
ISPRS Int. J. Geo-Inf. 2013, 2, 276-301; doi:10.3390/ijgi2020276 

 

ISPRS International 

Journal of  

Geo-Information 
ISSN 2220-9964 

www.mdpi.com/journal/ijgi/ 

Article 

A Photogrammetric Approach for Assessing Positional 

Accuracy of OpenStreetMap© Roads 

Roberto Canavosio-Zuzelski 
1,
*, Peggy Agouris 

1
 and Peter Doucette 

2
 

1
 Department of Geography and Geoinformation Science, George Mason University, 4400 

University, MS6C3, Fairfax, VA 22030, USA; E-Mail: pagouris@gmu.edu  
2
 Integrity Application Incorporated, 15020 Conference Center, Suite 100, Chantilly, VA 20151, 

USA; E-Mail: pdoucette@integrity-apps.com 

* Author to whom correspondence should be addressed; E-Mail: rczuzelski@hotmail.com; 

rcanavos@gmu.edu; Tel.: +1-703-378-8672 (ext. 3498). 

Received: 16 January 2013; in revised form: 28 February 2013 / Accepted: 18 March 2013 /  

Published: 2 April 2013 

 

Abstract: As open source volunteered geographic information continues to gain 

popularity, the user community and data contributions are expected to grow, e.g., 

CloudMade, Apple, and Ushahidi now provide OpenStreetMap
©

 (OSM) as a base layer for 

some of their mapping applications. This, coupled with the lack of cartographic standards 

and the expectation to one day be able to use this vector data for more geopositionally 

sensitive applications, like GPS navigation, leaves potential users and researchers to 

question the accuracy of the database. This research takes a photogrammetric approach to 

determining the positional accuracy of OSM road features using stereo imagery and a 

vector adjustment model. The method applies rigorous analytical measurement principles 

to compute accurate real world geolocations of OSM road vectors. The proposed approach 

was tested on several urban gridded city streets from the OSM database with the results 

showing that the post adjusted shape points improved positionally by 86%. Furthermore, 

the vector adjustment was able to recover 95% of the actual positional displacement 

present in the database. To demonstrate a practical application, a head-to-head positional 

accuracy assessment between OSM, the USGS National Map (TNM), and United States 

Census Bureau’s Topologically Integrated Geographic Encoding Referencing (TIGER) 

2007 roads was conducted.  
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1. Introduction 

1.1. Motivation and Problem Statement 

OpenStreetMap
©
 (OSM) is an open source geographical mapping project that provides the public 

with a free digital map of the world. It is unique because its users are the main contributors and 

responsible for building and maintaining the map. OSM contributors can edit (update) the map in several 

ways including using Global Positioning System (GPS) waypoints and tracks to identify features in the 

field or measuring satellite imagery to identify roads and other geographical features of interest [1]. 

This type of open contributing by volunteer contributors is known as crowdsourcing and refers to 

many volunteers providing information into the database, where each individual volunteer contributes 

a small portion that pertains to their local knowledgebase. Goodchild [2] has coined the term 

“Volunteered Geographic Information” (VGI) to describe this type of crowdsourcing activity.  

The VGI phenomenon raises some important questions regarding the expertise of its contributors, 

especially when it is applied to mapping features on the earth’s surface. For example, in the United 

States a Land Surveyor is required to hold a bachelor’s degree in Surveying Engineering and receive 

several years of practical experience to be eligible to sit for state exams to become licensed. The 

training covers complex measurement theory such as GPS positioning, photogrammetry, remote 

sensing, least squares statistical analysis, error propagation, and state boundary law [3]. Moreover, 

once a surveyor becomes licensed, most projects they work on require the adherence to strict mapping 

standards and positioning guidelines [4–6]. 

However, OSM contributors are not required to have any formal education or training in the 

mapping profession, nor required to follow any positioning standards to derive the vector data that is 

contained in the database. As OSM continues to gain popularity the user community and data 

contributions are expected to grow, e.g., CloudMade, Apple, and Ushahidi now provide OSM as a base 

layer for some of their mapping applications [7–9]. This, coupled with the lack of cartographic and 

data quality standards and the expectation to one day be able to use this vector data for more 

geopositionally sensitive applications, like GPS navigation, leaves potential users and researchers to 

question the accuracy of the database. 

