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Abstract: Chongming Island and its surrounding areas are highly significant coastal regions in
China. However, the regions undergo continuous changes owing to various factors, such as the
sedimentation from the Yangtze River, human activities, and tidal movements. Chongming Island is
part of the Yangtze River Delta, which is one of the most economically developed regions in China.
Studying the water body changes in this area is of great importance for decision making in water
resource conservation, coastal resource management, and ecological environmental protection. In this
study, we propose an improved ISUNet model by enhancing the skip-connection operations in the
traditional UNet architecture. We extracted and analyzed the water bodies in Chongming Island and
its surrounding areas from 2013 to 2022, providing a detailed spatiotemporal analysis of the water
body area over the years. The results indicate that the water body area in the study area has decreased
by 267.8 km2 over the past decade, showing a gradually fluctuating downward trend with an average
annual reduction of nearly 27 km2. The analysis suggests that the reduction in the water body area is
mainly attributed to sedimentation near river channels and ports, the formation of sandbars owing
to channel erosion, and the artificial construction of ports and coastal areas. The influencing factors
include human activities and sedimentation from the Yangtze River Estuary. Specifically, human
activities such as land reclamation, port construction, and aquaculture play a major role in causing
changes in the area.

Keywords: Chongming Island; deep learning; UNet model; water body extraction; spatiotempo-
ral variation

1. Introduction

With the development of industrialization and urbanization, including the influence
of climate change, significant changes are occurring in surface water bodies, and many
regions are facing issues of drought and water scarcity. Thus, water conservation has
become an urgent priority. For instance, in 2022, Poyang Lake, the largest freshwater
lake in China, experienced a phenomenon known as “dry lake”. This phenomenon led to
survival challenges for organisms inhabiting the lake and garnered widespread attention
domestically and internationally.

Alterations in the size of water bodies result in corresponding changes in the shore-
line. These dynamic shoreline changes have a direct impact on marine resources and
the ecological environment in coastal areas, potentially leading to ecological degradation.
Additionally, human economic activities and transportation are affected [1], along with a
range of associated problems. Examples include the degradation of ecosystem services,
heightened environmental pollution, scarcity of biological resources, and an increase in
the frequency of climate and marine disasters [2–6]. Rapid population growth and coastal
development are the primary driving forces of marine habitat degradation. For instance,
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the addition of concrete structures like seawalls, jetties, and groins can accelerate the ero-
sion and loss of beaches and tidal wetlands [7]. Relevant studies indicate that the area of
Chongming Island increased obviously, accompanied by a notable expansion of built-up
areas from 1979 to 2009. Most of the expansion area of the island is added to urbanization
and rural settlement development, wetland, and the body of water. The temporal evolution
of the built-up areas is highly correlated with the population change [8]. Therefore, it is
beneficial to support the efficient use of marine resources and promote the development of
ecological civilization by studying the dynamic changes of the body of water, which will be
a reference for promoting good management of marine resources in China.

Two main methods are used for studying dynamic changes in water bodies using
remote sensing images: visual and automatic interpretation. Visual interpretation, although
highly accurate with continuous extraction results, is limited to small areas and is subject
to operator bias, making this method less efficient. By contrast, automatic interpretation
offers timeliness and reusability, making this method the preferred approach for identifying
water boundaries and extracting remote sensing information about water bodies [9]. This
method enables fast and efficient processing of large remote sensing image datasets, making
automatic interpretation the primary focus of current research. Scholars worldwide have
extensively studied automatic interpretation methods based on remote sensing images,
primarily employing threshold segmentation and remote sensing image classification
techniques to extract water body information.

1.1. Water Body Extraction Based on the Threshold Segmentation Method

The threshold segmentation method, commonly used to extract water bodies from
images, involves selecting a threshold value of a band or band combination to delineate
between water and non-water pixels in an image or images. Compared with the threshold
segmentation method, the image classification method generally achieves the purpose of
improving the recognition accuracy by improving the structure of the neural network. In
the threshold segmentation method, most scholars improve the segmentation effect by
modifying and optimizing the bands in the water body index. One widely used index is
the normalized difference water index (NDWI Green−Nir

Green+Nir ), initially proposed by McFeeters
et al. [10]. NDWI is a modification of the normalized difference vegetation index (NDVI
Nir−R
Nir+R ) and has gained widespread adoption. For instance, Ghosh et al. [11] utilized satellite
images of Thematic Mapper (TM) and Enhanced Thematic Mapper from Landsat satel-
lites. In addition, they applied the improved modified normalized difference water index
(MNDWI Green−Mir

Green+Mir ) algorithm to identify water bodies and land, allowing for the analysis
of spatial and temporal variations in the coastal zone of Hatia Island over a specific period.
In another study, Yang et al. [12] substituted the green band in NDWI with the first principal
component of selected principal component analysis transforms and the blue band (wave-
lengths ranging from 450 to 520 nm) of ZY-3 multispectral image data. They developed two
water indices called the new normalized difference water index 1(NNDWI1 Blue−Nir

Blue+Nir ) and

new normalized difference water index 2 (NNDWI2 Component1−Nir
Component1+Nir ), NNDWI1 is sensitive

to turbid water bodies, and NNDWI2 is sensitive to water bodies with spectral information
affected by vegetation. Additionally, they employed a shadow detection technique to
remove shadows in small areas of the segmentation results. This approach achieved high
accuracy in water edge detection and maintained relative stability with changes in the
threshold value, resulting in the precise extraction of water bodies.

Feyisa et al. [13] introduced a novel automated water extraction index (AWEI) to
mitigate environmental noise effects and enhance the classification accuracy of water bodies.
They successfully applied this method to Landsat 5 TM images from various study areas
in Denmark, Switzerland, Ethiopia, South Africa, and New Zealand, achieving improved
accuracy and robustness in water body extraction. Wang et al. [14] utilized the NDWI
and MNDWI to analyze and explore the spatial and temporal variation characteristics
of the Ningbo coastline. Viaña-Borja et al. [15] proposed an automatic method for water
body index-based shoreline detection in multispectral Landsat images. Their approach
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demonstrated excellent performance in automatically detecting shorelines, achieving a
minimum deviation value of −0.91 m and standard deviations ranging from ±4.7 to ±7.29
m in some cases. Luo et al. [16] devised an automated method for water body extraction
by combining the segmentation and classification on whole and local scales, respectively.
They fused the hierarchical knowledge of water extraction and set up an iterative algorithm
to achieve a gradual approach of the water body’s optimal margin. While this iterative
approach improved the results, it was noted that the segmentation and buffering methods
may not be entirely sufficient. Xu modified the NDWI to enhance the features of open
water bodies in remote sensing images. This modification enables rapid and accurate
differentiation between water and non-water features. However, it only detects the presence
of water and cannot distinguish between rivers, lakes, or other types of water bodies [17].
In response to the limitations of previous water body extraction methods that rely on single
models or solely spectral information, Qiao et al. [18] proposed an adaptive water body
extraction method. Their approach combines the NDWI, histogram threshold segmentation,
and area growth methods to accurately extract water body information.

