techniques”, “Landscape Greening and Management Measures for Mining
Service Companies”, “Inspection and Maintenance Procedures for Green Mainte-
nance”, “Responsibility Scope for Green Maintenance”, “Greening and Management
Measures for Shangwan Service Department”, and the “Annual Green Maintenance
Management Plan”.

4. Ensuring the effect of greening: A specialized service contract for the greening and
maintenance project within the central zone of Inner Mongolia has been established
between the Shangwan Mine and an external contracting company. The company
has been entrusted with the responsibilities of watering, greening, and fertilizing the
vegetation within the factory area.

Significant achievements have been accomplished in the ecological environment man-
agement of the Shangwan Mine under the aforementioned ecological restoration measures.
The mining area disturbance spans 20.87 km2, while the ecological management area covers
50 km2. In 2008, the establishment of an ecological economic forest in the subsidence area
of the Shangwan Mine took place. By 2010, the subsidence area management rate reached
73%, and by 2013, it reached 100%. The vegetation coverage in the Shangwan Mine is 72%,
surpassing the national average of 70%. The greening coverage in the industrial factory area
achieves 100% of the potential greening area. The results of this study reveal that from 2000
to 2020, the NDVI-HA values were generally positive and exhibited an upward trend. This
suggests that vegetation in the study area has been restoring due to human activities, with the
degree of restoration increasing over time. Notably, the vegetation restoration effect has been
particularly pronounced after 2013. Hence, since 2000, the vegetation growth in the Shangwan
Mine has exhibited a strong response to the aforementioned restoration measures.

4.2. Relationship between Vegetation Restoration and Temperature & Precipitation

During the periods of 1987–1993 and 1994–1999, when no mining activities occurred,
the trend changes in NDVI were influenced mainly by natural factors, particularly pre-
cipitation. The years 1987, 1993, and 1999 had relatively low NDVI, corresponding to less
precipitation in July amounts of 32.25 mm, 84.08 mm, and 27.2 mm, respectively. In contrast,
the NDVI was higher in 1994, with a precipitation amount of 201.15 mm. From 2000 to 2020,
the vegetation in the mining area has exhibited a significant improvement trend under the
combined influence of temperature, precipitation, and human activities. The findings of
this study reveal considerable interannual variability in the contribution of temperature
and precipitation to vegetation growth, which are positively correlated with the annual
temperature and precipitation patterns. Specifically, the precipitation in July reached
147.61 mm and 199.39 mm in 2003 and 2016, respectively. Consequently, the contributions
of precipitation in those two years were 39.67% and 36.24%, respectively. In 2005, 2010, and
2015, the precipitation in July amounted to 30.99 mm, 29.22 mm, and 36.06 mm, respectively,
resulting in corresponding contributions of 0.5%, 0% (normalized precipitation for 2010
is 0), and 1.7%. Concerning temperature, the average temperatures in July and August were
21.55 ◦C and 22.55 ◦C in 2000 and 2010, respectively, with contributions of temperature
reaching 21.20% and 21.58% in those years. In 2004 and 2014, the average temperatures
in July and August were 19.50 ◦C and 20.00 ◦C, respectively, resulting in corresponding
contributions of temperature at 3.91% and 4.77%.

4.3. Limitations and Future Work

Although this paper establishes quantitative modelling based on GTWR, there are
still some limitations that cause the verification accuracy to be not very high (70%). GTWR
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is a type of local linear regression, and it relies on the assumption of a linear relationship
between NDVI and temperature, precipitation, and DEM, which is assumed to remain
constant over time. In fact, the vegetation of the mining area is impacted by multiple
factors, and the impact pattern is complicated. Therefore, non-linear modelling would
be considered in the future study to quantify the driving process of vegetation growth in
mining areas. In addition, interactions between the factors are present, however, these influ-
ences are often overlooked in existing publications [38–41], it is important for future studies
to consider isolating the impacts of each individual factor and explore the interactions
between them.

5. Conclusions

This study utilized long-term remote sensing data, meteorological data, and topo-
graphic data to establish a quantitative relationship model between NDVI and temperature,
precipitation, and DEM in the Shangwan Mine. The findings are as follows:

1. The GTWR model was applied to construct a quantitative relationship between vege-
tation growth and driving factors in the mining area for the first time. The impact of
natural factors was separated by the residual analysis, so that the vegetation changes
caused by human activities in the mining area could be assessed separately.

2. Over the past three decades, more than 90% of the area in the study area showed an
improving trend, with 84.68% was extremely significant improvement. The NDVI-HA
of the study area was generally positive under the environment with mining activities
from 2000 to 2020 where human activities were intense, with an increasing trend
over the time, particularly significant after 2013. Spatially, the areas degraded due
to human activities were concentrated in the open-pit mining area in the lower right
corner, and the vicinity of transfer site and building area of the Shangwan Mine, where
the surface vegetation was removed due to the direct land occupation. Furthermore,
the spatial heterogeneity of vegetation restoration was attributed to the DEM. It is
negatively correlated with NDVI in natural conditions, while under the environment
of mining activities, there is a positive correlation between NDVI-HA and DEM. The
areas with higher elevation were more impacted by human activities.

3. The study conducted a comparative analysis of the impacts of temperature, precipi-
tation, and human activities on vegetation restoration. The findings reveal that the
contribution of human activities to vegetation restoration in the mining area has
been gradually increasing from 2000 to 2020. After 2010, the contribution of human
activities exceeded that of temperature and precipitation, becoming the dominant
factor influencing vegetation growth in the mining area. In comparison, precipitation
exhibited a higher contribution to vegetation restoration than temperature.

This study provides new ideas for the evaluation of vegetation restoration in mining
areas in some extent. The future work will be focused on the non-linear modelling between
vegetation growth and driving factors.
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