1.2. Proposed Solution  

To address this issue, a rigorous photogrammetric approach is taken to determine the positional 

accuracy of OSM roads by using aerial stereo imagery, ground control points (GCP’s), and a vector 

adjustment model to determine real world geolocations for OSM shape points. The vector adjustment 

is based on a traditional photogrammetric bundle adjustment model and results in: (1) adjusted 

OSM shape point locations, (2) shape point residuals (which describe the positional accuracy), and 

(3) confidence regions about the adjusted shape point locations, Circular Error and Linear Error at the 

90th percentile (CE90/LE90).  
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The benefit of this approach is that it is based on recreating the sensor geometry present when the 

image was taken and using proven photogrammetric principles to estimate a ground position. The 

proposed approach takes into consideration distortions present in the imaging system and applies 

corrections (interior orientation) to more accurately represent the ideal image position, free of 

systematic error. GCP’s are used for absolute orientation of the imagery and to form an accurate 

image-to-ground relationship via an analytical stereo model. The vector adjustment allows for a 

simultaneous adjustment of all the vector shape points at one time, thereby offering more redundancy 

to the least squares model and improving the overall confidence in the results. The approach is also 

location and vector dataset independent, allowing for different geographic databases in different areas 

of the world to be analyzed with this approach.  

To demonstrate the proof-of-concept the proposed vector adjustment was used to compute the 

positional accuracy of several urban gridded city streets in the OSM database. Additionally, to validate 

the performance, the Root Mean Square Error (RMSE) metric for the adjustment residuals will be 

compared to the RMSE value determined from the differences between the OSM database and the 

corresponding location determined by high-accuracy GPS surveying techniques (ground truth). This 

type of comparison provides a quantitative way to describe the performance of the adjustment and 

demonstrates the positional accuracy computed is consistent with what is actually present in the 

database. Once this positional accuracy information is known it can be carried along as an attribute to 

the vector shape points and polylines at the feature level, thereby providing valuable metadata and 

improving the overall usefulness of the database. 

To demonstrate a practical application of the vector adjustment, a head-to-head accuracy assessment 

between OSM [10], the United States Geological Survey (USGS) National Map (TNM) [11], and the 

United States Census Bureau’s Topologically Integrated Geographic Encoding Referencing (TIGER) 

2007 [12] road vectors was conducted to determine which database is the most positionally accurate 

over the test area. Having an approach to understand the spatial accuracy of geographic data can be 

useful for many applications including route planning, GPS navigation, and “smart conflation” where 

reference/target vectors are chosen based on their positional accuracy. 

2. Background and Previous Work 

A review of the existing literature related to determining the positional accuracy of vector data has 

provided insight into key research performed on this topic. Goodchild and Hunter [13] suggest that the 

positional accuracy of spatial objects can be defined through measures of the differences between the 

apparent location of the feature recorded in the database and the feature’s true location. Different 

metrics describing positional accuracy are presented depending on the geometry of the feature being 

tested, e.g., the accuracy of points are usually expressed as RMSE error estimates, while linear features 

could be compared using the buffer method. Kiiveri [14] suggests the need for objective methods for 

assessing, representing, and transmitting uncertainty in vector data through calculations so decision 

makers have some idea of the reliability of the information. Positional accuracy can be separated into 

two classes, absolute and relative [15], where relative positional accuracy describes the consistency of 

any position on a map with respect to any other and absolute accuracy is a measure of deviation of an 

estimate from the true value [16].  
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Spatial data quality research begins with the acknowledgement that the data stored in a geographic 

database are rarely, if ever, truly free of error and the database contains an approximation of the real 

world [17]. Doucette et al. [18] suggest that uncertainty handling is relevant to any scientific activity 

that involves making measurements of real world phenomena. Studies to describe the positional 

accuracy of geographical vector databases have been conducted where a test dataset is compared with 

a truth dataset of higher positional accuracy [19–23]. While other studies compared a test vector 

dataset with GPS locations [24,25] and positions determined from georeferenced orthoimagery [26]. 

Haklay [21,27] has presented landmark papers on the OSM project and determining the positional 

accuracy of a portion of the database in London, England. Road centerlines from OSM are compared 

to their corresponding location in the UK’s Ordinance Survey (OS) using the buffering method. The 

results show positional accuracies ranging from 3.17 m to 8.33 m with the average difference at 5.8 m.  

One of the most common ways to build vector datasets is by digitizing, tracing, or vectorizing a 

raster aerial image (both satellite and airborne based platforms). Since the resulting vector features will 

take on the coordinate reference frame of the aerial image, it is important to ensure the imagery is 

georeferenced properly. While image-processing methods can routinely provide georeferenced 

products with an accuracy of 2 m (CE90) for satellite based products [28], and 0.30 m (horizontal 

RMSE) for aerial based products [29], it is important to keep in mind that different processing 

techniques yield products with varying degrees of accuracies. This is apparent in Figure 1, which 

depicts a location in a 2007 Google Earth
©
 image [30] as compared to the same location in older 

archived imagery. The results show positional differences ranging from 5 to 24 m. 

Figure 1. Archived Google Earth
©

 imagery of St. Peters Square, Vatican City. (a) 2007 

reference image; (b) 2005 image 5-m different; (c) 2004 image 24-m different; (d) 2002 

image 19-m different. 