Thresholds are typically set as constant values, but the presence of ambient noise,
such as shadows, forests, built-up areas, snow, and clouds, makes using a fixed threshold
for different environmental regions challenging. Tri Dev Acharya et al. [19] evaluated
the effectiveness of commonly used water body-related indices, including NDVI, NDWI,
MNDWI, and AWEI, in extracting water bodies from a Landsat 8 scene in Nepal. They
found that none of the methods could accurately extract the entire surface water in the
scene. This finding highlights the limitations of using fixed thresholds for water body
extraction in the presence of environmental noise.

1.2. Water Body Extraction Based on the Image Classification Method

Unlike threshold segmentation, which requires dividing thresholds, remote sensing
image classification methods usually extract spatial features of images to achieve classifica-
tion, mainly including traditional machine learning as well as deep learning, which is a
subset of machine learning that excels at processing unstructured data.

Machine learning methods have diverse applications in remote sensing image classifi-
cation, including road extraction, urban functional area extraction, and target detection.
Researchers have conducted numerous studies using machine learning methods to extract
information on water bodies. For example, Zeinali et al. [20] studied coastline changes in
Chabahar Bay from 1972 to 2014 using the maximum likelihood classification method to
extract water bodies from remote sensing images. Possa et al. [21] utilized an SVM classifier
with a 95% probability threshold to separate water from land in small reservoirs and esti-
mated partial water areas using probabilistic maps. Zhang et al. [22] employed the decision
tree classification method to extract water body information from Operational Land Imager
remote sensing data, demonstrating its higher accuracy compared with automatic computer
classification methods.

Despite achieving water body information extraction, the aforementioned research
methods have some limitations in their algorithms. Threshold-based image segmentation
methods are sensitive to image noise, resulting in low extraction accuracy when a minimal
grayscale difference exists. Thus, additional methods are necessary to meet extraction
requirements. Traditional machine learning image classification methods based on image
elements can lead to low classification accuracy and incomplete classification edges, par-
ticularly when dealing with complex spectra and fine structures. These problems show
that for optical remote sensing images with few bands, high resolution, and data with
confusing interclass difference and intraclass difference in features, the key to processing is
understanding how to express and learn features efficiently.

Deep learning methods based on neural networks offer advantages over threshold
segmentation and traditional machine learning methods. They effectively extract spectral
and spatial features through convolutional operations, yielding improved results for water
extraction from remote sensing images. The UNet neural network model, proposed by
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Ronneberger et al. [23] in 2015, is a fully convolutional network that enables image semantic
segmentation. Compared with other methods, the UNet neural network model exhibits
better performance even with smaller datasets, resulting in more accurate segmentation
outcomes, thereby providing new insights for water body extraction from remote sensing
images. In 2018, Li et al. [24] proposed DeepUNet, an improved version of UNet, to enhance
the accuracy of convolutional neural networks in recognizing water bodies in remotely
sensed images. Additionally, Kim et al. [25] employed UNet with a pyramidal pooling layer
and achieved a pixel accuracy of 87.61% and an intersection over union (IOU) of 79.52% for
four target types, namely buildings, roads, water, and background, using a training dataset
of 72,400 and a test dataset of 9600 samples.

In 2022, An and Rui [26] introduced an Improved Lightweight U-Net specifically
designed for remote sensing images. This model reduced the number of downsampling
layers to accommodate the low resolution of remote sensing images. Additionally, the
bottleneck structure was updated to ensure the effective transmission of water feature
information within the model. Zhang et al. [27] proposed a hybrid MixFormer architec-
ture called MU-Net by embedding the MixFormer block into UNet. The combination
of CNN and MixFormer is used to model the local spatial detail information and global
contextual information of the image to improve the ability of the network to capture se-
mantic features of the water body. MU-Net exhibits higher pixel precision and accurate
positional information in identifying water bodies. However, it is important to note that
the data annotation process for this method is very laborious and time-consuming, while
semi-supervised learning can achieve similar performance using only a small amount of
labeled data. Li et al. [28] constructed a robust water extraction network called PA-UNet
by introducing attention block and pyramid module into the UNet. When applying this
method to Sentinel-1 data for water extraction in Dongting Lake and Poyang Lake, the
results showed that the proposed framework can realize high-precision, highly efficient
automatic water extraction. However, in cold-weather areas, rivers will freeze in winter,
and the backscattering intensity of rivers in SAR image is high, so SAR images are not
suitable for water extraction during the river icing period.

Most existing studies applying the UNet network for water extraction from remote
sensing images focused on clear water bodies in small regional rivers and lakes. However,
they do not consider water margins with sediment accumulation and turbid water bodies,
such as beach islands and sea inlets. Additionally, the repeated use of maximum pooling
operations in the UNet architecture can result in resolution reduction and potential loss of
spatial information [29].

Due to the problem that the traditional UNet network loses spatial information due
to multiple convolutions and pooling and is not effective in extracting sandy shores and
silty shores, this research modifies the structure of the UNet neural network and applies
it to the extraction of turbid water bodies in remote sensing images to mitigate the loss
of spatial information caused by pooling operations and to enhance extraction accuracy.
Highly precise extraction of water bodies is achieved by enhancing low-dimensional feature
information. The improved UNet model incorporates the two-layer feature mapping from
the encoding path with the corresponding decoding path, effectively capturing fine-grained
details. The dynamic changes in water bodies in Chongming Island and its surrounding
areas from 2013 to 2022 are herein extracted and analyzed using this enhanced UNet model.