 

(a) (b) 

 

(c) (d) 

Geostatistics can be used to make predictions of sampled attributes at unsampled locations from 

sparse, often expensive data [31]. Burrough [31] defines two issues that geostatistical research can help 

address as: (1) interpolation errors and (2) error propagation in spatial models. Ever since spatial 
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database accuracy was identified as a research initiative at the US National Center for Geographic 

Information and Analysis [32] an effort has been made to investigate various aspects of accuracy in 

spatial databases [33–37]. Shi et al. [38] contributes to the topic by presenting an S-Band model for 

describing the characteristics of positional uncertainty of geometric features, such as line segments, 

line features, boundary lines and area features. However, a key assumption is that the measurement 

errors are independent and uncorrelated. To address this, Shi and Liu [39] develop a G-Band model 

that handles correlated measurements. Love et al. [40] extend the G-Band concept with a Bayesian 

model to incorporate expert and historical knowledge that reduces the number of observations needed 

to make an accurate error analysis of vector data.  

Even though work has been done on the subject of determining spatial accuracy of vector datasets, 

the current literature falls short when it comes to analyzing the positional accuracy using analytical 

photogrammetric techniques, such as the bundle adjustment. Photogrammetry has traditionally been 

used to: (1) determine three dimensional real world object space coordinates from stereo imagery;  

(2) propagate the error present in the sensor imaging system to a ground location; (3) derive three 

dimensional terrain surfaces, such as digital elevation models; or (4) extend highly accurate GCP’s to 

adjacent image strips or blocks to facilitate the accurate mapping of the terrain and infrastructure from 

aerial imagery. Therefore, it is conceivable that photogrammetric techniques could be used to address 

the problem of determining the positional accuracy of geographical vector data by developing an 

analytical stereo model based on accurate GCP’s and image coordinates to estimate the true location of 

the vector shape points by enforcing the collinearity equations.  

3. Methodology 

3.1. Vector Adjustment Concept  

The vector adjustment model used to determine the positional accuracy of road vectors is built upon 

the photogrammetric bundle adjustment model and extended to include vector shape points as the 

object points. Since the object points are expressed in three dimensions, the elevations for the shape 

points are estimated using a 1/3 arc second raster Digital Elevation Model (DEM) obtained over the 

area of interest from the USGS National Elevation Dataset (NED) [41]. For this research, road features 

from the OSM database and surveyed GCP’s were used as the object points in the adjustment to 

determine the positional accuracy of the vector shape points. The general idea is to use heavily 

weighted (well-known) GCP’s and image coordinates to establish the sensor’s exposure station and 

enforce the collinearity concept to solve for the true location of the OSM shape points. The adjustment 

residuals then describe the difference between the adjusted (“true”) location and the OSM database 

position. In addition, since this is a rigorous application, where the uncertainties in GCP’s, image 

coordinates, and object points are known, error propagation is used to compute confidence regions 

about the adjusted shape point locations (CE90 and LE90). The overall concept is depicted in Figure 2. 
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Figure 2. Schematic diagram of the vector adjustment concept. 

 

In Figure 2 the SP represents the OSM shape points from the geographical database that make up a 

particular road vector being tested. Image coordinates of the OSM shape points are measured on each 

stereo image and used as input to the adjustment model. The image coordinates are considered to be 

well known (heavily weighted) and will ultimately control the adjusted shape point location in ground 

space. The assumption here is that the imagery is considered to be “truth”, either more updated or of 

higher importance than the OSM database location. In addition, initial approximations for the exterior 

orientation (EO) parameters are provided to facilitate the adjustment process, note the EO parameters 

are solved for in the adjustment so an initial estimate is all that is needed.  

Well-known (heavily weighted) GCP’s are considered the absolute control for the adjustment. 

GCP’s are measured in the imagery and used with their ground space coordinates in the adjustment. 

Since the GCP’s are used to formulate the analytical stereo model and to create the image-to-ground 

relationship, it is important that they be known to a high degree of accuracy. Furthermore, it is 

essential for the GCP’s and OSM shape points to be referenced to the same horizontal/vertical datum 

and map projection to minimize any misalignment that could otherwise be removed. 

The outputs from the vector adjustment are: (1) adjusted OSM shape point locations, (2) shape 

point adjustment residuals (which describe the positional accuracy), and (3) confidence regions about 

the adjusted shape point locations (CE90/LE90).  

The relationship between the stereo images and an OSM shape point is an extension to the space 

resection problem [42,43]; the geometric model can be visualized in Figure 3. 
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Figure 3. Geometric diagram of the vector adjustment concept. 