2. Study Area

The study area encompasses the estuary of the Yangtze River, which includes Chong-
ming Island and its coastal vicinity. The study area extends from Rudong County, Tongzhou
District, Haimen District, and Qidong City in Nantong City, Jiangsu Province, to Taicang
City in Suzhou City and part of the administrative jurisdiction of Shanghai, including
Chongming Island. This area serves as a crucial gateway for the Yangtze River’s connection
to the sea and plays a significant role in ocean shipping. Spanning approximately 121◦09′

to 122◦06′ E and 31◦03′ to 32◦18′ N, this area hosts numerous ports along its inner channel
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and is recognized as an important deep-water port in China. Owing to the mutual impact
of river water and seawater here, the sediment constantly experiences siltation, resulting
in turbid water bodies, forming a complex geomorphology and water environment. The
coastal types in this region include not only natural shores such as sandy shores and silty
shores but also artificial shores such as harbors, docks, salt fields, and farming areas. Hence,
the task of extracting and classifying water bodies in the study area is very challenging.
Figure 1 shows the specific geographical extent.
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3. Research Method
3.1. Flowchart of the Current Study

The research process began with data preprocessing, including spatial cropping, image
annotation, and data enhancement. Following data preprocessing, the research focused on
improving the UNet model. The model was trained using a semantic segmentation dataset
to extract water bodies, and its performance was compared with other established deep
learning models. Subsequently, the improved UNet model was employed to extract water
bodies in the study area over the past 10 years. The extracted data were then analyzed to
examine changes in water bodies within the study area. Figure 2 presents the workflow of
this study.
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(1) Conducting data pre-processing operations, including spatial cropping, image
annotation, and data enhancement on the original remote sensing images;

(2) Enhancing the UNet network by refining model training and parameter settings:
Utilizing semantic segmentation, the improved UNet model was applied to extract water
bodies from remote sensing images in the study area. Comparative analysis was performed
against baseline models such as SegNet, FCN8, and UNet. Accuracy evaluation was
conducted using quantitative metrics such as accuracy, precision, IOU, and F1 score to
assess the effectiveness of the improved UNet model in extracting coastal water bodies in
Chongming Island and its surrounding areas;

(3) Extracting coastal water bodies in the study area over the past 10 years: Employing
ISUNet, remote sensing images from 2013 to 2022 were semantically segmented to identify
and extract water bodies and land in Chongming Island and its surrounding areas;
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(4) Analyzing the trends of water bodies in Chongming Island and its surrounding
areas from 2013 to 2022: We performed spatial and temporal change analysis based on
the extracted water bodies to examine the dynamic trends and investigate the underlying
reasons for these changes.

3.2. Data Sources

The main data used in this paper were the Landsat 8 C2 L2 (Landsat Collection 2
Level-2) product released by the United States Geological Survey, and the auxiliary data
include the Landsat 9 C2 L2 data and Sentinel-2 L2A (Sentinel-2 Level-2A) data, all of
which had been radiometrically calibrated, atmospherically corrected, and geometrically
corrected [30,31]. Landsat 8 and Landsat 9 satellites are outfitted with the Operational
Land Imager (OLI) sensor, designed to capture images across the visible and infrared
spectra. This includes visible light ranging from blue to near-infrared as well as two
shortwave infrared bands. The Sentinel-2 satellite boasts the Multispectral Imager (MSI)
sensor, offering a suite of bands covering visible light, infrared, and shortwave infrared
ranges. Together, these sensors provide high-resolution Earth observation data for a variety
of applications. To acquire clear remote sensing images of Chongming Island and its
surrounding areas, we set a threshold of cloud cover to ensure that the study area was
not covered by cloud cover or that a small portion of the study area was covered by cloud
cover. Considering the seasonal variations of the water bodies in the study area, the images
selected for our study encompassed four seasons of the year: spring (March–May), summer
(June–August), autumn (September–November), and winter (December–February). If there
were unavailable images in a season, we utilized Landsat 9 and Sentinel-2 satellite images
for auxiliary data instead.

A total of 44 scenes were used in this research, including 39 Landsat 8 images, 2
Landsat 9 images, and 3 Sentinel-2 images. The Landsat 9 images were used to supplement
the data in summer and winter 2022, and Sentinel-2 image images were used to supplement
the data in autumn 2020 and summer and autumn 2021, as there were no available Landsat
8 images during these periods. Figure 3 presents the acquisition dates for these images,
which shows that the images were acquired at relatively regular intervals between 2013
and 2022.
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3.3. Data Preprocessing
3.3.1. Data Labelling

In this study, 18 data images from 2015 to 2020 were selected for deep learning model
training and testing. The remaining data were used to implement automatic extraction of
water bodies using the trained deep model, which in turn enabled the analysis of water
body changes in Chongming Island and its surrounding areas from 2013 to 2022. A total of
15 images were selected for the training set, covering the period from 2015 to 2020. Three
images were selected for the test set, with a time range of 2022. Table 1 shows the details of
the training set and test set images.

Table 1. Satellite image collection date for the training and test sets.

Data Types Image Collection Date

Training sets

23 January 2015
12 March 2015
3 August 2015

26 January 2016
27 February 2016

20 May 2016
13 February 2017

23 July 2017
23 May 2018

17 December 2018
18 January 2019

10 May 2019
29 May 2019

21 January 2020
12 May 2020

Test sets
27 February 2022

15 March 2022
18 May 2022

In this study, Pixel Information Expert (PIE) 6.3 was used to produce semantic seg-
mentation labels for remote sensing images, and the main steps are as follows:

(1) Obtain the study area image by using the cropping function in PIE software, resulting
in an image resolution of 3072 pixels × 4608 pixels;

(2) Create a vector Shapefile file for labelling. Set the coordinate system to WGS84 and
manually label each image sample using visual interpretation, marking the categories
of water bodies and land;

(3) Convert the vector files into raster labels using PIE software, generating raster annota-
tion files;

(4) Crop the image and label raster files to create the dataset. Images are cropped into
smaller sizes (512 pixels × 512 pixels) to avoid memory overflow during model
training and optimize feature utilization. The cropping process ensures a balanced
sample by adjusting the water body area to occupy 1–99% of the image, preventing
images dominated by either land or water bodies. A total of 522 training images and
104 test images were obtained using the above steps to annotate the remote sensing
image data, and the resolution of the images was 512 pixels × 512 pixels.

3.3.2. Data Enhancement

This study performed a data enhancement operation before inputting the deep learn-
ing model to further enrich the water body recognition dataset, increase the training
samples, enhance the robustness of the model, and reduce the sensitivity of the training
data. Image rotation is one of the commonly used techniques in data enhancement, which
can improve the model’s ability to recognize objects at different angles, increase the diver-
sity of training data, and mitigate overfitting. It makes the model more robust, allowing
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it to handle objects in real-world images at various orientations [32–34]. The specific data
enhancement operation used in this study was image rotation: the original image was
rotated 90◦, 180◦, and 270◦ counterclockwise, as shown in Figure 4. Finally, the data were
divided approximately in a 5:1 ratio, resulting in 2088 training set images and 416 test set
images, along with their corresponding label data.
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3.4. U-Net Improvement

The skip connection is a crucial network structure in deep learning that adds the
inputs of one layer directly to the outputs of subsequent layers and then passes them on
to the next layer of the network. In the domain of deep learning, the vanishing gradient
problem manifests as the gradual attenuation of gradients to near-zero values during the
backpropagation process in deep neural networks. This phenomenon arises primarily
due to the application of the chain rule and the selection of activation functions. Con-
sequently, it results in the parameters of the shallower network hardly being updated
anymore, ultimately rendering the network ineffective for learning [35]. Skip connection
can effectively alleviate the vanishing gradient problem during the training process of deep
neural networks, making the network easier to train. By introducing skip connections,
information can be transmitted through a shorter path, preserving the original information
of the input data and avoiding potential information loss that may occur when passing
through multiple layers. This not only helps improve the training efficiency of the network
but also enables the network to better handle complex tasks, especially in cases where skip
connections are needed to capture multi-level features. Furthermore, the concept of skip
connections has provided an important theoretical foundation for the design of specialized
network structures such as residual networks, which have demonstrated outstanding per-
formance in training deep networks [36,37]. Skip connections play a crucial role in the field
of deep learning, holding significant importance in addressing gradient-related challenges
during the training of deep networks and enhancing network performance.

This study improves the UNet architecture by strengthening the skip-connection
component to enhance the extraction performance of the UNet network in complex coastal
water scenarios such as areas with high sediment content, ambiguous land–sea boundaries,
beach landforms, artificial coasts, silty coasts, and sandy coasts. Figure 5 shows the resulting
model, called ISUNet. The model comprises two main sections: The left side represents the
downsampling part, whereas the right side represents the upsampling part. Each layer of
the network is composed of various convolutional and pooling layers, with different types
and quantities.

During the downsampling process, a repeated structure of two convolutional layers
followed by one maximum pooling layer is employed. Each pooling operation reduces
the feature map size by half, whereas each convolution operation doubles the number of
channels in the feature map. The first layer of the network consists of 64 convolutional
kernels, and the number of kernels in each subsequent layer is sequentially multiplied,
reaching 1024 in the fifth layer. This architectural design facilitates the capturing of intricate
and abstract features as the network goes deeper.
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The upsampling process continuously performs the deconvolution operation, which
halves the number of channels of the feature map and doubles the size of the feature map.
Moreover, the downsampled channels are convolved with the corresponding feature maps
of the upsampled channels by employing skip connections, thereby recovering the spatial
loss caused by the reduced resolution from the maximum pooling operation. This process
allows for the integration of feature information at different scales, providing valuable
insights for the upsampling process. The number of convolutional kernels in the sixth
layer is 512, and then, the number of convolutional kernels in each layer is multiplied and
reduced to 64 in the ninth layer. Moreover, the number of feature maps in each layer is
three times 512, 256, 128 and 64 after the skip connection.

The final output layer in the network uses a 1 × 1 convolution kernel to convolve
the input feature map. Then, the layer uses a Sigmoid activation function to classify the
pixels in the feature map to generate a C-dimensional feature map with the same number
of dimensions as the corresponding number of categories while the size of the final output
semantic segmentation feature map is reduced to 512× 512. Additionally, to ensure that the
input and output image sizes are consistent, boundary padding is used, with the padding
method being “Same” padding.

Compared with the classical UNet network, the ISUNet model introduces improve-
ments in the skip-connection component of each network layer in the decoder part, as
indicated by the red dashed box in Figure 5. At each layer of the network’s skip connections,
we added one additional layer to each corresponding feature map of the encoding part.
This enhancement aims to enhance the low-dimensional spatial information of the image
and reduce the loss of spatial information caused by multiple convolution and pooling
operations. By doing so, the model can capture additional feature information from the
image and achieve better segmentation results. The study area in this research exhibits
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complex feature information and a variable environment. The remote sensing images
contain limited low-dimensional detail information in the feature map after multiple down-
sampling layers. This limitation results in poor image segmentation accuracy, particularly
in the detailed areas. Therefore, augmenting the low-dimensional feature information of
the image can improve the accuracy and completeness of segmentation results, particularly
in the detailed regions.

4. Experiment
4.1. Recommendation Baselines

The performance of the proposed method ISUNet was compared with the following
popular baseline methods:

• FCN8: FCN is one of the pioneering neural network architectures designed for image
segmentation [38]. In traditional convolutional neural networks, the presence of fully
connected layers imposes fixed input–output dimensions. FCN, by eliminating fully
connected layers and replacing them with convolutional layers, allows for arbitrary
input image sizes and generates corresponding output sizes. FCN8 is a variant of FCN
that employs upsampling and skip connections to enhance segmentation accuracy,
thereby facilitating a better understanding of the image;

• SegNet: SegNet is an image segmentation architecture developed by the University
of Cambridge, U.K. It combines an encoder–decoder structure, where the encoder
part extracts image features, and the decoder part maps these features back to the
original image size. Unlike FCN, SegNet utilizes index-max pooling in the decoder.
These indices are stored by the encoder to ensure correct feature mapping during
upsampling in the decoder [39];

• UNet: UNet is a neural network architecture for image segmentation, proposed
by researchers from the University of Freiburg, Germany [23]. Its unique encoder–
decoder structure, coupled with the introduction of skip connections, enables it to
excel in capturing both local and global contextual information, thus achieving precise
segmentation results.

4.2. Experiment Results

Accuracy evaluation was performed using the test set and compared with FCN8,
SegNet, UNet, and other models for analysis. The average value of 10 experiments was
taken. The evaluation and visualization results are as shown in Table 2 and Figure 6.

Table 2. Results of evaluation indexes of each model.