 

where, L1 and L2 are the exposure station coordinates for stereo image one and two and j1 and j2 are 

measured image coordinates of the OSM shape point, J, on images one and two. For this work, the 

measuring of image coordinates was done manually, i.e., a user measures each shape point in the 

stereo imagery. However, it is anticipated that this process could be automated by incorporating an 

image-to-vector registration process. Once the image and object space coordinates are estimated they 

can be used as initial approximation in the bundle adjustment model. The collinearity condition, which 

states that the exposure station (   
,    

,    
), an object points image derived location (xj, yj), and the 

object point in ground space (XJ, YJ, ZJ) all lie on a single line is used to form the observation 

equations in the bundle adjustment.  

3.2. Photogrammetric Bundle Adjustment  

The basic geometric unit in photogrammetry is the image ray, an image can be thought of as a 

bundle of rays converging at the perspective center with an unknown position and orientation in  

space [42]. The bundles from all photos are adjusted simultaneously so that corresponding light rays 

from the measured image coordinates intersect at positions of the object points on the ground. The 

unknown quantities to be obtained from the bundle adjustment consist of the adjusted object 

coordinates of the vector shape points and GCP’s (XJ, YJ, ZJ) and the EO parameters (ω, ϕ, κ,    
,    

,    
) 

of all the images. The EO parameters describe the exposure station coordinates (   
,    

,    
) and the 

image orientation parameters (ω, ϕ, κ) that are used in the collinearity equations to formulate the 

image-to-ground relationship. 

According to Wolf and Dewitt [43] the bundle block adjustment can be formulated using the 

collinearity equations, which are the foundation of the observation equations and used to form the 

mathematical model. The collinearity equations are documented in Equations (1) and (2) as: 
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where, xj and yj  are the measured image coordinates of J; XJ, YJ and ZJ  are the coordinates of object 

point J,    
,    

 and    
 are coordinates of the image exposure station; xo and yo are the coordinates of 

the principle point known from the camera calibration report; f is the focal length of the camera (also 

known from the camera calibration report); and     
,     

,…,     
 are the rotation matrix terms 

formulated in Equation (4).  

The rotation matrix terms are a result of individual rotations of ω, ϕ, and κ being applied to rotations 

about the x, y, and z-axes, respectively. The individual rotation matrices are structured as follows: 

      
   
            
             

  

       
             

   
            

  

      
            
             

    
  

(3) 

With the total rotation matrix is a result of combining the individual rotations as follows: 

            (4) 

Since the collinearity equations are nonlinear, they are linearized by applying the first-order terms 

of the Taylor’s series at a set of initial approximations, a detailed derivation is provided in [43].  

The equations used to setup and solve the bundle adjustment have been well documented in several 

textbooks [42,43]. However, it is worth reviewing the basic mathematical model and matrices used to 

solve the system of linear equations. The general form is based on the unified least squares model and 

expressed as:  

   
    

      
    

            (5) 

where,      is a matrix of partial derivatives of the observation equations with respect to the exterior 

image orientation parameters (ω, ϕ, κ,    
,    

,    
);   

  is a vector of corrections to the exterior 

orientation parameters;    
  is a matrix of partial derivatives of the observation equations with respect 

to the object point coordinates (XJ, YJ, ZJ);   
  is a vector of corrections to the object point coordinates 

(OSM shape points and GCP’s);  ij is the misclosure vector which is used to minimize the sum of the 

squared residuals; Vij is the vector of residuals for the measured image coordinates. Adjustment 

residuals are important because they describe the difference between the measured and the adjusted 

values, which is a good indicator of how much the adjustment moved the input measurements as a 

result of the adjustment process. 
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The matrices used in the least squares model are structured as follows, for simplification the 

matrices are shown for a single image i and object point j. The    
  and    

  matrices are made up of 

terms resulting from linearizing the collinearity equations in [43].  
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The    
  matrix as:  
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The   
  vector as:  
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The   
  vector as:  

  
     

   

   
   

  (9) 

The     vector is formulated with Taylor Series expansion terms in [43] as:  

       
   
   

  (10) 

And the     vector as:  

       
    

    
  (11) 

The adjusted object points are expressed as a function of the initial measurement and the adjustment 

residual through the following relationship:  

     
      

 

     
      

 

     
      

 

(12) 

where, Xj, Yj and Zj are the unknown coordinates of point j;   
  ,   

   and   
   are the measured 

coordinate value for point j; and    
,    

 and    
 are the coordinate residuals for point j. To be 

consistent with the collinearity equations the object point observation equations will need to be 

evaluated at initial approximations as follows:  

  
        

      
 

  
        

      
 

  
        

      
 

(13) 
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With   
 ,   

  and   
  being the initial approximations for the coordinates of point j and dXj, dYj, dZj 

being the corrections to the approximations for coordinate point j, as solved for in the   
  matrix. Since 

the collinearity equations are nonlinear an iterative approach is used where corrections to the 

parameters are solved for and applied each time through the loop until the difference in the correction 

is very small or essentially unchanged. This condition is referred to as convergence. Simplifying and 

expressing in matrix form yields:  

  
            (14) 

With     being the difference between the current approximation and the initial approximation.  