Accuracy Precision IOU F1 Score

FCN8 0.9814 0.9813 0.9463 0.9713
SegNet 0.9717 0.9717 0.9215 0.9562
UNet 0.9830 0.9830 0.9435 0.9714

ISUNet 0.9836 0.9837 0.9479 0.9723

As shown in Table 2, ISUNet achieved advantages over FCN8, SegNet, and UNet
models in terms of evaluation metrics such as accuracy, precision, IOU, and F1 score. This
result indicates that the model has great coastal water body recognition ability. Although
ISUNet’s evaluation indexes did not achieve great improvement in numerical value, the
visual results in Figure 6 clearly demonstrate that ISUNet exhibited a more pronounced
extraction of details in the task of water body extraction compared to the FCN8, SegNet,
and UNet models. The improved ISUNet model can recognize the detailed features of
artificial coasts and water bodies well, and the extracted results are more continuous and
complete. Collectively, SegNet, FCN8, UNet, and ISUNet models can recognize water
bodies with accuracies from low to high.
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4.3. Visual Interpretation

Visual interpretation is a remote sensing image interpretation method based on obser-
vation and analysis by the human eye, in which surface objects are identified and classified
through visual interpretation of remote sensing images by professional interpreters. Visual
interpretation can deal with complex features and scenes, intuitively analyze and interpret
remote sensing images, and provide a high level of semantic understanding and detailed
interpretation of spatial information. To verify the accuracy and reliability of the deep
learning model, visual interpretation, as a traditional method for land cover classification,
still has an irreplaceable role. In this way, we further introduced the visual interpretation
method to validate the recognition results.

We conducted visual interpretation of images from the spring season from 2013 to
2022 and counted the area of water bodies in these images. To quantify the differences
between our method and the visual interpretation results, we employed the metrics of area
absolute error and area relative error to evaluate the recognition results of ISUNet. The
area absolute error and area relative error are calculated as follows:

Area Absolute Error =
∣∣∣AreaVisual Interpretation −AreaISUnet

∣∣∣ (1)

Area Relative Error =

∣∣∣AreaVisual Interpretation −AreaISUnet

∣∣∣
1
2

(
AreaVisual Interpretation+AreaISUnet

) × 100% (2)

where AreaVisual Interpretation represents the recognition results of visual interpretation, and
AreaISUnet represents the recognition results of ISUNet.

Based on Formulas (1) and (2), the validation metrics are as shown in Table 3.
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Table 3. Visual interpretation validation results.

Year Area Absolute Error (km2) Area Relative Error

2013 39.565 0.741%
2014 26.127 0.500%
2015 35.168 0.661%
2016 40.144 0.786%
2017 9.647 0.192%
2018 25.207 0.497%
2019 5.125 0.099%
2020 10.337 0.222%
2021 12.975 0.257%
2022 43.811 0.879%

Table 3 shows that the maximum absolute error is 43.811 km2, with a minimum of
9.647 km2. Additionally, the maximum relative error is 0.879%, and the minimum is 0.192%.
The overall difference between the recognition results of the ISUNet model and the visual
interpretation results is relatively very small, and the ISUNet model has an acceptable level
of prediction error. The process of visual interpretation provides a thorough understanding
of ISUNet’s prediction results, reflecting the extent to which they correspond to the actual
situations. This validation method provides an intuitive understanding of the model results
and verifies the reliability of ISUNet in executing water body recognition tasks.

5. Analysis of Water and Land Changes in Chongming Island and Its Surrounding
Areas Based on ISUNet
5.1. Image Water Body Extraction

The ISUNet model was applied to perform semantic segmentation on remote sensing
images of Chongming Island and its surrounding areas in Shanghai, China. This study
focuses on the extraction of water bodies to analyze changes in their areas over the past
10 years, from 2013 to 2022. Table 4 presents the extraction results of three representative
satellite images in 2014, 2018, and 2022. The table includes the original satellite images and
their corresponding water body extraction results.

Table 4. Extraction results for water bodies in the study area in 2014, 2018, and 2022 (The red boxes
show locations where significant changes have occurred in the study area).

Imaging Date 4 November 2014 23 March 2018 18 May 2022

Original image
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The PIE software was utilized to quantitatively count the number of water body pix-
els in each image segmentation map and calculate the corresponding water body area. 
This analysis allows for a quantitative assessment of the changing trend of water bodies 
in Chongming Island and its surrounding areas. Figure 7 shows the results of this analysis, 
including the change situation and trend of water bodies. 

 
Figure 7. Changing trend of water body area in the study area from 2013 to 2022. 

In Figure 7, the water body area values range from a maximum of 5458.2741 km2 to a 
minimum of 4646.8224 km2. The values do not exhibit a linear decrease and show small 
fluctuations at different time points, possibly because of factors such as tidal action and 
weather changes. Regarding the seasonal trend of water body changes, the water body 
area in the study area tends to increase after spring and peaks in summer before declining. 
Such changes are related to the monsoon season in the middle and lower reaches of the 
Yangtze River in China, which usually occurs in the summer and is a special climatic phe-
nomenon under the influence of the monsoon. In monsoon season, it is mainly character-
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The PIE software was utilized to quantitatively count the number of water body pixels
in each image segmentation map and calculate the corresponding water body area. This
analysis allows for a quantitative assessment of the changing trend of water bodies in
Chongming Island and its surrounding areas. Figure 7 shows the results of this analysis,
including the change situation and trend of water bodies.
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Figure 7. Changing trend of water body area in the study area from 2013 to 2022.

In Figure 7, the water body area values range from a maximum of 5458.2741 km2 to a
minimum of 4646.8224 km2. The values do not exhibit a linear decrease and show small
fluctuations at different time points, possibly because of factors such as tidal action and
weather changes. Regarding the seasonal trend of water body changes, the water body area
in the study area tends to increase after spring and peaks in summer before declining. Such
changes are related to the monsoon season in the middle and lower reaches of the Yangtze
River in China, which usually occurs in the summer and is a special climatic phenomenon
under the influence of the monsoon. In monsoon season, it is mainly characterized by
continuous cloudy rains, high humidity, and high precipitation. Chongming Island belongs
to the lower reaches of the Yangtze River; therefore, the area of the water body rises during
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the summer season. From the annual trend of water body changes shown in Figure 7,
the water body area showed a continuous decline from 2013 to 2018 and experienced a
slight increase in 2019, followed by another decline. However, the data overall indicate a
decreasing trend in the water body area of the study area from 2013 to 2022. Throughout
the 10 years, there was a decrease of approximately 267.8 km2, corresponding to an average
annual decline of nearly 27 km2.

5.2. Analysis of Change Regions

This study compares and analyses the segmentation results of water bodies in Chong-
ming Island and its surrounding areas between 2013 and 2022, aiming to understand the
specific regional changes. Figure 8 illustrates the areas where water bodies have trans-
formed, with the red areas indicating the conversion from water bodies to land. Due to the
minimal conversion from land to water bodies, this is not indicated in Figure 8.
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Between 2013 and 2022, notable changes occurred in the study area, primarily concen-
trated within four major regions demarcated by yellow rectangular boxes in the figure. Area
1 exhibited more artificial coasts, whereas area 2 mainly comprised sand islands formed
as a result of sediment impact. Area 3 predominantly consisted of silt-forming land, and
area 4 primarily encompassed artificial polders with some sediment siltation. Additionally,
the presence of small artificial shores along both coastlines played a pivotal role in the
reduction of water bodies and the subsequent expansion of land in the study area.

Based on Figure 8, the changes are concentrated in specific areas, such as the estuary
center, riverbanks, and islands within the water. Notably, the transformation of small
islands in the lower right corner of Figure 8d stands out prominently.

Combining the satellite raw remote sensing images in 2013 and 2022 from Figure 8b,c
and analyzing the changing area in Figure 8d, the changing area in the estuary center is
mainly the small islands formed by the impact of sediment carried by the Yangtze River
mouth. The two banks of the river channel are mainly caused by human construction of
artificial shore and other shore-building activities. The change of the island area in the
lower right corner of Figure 8d is also evidently caused by the continuous accumulation of
silt at the shore.

5.3. Comparison with JRC Yearly Water Classification History

In this section, our surface water results were compared with the European Commis-
sion’s Joint Research Centre (JRC) Yearly Water Classification History (v1.4) [40]. The JRC
Global Surface Water (GSW) is a global database for remote sensing monitoring of water
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bodies established by the European Commission’s JRC. This dataset utilizes remote sensing
technology to provide high-resolution information on the distribution and changes of water
bodies worldwide from 1984 to 2021. It encompasses accurate identification of water bodies
such as rivers, lakes, and reservoirs. It offers crucial data support for fields including water
resource management, environmental protection, and climate research. The JRC water
body dataset has a long time series and global coverage, which allows us to compare and
validate the research results in different regions and at different time scales. The spatial
and temporal consistency can be assessed by comparing the results of this research with
those of the JRC water body datasets.

The JRC Yearly Water Classification History (v1.4) dataset covers the temporal dis-
tribution from 1984 to 2021. We acquired the JRC yearly water dataset for the study area
spanning from 2013 to 2021 on the Google Earth Engine platform. The changing trend of
the water bodies in this research and the JRC dataset both depict a similar decreasing trend
from 2013 to 2021 in the study area, as shown in Figure 9. The expert system approach used
in the JRC water body dataset relies on traditional rules and manually designed features for
water body identification. This approach can provide reliable results to a certain extent but
requires significant time and resources to update knowledge and experience. In contrast,
the ISUNet model achieves water body identification by automatically learning features
and patterns. This data-driven approach is not only better able to adapt to different scenar-
ios and environmental changes but also able to continuously optimize the performance of
the model as it receives new data. The deep learning approaches offer a higher degree of
automation with guaranteed recognition accuracy.
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6. Discussion

With the continuous expansion of the economy, there is a growing emphasis on the
preservation of the ecological environment and the construction of ecological civilization
to achieve sustainable development [41]. The pursuit of harmonious coexistence between
humans and nature has become a top priority. In alignment with this vision, the nation
has established the goal of becoming a prominent maritime nation [42]. Consequently, the
detection, monitoring, and analysis of changes in coastal water bodies hold significant
practical importance. As a crucial maritime area in China, Chongming Island and its
surrounding areas are of immense significance in extracting, monitoring, and analyzing the
dynamic changes in the coastal water bodies within this area [43].

Traditional methods for water extent extraction, such as threshold segmentation
and image classification [44], often lack spatial information and fail to capture detailed
features. Hence, we propose an enhancement to the traditional UNet model by increasing
the number of connected low-dimensional feature mappings in the skip-connection [36]
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part to address this limitation. This modified architecture, called ISUNet, effectively
utilizes spatial and texture information, improving the accuracy and completeness of water
body segmentation. ISUNet achieves more precise and detailed water extraction results
compared with conventional methods by incorporating multi-dimensional edge features.

6.1. Analysis of Recognition Results

Landsat 8 satellite images captured on 29 August 2013 were utilized to evaluate the
models’ migration and generalization ability and their suitability for extracting water
bodies in Chongming Island and its surrounding areas. These images were not included
in the training and test sets. A comparative analysis was conducted using several models,
including SegNet, FCN8, UNet, and ISUNet. Tables 5 and 6 show the resulting images and
evaluation generated by each model.

Table 5. Comparison of water edge identification results of different methods for the three types of
typical coasts in each model study area.

Artificial Shore Sandy Shore Silty Shore Training Runtime

Original image
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Table 6. Results of evaluation indexes of each model based on the 2013 imagery. 

 Accuracy Precision Recall F1 Score 
FCN8 0.9436 0.9286 0.9923 0.9519 

SegNet 0.9559 0.9563 0.9832 0.9615 
UNet 0.9678 0.9514 0.9905 0.9710 

ISUNet 0.9688 0.9523 0.9932 0.9723 

The ISUNet model demonstrates superior performance compared with FCN8, Se-
gNet, UNet, and other models in the extraction of artificial shores, effectively capturing 
the intricate features of artificial shores and water bodies. However, its heightened sensi-
tivity may result in the incorrect classification of areas with subtle variations in light and 
dark as water bodies. SegNet exhibits better accuracy in identifying sandy shores and suc-
cessfully detects small islands formed by sediment impact compared with the other mod-
els. Conversely, the FCN8 model shows inadequate performance in recognizing silty 
shores, leading to incomplete and fragmented outcomes. Meanwhile, SegNet performs 
slightly better than the others but still lacks continuity and graph integrity. Among them, 
UNet and ISUNet models exhibit relatively better performance, but the UNet model tends 
to classify a larger area as land, whereas ISUNet offers an overall better recognition effect 
than UNet. In summary, ISUNet outperforms FCN8, SegNet, UNet, and other models in  
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extracting coastal water bodies, particularly in recognizing silty coasts with higher 
sediment content and more detailed information about artificial coasts. 

We ran the ISUNet model on a server (Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz) 
with the acceleration of GeForce RTX 2080 Ti GPU. The SegNet model demonstrated the 
fastest training time, completing in 6 h, 23 min, and 38 s, as shown in Table 5. While SegNet 
is the quickest among the four models, the recognition results indicate that it loses some 
crucial details during the water body extraction process. This is evident in the recognition 
result corresponding to “Silty shore”, as shown in Table 5. However, high-precision recog-
nition is crucial for many applications, especially in cases where an accurate measurement 
of water body locations is required [45]. After incorporating skip connections, the ISUNet 
model’s runtime was 10 h, 00 min, and 51 s, which is only 1 h, 53 min, and 43 s longer than 
UNet. It is still of the same order of magnitude as UNet. Furthermore, compared with the 
traditional UNet, ISUNet successfully extracts finer details of smaller water bodies in 
small islands with complex artificial coastlines.  