       

  
     

 

  
     

 

  
     

 

  (15) 

And,     being the residual for the object point j expressed in each component.  

       

   

   

   

  (16) 

Weights for the object point coordinates are also used in the adjustment and based on the accuracy 

of the GCP’s and vector shape points. The weights for Xj, Yj, and Zj object point j are expressed in 

matrix form as  
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where   
  is the a priori reference variance;    

 ,    

 , and    

  are the variances in   
  ,   

  , and   
  , 

respectively; and the off diagonal terms are correlation coefficients. The final types of observations 

used in the bundle adjustment are the EO parameters. Their observation equations take on a form 

similar to the object points and are given as:  

     
      

 

     
      

 

     
      

 

        
    

       
 

        
    

       
 

        
    

       
 

(18) 

And the weight matrix for the EO parameters for a single image i is structured as:  
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The weights for the x and y image coordinates are expressed in the matrix form for an object point j on 

photo i as:  

      
  

    
        

       
    

  

  

 (20) 

where,   
  is the a priori reference variance;     

  and     
  are the variances in, xij and yij, respectively; 

and the covariance        
 =        

 are assumed to be uncorrelated. After the individual matrices for the 

observation equations are formed the full set of normal equations can be structured in matrix form as:  

      (21) 

where the matrices are formatted as:  
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And the Δ matrix being a combination of the corrections to the exterior orientation parameters and 

the corrections to the object point coordinates, with the size being determined by how many images 

and object points are in the adjustment.  

    

 
 
 
 
 
 
 
 
 
 
 
   
   
   
 

   
   
   
   
 
    

 
 
 
 
 
 
 
 
 
 

 (23) 

Similarly, the K matrix is structured as:  
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The submatrices used above are defined as:  
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With m being the number of images, n is the number of object points, i is the image subscript, and j 

is the object point subscript. If a point j does not appear on image i than a zero submatrix is used. 

When the normal equations are being formed it is recommended to compute the a posteriori reference 

variance, which is a unit less scalar quantity that describes the uncertainty found in the observations 

post adjustment. It is a function of the various weight matrices (image coordinate accuracies, EO 

parameter accuracies, and the object point accuracies) propagated into the misclosure of the 

collinearity and object point observation equations. The a posteriori standard error of unit weight can 

be computed as:  

    
     

            
   

    
 
        

   
    

 
   

 
   

 
   

          
 (30) 

where n.o. is the total number of observations and n.u. is the total number of unknowns in the 

adjustment model. Once the solution converges the normal equations are then scaled by the a 

posteriori reference variance to compute the final variance co-variance matrix for the adjustable 

parameters as: 

      
     (31) 
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where the resulting matrix is block diagonal with variances of the exterior orientation parameters and 

the object point coordinates consistent with how the N matrix was formed. The standard deviations of 

the adjustment parameters are the computed by taking the square root of the diagonal variances.  

3.3. Adjustment Weighting  

The concept of weighting in the vector adjustment is very important and directly impacts the 

adjusted values, as well as the estimated uncertainty of the adjusted points. Adjustment weighting 

consists of assigning a numerical value to the adjustment observations and parameters based on how 

well the specific quantity is known. Weights are determined for both: (1) the image points, based on an 

a priori estimate of how well the points can be mensurated in the image, and (2) the object point 

coordinates, which consist of the GCP’s and vector shape point accuracies.  

The general idea is the higher confidence a user has in a measurement the smaller the standard 

deviation will be assigned to that measurement. For example, the GCP’s used in this study were 

established by GPS survey, therefore the accuracies assigned to these coordinates are very small, on 

the order of 10-cm, or less three dimensionally. One can reason that a small standard deviation 

corresponds to a high user confidence in the numerical value of the measurement. On the other hand, 

the vector shape point coordinates were determined with less stringent methods; such as measuring a 

single satellite image or with a hand held GPS receiver. In this case the coordinates are much less well 

known, i.e., a user has less confidence in the accuracy of the point, so a standard deviation on the order 

of a few meters or more could be realistic.  

In most cases the accuracy of the OSM shape points will not be known a priori, therefore the 

following approach can be implemented to estimate them. First, assign an arbitrary large standard 

deviation to the OSM shape points. Second, run an adjustment to determine the shape point residuals 

and compute the RMSE of the shape point residuals to estimate the positional displacement. Thirdly, 

use the RMSE value and residuals to estimate a priori standard deviations for the OSM shape points. 

Lastly, rerun the adjustment to compute accurate adjusted information. 

3.4. Absolute Accuracy  

Accuracy is a term that refers to the closeness between measurements and their true values [44]. 

The closer a measurement is to the true value the better accuracy the measurement has. In reality,  

the true value is not known and can only be estimated by making measurements and analyzing  

those measurements. Therefore, the true value is often referred to as the expected value and can be 

measured by computing the average or mean of a subset of measurements. Additionally, the 

measurements themselves are not perfect quantities and are subject to errors resulting from the people 

making the measurements, the equipment used to make the measurement, and random noise in the 

measurements themselves.  

Product accuracy statistics summarize the dispersion of the individual errors of a large set of 

checkpoints. The military community requires an accuracy statistic that combines biases and random 

errors and then estimates them at the 90% probability level. Vertical accuracy is reported as a linear 

error (LE) because it is an uncertainty along the single vertical accuracy. Horizontal accuracy is a 

function of the two horizontal dimensions in the x and y directions. It can be considered a circular error 



ISPRS Int. J. Geo-Inf. 2013, 2 289 

 

 

(CE), which refers to the radius of the circle, centered about the derived location, within which the true 

or expected location of points lies [45]. Ager derives the CE90 and LE90 in detail in [45], so the reader 

is referred here for more information.  

Root Mean Square Error (RMSE) 

The Root Mean Square Error (RMSE) is defined as the square root of the average squared 

discrepancies in coordinate values [6]. The RMSE is made up of the mean square error (MSE) in the 

various x, y, and z components. The MSE is a value measuring the sum of the squared differences 

between a measured value and it’s truth-value and is defined in [44] as: 

    
       

 
 (32) 

where, x is the measured value, t is the truth-value, and n is the number of measurements. In reality, 

the truth-value is rarely known, so this work seeks to replace truth with the best estimate of  

the measured value. For example, the GPS established ground control points used in the bundle 

adjustment are considered truth, while their values were actually determined by measurement with 

inherent uncertainty. However, the positions are the best estimate of truth and will be used as such. 

Root mean square positional error can then be defined by taking the square root of the MSE in the x  

an y directions.  

                (33) 

The RMSE statistic can then be used to describe the uncertainty present in a set of like measurements.  

4. Experimental Results and Analysis  

The experimental results presented here are meant to test the accuracy of the proposed vector 

adjustment model and how well it recovers the actual positional displacement present in the input 

vectors. Shape points from the OSM database will be used, along with aerial stereo imagery, a USGS 

1/3 arc second DEM, and GCP’s as input to the vector adjustment model. The positional accuracy will 

be measured by comparing shape point coordinate differences of the OSM database and an adjusted 

shape point location to the real world ground surveyed location (ground truth). For example, the 

difference between the OSM database and the surveyed location represents the actual positional 

displacement present in the shape point; similarly, measuring the difference between the adjusted 

shape point and the surveyed location describes the accuracy of the adjustment itself. In addition, 

comparing the adjustment residuals to those determined from ground truth will provide a measure of 

performance to how well the vector adjustment model recovers the true positional displacement. The 

bundle adjustment routine in the SOCET GXP
©

 (version 3.2) photogrammetry and geospatial 

exploitation software by BAE Systems Corporation was used to facilitate the adjustment testing, while 

the RMSE metric was used to quantify the results.  
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4.1. Project Datasets  

The aerial imagery used for this project is aerial frame stereo imagery taken with a Leica (Wild) 

RC10 aerial photography camera (sensor) over the Purdue University campus in West Lafayette, 

Indiana on 5 October 1999. The imagery has been scanned into digital format and has a scale of 

1:4,000 or 1" = 100 m with a 12 cm ground sample distance (GSD). The altitude of the aircraft was 

610 m above the terrain or 798 m above mean seal level and was collected to include 80% forward 

overlap and 60% side overlap. The sensor was calibrated by the USGS and includes a camera 

calibration report, which was used for interior orientation and contains information such as calibrated 

focal length (152.4 mm), lens distortion parameters, and calibrated fiducial marks. No Inertial 

Navigation System (INS) data was collected during the imagery acquisition. 

The DEM is used to estimate initial approximations for the shape point elevations, and consists of a 

1/3 arc second (about 10-m) raster DEM in GeoTiff format [41]. The NED is the primary elevation 

data product of the USGS and is a seamless dataset with the best available raster elevation data of the 

conterminous United States, Alaska, Hawaii, and territorial islands. The NED is derived from diverse 

source data that are processed to a common coordinate system and unit of vertical measure, being 

geographic coordinates in units of decimal degrees, and in conformance with the North American Datum 

of 1983 (NAD 83). All elevation values are in meters and, over the conterminous United States, are 

referenced to the North American Vertical Datum of 1988 (NAVD 88). NED data is available nationally 

(except for Alaska) at resolutions of 1 arc-second (about 30 m) and 1/3 arc-second (about 10 m), and in 

limited areas at 1/9 arc-second (about 3 m) [41]. Care was taken to ensure the appropriate conversion 

between the NAD 83 and WGS 84 datum were applied when working with the dataset.  