6.2. Analysis of Reasons for Change 
Based on Figure 7, it is evident that the overall water area in the study region is show-

ing a declining trend. The water body area in the study area showed a continuous decreas-
ing trend between 2013 and 2018 and continued to decrease after a rebound in 2019. As 
the Yangtze River Delta region enters the rainy season in June, the study area receives 
heavy rainfall, and the water level starts to rise; therefore, the water body in the study area 
shows an increasing trend after each spring as shown in Figure 7. In Figure 8, significant 
conversion of water bodies to land are visible in the central estuary, along the banks of the 
river channel, and within the waterborne islands. Due to the silt carried by the Yangtze 
River at its mouth, a small island formed in the center of estuary. The changes in the water 
bodies along the banks of the river channel are caused by human activities such as the 
construction of artificial coasts and other shore-building activities. Additionally, a small 
island also formed due to the continuous accumulation of sediment along the coastline, 
as shown in the bottom right corner of Figure 8d. Hence, it can be concluded that the 
decrease in the water body area in Chongming Island and its surrounding areas from 2013 
to 2022 can be attributed to the combined effects of natural environmental factors and 
human activities [8,43,46,47]. The natural environmental impact is primarily a result of 
the substantial sediment carried by the Yangtze River, leading to sediment deposition and 
accumulation within the river channel. Human activities, including extensive land recla-
mation projects and the construction of harbors, have also played a significant role in this  
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decline. Notably, the study area has a long history of land reclamation, with multiple 
projects implemented since the establishment of the state. 

This study mainly covers two regions: the Chongming Island area in Shanghai and 
southern Jiangsu Province. The Chongming Island area has a long history of reclamation 
and land reclamation and has increased its land area through reclamation in the last dec-
ade. Hengsha Island is one of the major areas in Shanghai where land reclamation has 
been carried out. The southern part of Jiangsu province, which accounts for a quarter of 
the country’s mudflat area, has also increased its land area through artificial and port-
building initiatives. The Nantong municipal government released the “Outline of Nan-
tong Coastal Mudflat Reclamation and Development and Utilization Plan 2010–2020” in 
2010. From the 2010 imagery of the study area, region #1 did not undergo significant land 
expansion at that period, as shown in Figure 8a. The rapid increase in land area in region 
#1 in Figure 8d is mainly because of Nantong’s reclamation plan and the construction of 
a port to build an artificial coast. 

Artificial reclamation and land reclamation have increased the land area and eased 
the contradiction between humans and land. They have also given impetus to economic 
development in the short term. However, from the long-term development perspective, 
large-scale and disorderly artificial land reclamation will also bring ecological and envi-
ronmental problems. Examples include the reduction of wetland areas, the destruction of 
species diversity, the weakening of seawater’s self-cleaning ability to trigger red tide, the 
reduction of the “marine forest” mangroves, and other adverse effects. Therefore, for the 
sake of national ecological civilization and sustainable development, the State Council is-
sued the Notice on Strengthening the Protection of Coastal Wetlands and Strictly Control-
ling Reclamation in 2018, which no longer approves reclamation-related projects except 
for some special purposes and major national strategies. 

6.3. Limitations and Future Prospects 
In comparison to other baseline network models, ISUNet demonstrates superior per-

formance in recognizing coastal water bodies, particularly in environments with rich, de-
tailed information and higher sediment content, such as silty and artificial shores. ISUNet 
effectively extracts spatial detail features from images. Furthermore, the analysis of IS-
UNet’s extraction results on the water bodies of Chongming Island and its surrounding 
areas indicates its successful application in the task of identifying and extracting coastal 
water bodies. 

Although the ISUNet model achieved certain advantages in the qualitative and quan-
titative evaluation of coastal water body extraction, some shortcomings still exist in this 
study, mainly in the following aspects: 
(1) Despite achieving better results than other models, the ISUNet model has certain lim-

itations. The increased number of connected low-dimensional feature maps not only  
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Table 6. Results of evaluation indexes of each model based on the 2013 imagery.

Accuracy Precision Recall F1 Score

FCN8 0.9436 0.9286 0.9923 0.9519
SegNet 0.9559 0.9563 0.9832 0.9615
UNet 0.9678 0.9514 0.9905 0.9710

ISUNet 0.9688 0.9523 0.9932 0.9723

The ISUNet model demonstrates superior performance compared with FCN8, SegNet,
UNet, and other models in the extraction of artificial shores, effectively capturing the intri-
cate features of artificial shores and water bodies. However, its heightened sensitivity may
result in the incorrect classification of areas with subtle variations in light and dark as water
bodies. SegNet exhibits better accuracy in identifying sandy shores and successfully detects
small islands formed by sediment impact compared with the other models. Conversely,
the FCN8 model shows inadequate performance in recognizing silty shores, leading to
incomplete and fragmented outcomes. Meanwhile, SegNet performs slightly better than
the others but still lacks continuity and graph integrity. Among them, UNet and ISUNet
models exhibit relatively better performance, but the UNet model tends to classify a larger
area as land, whereas ISUNet offers an overall better recognition effect than UNet. In
summary, ISUNet outperforms FCN8, SegNet, UNet, and other models in extracting coastal
water bodies, particularly in recognizing silty coasts with higher sediment content and
more detailed information about artificial coasts.

We ran the ISUNet model on a server (Intel(R) Xeon(R) Gold 6240 CPU @ 2.60 GHz)
with the acceleration of GeForce RTX 2080 Ti GPU. The SegNet model demonstrated the
fastest training time, completing in 6 h, 23 min, and 38 s, as shown in Table 5. While
SegNet is the quickest among the four models, the recognition results indicate that it
loses some crucial details during the water body extraction process. This is evident in the
recognition result corresponding to “Silty shore”, as shown in Table 5. However, high-
precision recognition is crucial for many applications, especially in cases where an accurate
measurement of water body locations is required [45]. After incorporating skip connections,
the ISUNet model’s runtime was 10 h, 00 min, and 51 s, which is only 1 h, 53 min, and
43 s longer than UNet. It is still of the same order of magnitude as UNet. Furthermore,
compared with the traditional UNet, ISUNet successfully extracts finer details of smaller
water bodies in small islands with complex artificial coastlines.