The truth dataset was determined by locating the subject test vectors (road centerlines) with high 

order GPS surveying techniques. The field survey campaign was conducted in July of 2012 on the 

campus of Purdue University. The purpose of the survey was to locate the actual real world positions 

of the road centerlines being tested, as well as establish GCP’s to facilitate the testing. The GPS 

equipment used was a Leica Viva RTK system and consisted of a GPS receiver (rover) connected to 

the Indiana Department of Transportation (INDOT) INWL Continuously Operating Reference Station 

(CORS- base station) via a digital data modem. This type of setup allows the user to connect directly to 

a very high accuracy “zero order” control point and receive adjusted survey grade coordinates at the 

rover in real time.  

4.2. OSM Urban City Streets Scenario  

The city streets scenario is meant to test urban roads in the OSM database for positional accuracy 

by measuring the intersections of gridded street vectors. This scenario is located near the center of the 

campus and covers two-square blocks (1 block = ±100 m) along 3rd, 4th, 5th, Russell, Waldron,  

and University streets. The adjusted vectors were derived with the proposed approach and can be 

visualized in Figure 4, where the original OSM database vectors are in green and the adjusted  

vectors in blue.  
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The base imagery has been georeferenced with surveyed ground control points so an accurate 

spatial relationship can be drawn between the vector data and the real world surroundings depicted in 

the imagery. A close up view of two areas is provided in Figures 5 and 6. 

Visual inspection shows the adjusted vectors more closely match the centerline of the road in the 

imagery, as compared to the original OSM database vectors. The adjusted shape points coordinates and 

statistical confidences are shown in Table 1. 

Figure 4. OpenStreetMap
©

 (OSM) (green) and adjusted (blue) road vectors. 

 

Figure 5. Close up area 1. 
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Figure 6. Close up area 2. 

 

Table 1. Adjusted shape point information. 

PT. ID. CE90 (m) LE90 (m) X (m) Y (m) Z (m) 

OSM135 0.12 0.20 507,069.35 4,475,181.34 188.66 

OSM136 0.13 0.20 506,961.99 4,475,184.75 188.76 

OSM137 0.13 0.20 506,859.00 4,475,187.43 190.16 

OSM26 0.15 0.20 507,067.46 4,475,405.79 189.65 

OSM27 0.15 0.20 506,959.67 4,475,408.83 189.56 

OSM28 0.16 0.20 506,855.31 4,475,412.24 189.86 

OSM283 0.14 0.20 506,857.23 4,475,301.99 190.06 

OSM391 0.13 0.20 506,960.84 4,475,298.73 189.16 

OSM557 0.14 0.20 507,169.15 4,475,332.21 189.77 

OSM559 0.15 0.20 507,135.45 4,475,403.94 189.87 

OSM570 0.13 0.20 507,067.27 4,475,294.90 189.16 

OSM573 0.15 0.20 506,810.98 4,475,302.72 190.36 

Where, three GCP’s were used to adjust the vector shape points and had a priori standard 

deviations of 2 cm in the x direction, 2 cm in the y direction, and 1 cm in the z direction. The reader is 

referred to [46] for additional information on the minimum number and configuration of GCP’s needed 

to produce reliable adjustment results. The a priori standard deviations for the OSM shape points were 

significantly higher at 2, 3, and 0.20 m in the x, y, and z directions, respectively. The a posteriori 

reference variance for this adjustment was 0.89, signifying the a priori weights going in are consistent 

with the uncertainty found in the observations post adjustment. The adjustment residuals are 

summarized in Table 2.  
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Table 2. Adjustment residuals. 

PT. ID. Vx (m) Vy (m) Vz (m) 

OSM135 −0.76 −2.61 0.00 

OSM136 −0.17 1.08 0.01 

OSM137 1.55 0.21 0.00 

OSM26 −2.74 −0.20 0.00 

OSM27 −1.96 −1.46 0.00 

OSM28 −1.90 0.18 0.01 

OSM283 −1.55 5.20 0.01 

OSM391 −2.22 2.03 0.00 

OSM557 −6.67 7.26 0.00 

OSM559 0.56 −2.71 0.00 

OSM570 −1.52 −2.42 0.00 

OSM573 −0.65 11.19 0.01 

 RMSE 5.04  

The residuals indicate which way the OSM shape point had to move to become more positionally 

accurate, with the positive value denoting a point moving in the East (Vx) and North directions (Vy). It 

is interesting the vertical residuals are essentially zero, signifying no change from between the initial 

approximation (DEM) and the adjusted shape point elevations. In general, it is conceivable because the 

DEM was generated by photogrammetric methods and tied to the NAVD88 datum. Similarly, the 

GCP’s used as the reference frame for this project were also tied to the NAVD88 datum. In addition, 

the intersections are fairly flat and wide paved areas, thereby increasing the accuracy of the DEM in 

these areas. However, keep in mind the LE90 from Table 1 is 0.20 m for these points. To investigate 

further the results are compared to surveyed ground truth in Table 3. 