6.2. Analysis of Reasons for Change

Based on Figure 7, it is evident that the overall water area in the study region is
showing a declining trend. The water body area in the study area showed a continuous
decreasing trend between 2013 and 2018 and continued to decrease after a rebound in 2019.
As the Yangtze River Delta region enters the rainy season in June, the study area receives
heavy rainfall, and the water level starts to rise; therefore, the water body in the study area
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shows an increasing trend after each spring as shown in Figure 7. In Figure 8, significant
conversion of water bodies to land are visible in the central estuary, along the banks of the
river channel, and within the waterborne islands. Due to the silt carried by the Yangtze
River at its mouth, a small island formed in the center of estuary. The changes in the water
bodies along the banks of the river channel are caused by human activities such as the
construction of artificial coasts and other shore-building activities. Additionally, a small
island also formed due to the continuous accumulation of sediment along the coastline,
as shown in the bottom right corner of Figure 8d. Hence, it can be concluded that the
decrease in the water body area in Chongming Island and its surrounding areas from
2013 to 2022 can be attributed to the combined effects of natural environmental factors
and human activities [8,43,46,47]. The natural environmental impact is primarily a result
of the substantial sediment carried by the Yangtze River, leading to sediment deposition
and accumulation within the river channel. Human activities, including extensive land
reclamation projects and the construction of harbors, have also played a significant role in
this decline. Notably, the study area has a long history of land reclamation, with multiple
projects implemented since the establishment of the state.

This study mainly covers two regions: the Chongming Island area in Shanghai and
southern Jiangsu Province. The Chongming Island area has a long history of reclamation
and land reclamation and has increased its land area through reclamation in the last decade.
Hengsha Island is one of the major areas in Shanghai where land reclamation has been
carried out. The southern part of Jiangsu province, which accounts for a quarter of the
country’s mudflat area, has also increased its land area through artificial and port-building
initiatives. The Nantong municipal government released the “Outline of Nantong Coastal
Mudflat Reclamation and Development and Utilization Plan 2010–2020” in 2010. From the
2010 imagery of the study area, region #1 did not undergo significant land expansion at
that period, as shown in Figure 8a. The rapid increase in land area in region #1 in Figure 8d
is mainly because of Nantong’s reclamation plan and the construction of a port to build an
artificial coast.

Artificial reclamation and land reclamation have increased the land area and eased
the contradiction between humans and land. They have also given impetus to economic
development in the short term. However, from the long-term development perspective,
large-scale and disorderly artificial land reclamation will also bring ecological and envi-
ronmental problems. Examples include the reduction of wetland areas, the destruction
of species diversity, the weakening of seawater’s self-cleaning ability to trigger red tide,
the reduction of the “marine forest” mangroves, and other adverse effects. Therefore, for
the sake of national ecological civilization and sustainable development, the State Council
issued the Notice on Strengthening the Protection of Coastal Wetlands and Strictly Control-
ling Reclamation in 2018, which no longer approves reclamation-related projects except for
some special purposes and major national strategies.

6.3. Limitations and Future Prospects

In comparison to other baseline network models, ISUNet demonstrates superior perfor-
mance in recognizing coastal water bodies, particularly in environments with rich, detailed
information and higher sediment content, such as silty and artificial shores. ISUNet effec-
tively extracts spatial detail features from images. Furthermore, the analysis of ISUNet’s
extraction results on the water bodies of Chongming Island and its surrounding areas
indicates its successful application in the task of identifying and extracting coastal water
bodies.

Although the ISUNet model achieved certain advantages in the qualitative and quan-
titative evaluation of coastal water body extraction, some shortcomings still exist in this
study, mainly in the following aspects:

(1) Despite achieving better results than other models, the ISUNet model has certain
limitations. The increased number of connected low-dimensional feature maps not
only enhances image low-dimensional feature information but also increases compu-
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tational complexity. Consequently, longer training times are required. Future work
should focus on refining the model to achieve a lightweight and efficient architecture;

(2) This study solely applied the ISUNet model to extract water bodies in the coastal area
of the Yangtze estuary. Future research should explore the broad applicability of the
ISUNet method, particularly in extracting coastal water bodies in different regions
of China;

(3) Additionally, this study examines a time scale of only 10 years. Conducting analyses
over longer periods, such as 20, 30, or 40 years, would provide a comprehensive
understanding of sea–land changes in the coastal region of the Yangtze River Estuary.
Such an approach would enable a deep exploration of long-term coastal evolution
processes and mechanisms.

7. Conclusions

In this study, an ISUNet model with a great turbid water extraction effect is proposed
by improving the UNet model. We compared the proposed model with SegNet, FCN8,
and UNet models, conducting a comprehensive evaluation of the ISUNet network’s per-
formance. We also analyzed its effectiveness in extracting water bodies in Chongming
Island and its surrounding areas. The results indicate that the ISUNet network excels
in recognizing coastal water bodies, especially for silty coasts and artificial coasts that
contain more detailed information and higher sediment content. The ISUNet demonstrates
a superior ability in capturing spatial details from images and outperforms the baseline
models in terms of graphical integrity and continuity.

The model was then applied to analyze the spatial and temporal changes in the
water body area from 2013 to 2022 in Chongming Island and its surrounding areas. The
analysis included assessing the changes in the area, identifying specific change areas, and
determining the causes of these changes. The results demonstrate a gradual fluctuation and
decrease in the water body area over the past decade, with a total reduction of 267.8 km2

and an average annual decrease of nearly 27 km2. The study highlights that the diminished
water body area primarily results from silt deposition near the river port, the impact of the
river’s central flow leading to the formation of sandbars, and the artificial construction of
the port coastline. Human activities such as artificial reclamation, port construction, and
sea farming, along with the sediment impact in the Yangtze estuary, are identified as the
main influencing factors for the area changes in the region.

This study highlights the rapid decline in the water body area in Chongming Island
and its surrounding areas, which poses environmental concerns such as reduced wetland
area, ecosystem disruption, and loss of species diversity. Consequently, the government
and relevant authorities must prioritize the development of ecological civilization and
implement effective policies to safeguard the coastal environment. The study recommends
the following measures to effectively mitigate these challenges: establishing ecological
protection zones and implementing stringent regulations for land reclamation projects,
adopting a scientifically planned industrial layout to promote sustainable tourism and
other industries, and constructing water conservancy projects to effectively manage and
mitigate the impact of sediment from the Yangtze River.
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