Table 3. Truth comparison. 

PT. ID. 
Un-Adjusted Adjusted 

ΔX (m) ΔY (m) ΔZ (m) ΔX (m) ΔY (m) ΔZ (m) 

OSM135 1.26 2.45 0.19 0.51 −0.16 0.19 

OSM136 0.70 −0.74 0.03 0.53 0.34 0.04 

OSM137 −0.46 −0.31 0.01 1.09 −0.10 0.01 

OSM26 3.05 0.14 0.12 0.31 −0.06 0.12 

OSM27 1.90 1.65 0.08 −0.06 0.19 0.08 

OSM28 0.69 0.06 0.05 −1.21 0.24 0.05 

OSM283 1.53 −4.79 0.09 0.02 0.41 0.09 

OSM391 1.94 −1.93 0.07 −0.28 0.10 0.07 

OSM557 6.31 −6.34 0.23 −0.36 0.92 0.22 

OSM559 −1.18 3.07 0.29 −0.61 0.36 0.28 

OSM570 1.03 2.08 0.30 −0.49 −0.33 0.30 

OSM573 0.35 −11.09 0.27 −0.30 0.09 0.28 

 RMSE 4.81  RMSE 0.69  

The Un-adjusted deltas refer to the OSM shape point minus the truth coordinate value, while the 

adjusted information refers to the adjusted shape point coordinate minus the ground truth. This type of 

comparison shows the roads actual positional displacement (un-adjusted) and what is left over after 

adjustment. The results show an 86%·(100 − 0.69/4.81) improvement in positional accuracy (RMSE) 
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post adjustment. Furthermore, the vector adjustment was able to recover 95%·(4.81/5.04) of the actual 

displacement present in the road shape points. The results also show that two of the points (OSM 137 

and 28) actually moved slightly farther away from truth as a result of the adjustment, however one 

should remember the truth values were determined by estimating the center of a wide non-descript 

road intersection with traffic, making it difficult to measure the exact center of the roadways. So, it is 

possible the adjusted positions are closer to truth than the deltas initially suggest, especially when 

considering the CE90 of the two shape points at 13 and 16 cm, respectively.  

The surveyed ground truth was determined in July of 2012, while the imagery was flown earlier in 

1999. The challenge here was accounting for the construction that took place in the 12+ years in 

between. For example, it was evident that the roads associated with OSM shape points 557–573  

have been rebuilt by the newer looking pavement, and it is possible there was a grade change 

associated with the reconstruction project that could account for the larger elevation differences seen in 

these points.  

An additional check to ensure the adjustment produces reliable results was implemented. Several 

GCP’s were included in the adjustment as “check points” only. Check points do not influence the 

outcome of the adjustment, rather their carried along and positioned using the computed  

model-to-ground relationship. The objective is to have known points that can be carried through the 

adjustment process to verify the performance of the vector adjustment. Table 4 contains the differences 

between the check points adjusted coordinates and the truth coordinates measured with GPS. 

Table 4. Check point comparison. 

PT. ID. ΔX (m) ΔY (m) ΔZ (m) 

CKPT1 −0.01 0 0 

CKPT2 −0.12 0.08 −0.12 

CKPT3 0.06 −0.02 0.03 

CKPT4 0.15 −0.27 0.08 

CKPT5 −0.08 0.03 −0.08 

CKPT6 −0.09 0.02 0.06 

 RMSE 0.15  

The results in Table 4 show the RMSE of the check points to be 15 cm, which is consistent with the 

average CE90 of the vector shape points at 14 cm. This is another metric that provides confidence in 

adjusted shape point positions in Table 1. 

4.3. Feature Attributes  

Implementing the proposed approach provides an adjusted road vector that is close to truth, as 

indicated from the scenario analysis above. The truth vector represents a location that is spatially 

accurate, in an absolute sense, in relationship to the actual features on the ground because it was 

derived by high-order geodetic surveying techniques (RTK GPS from a CORS) by a licensed 

professional surveyor. Therefore, since the adjusted position of the road vector is close to the  

truth vector, it can be considered to be “positionally accurate”. Following, having computed this 

valuable information it makes sense to store it at the feature level going forward so a user can easily 
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access and exploit the information to help them make more informed decisions about the data they are 

working with.  

A feature level attribute refers to saving information about an individual geometric feature in a 

geographic database, e.g., recording the shape point adjustment residuals or a polylines RMSE value, 

both of which describes their positional accuracy. Example attributes for a shape point are seen in 

Table 5 with the adjusted information in italics.  

Table 5. Shape point attributes. 

Attribute Value (m) 

Type Shape Point 

ID OSM391 

X 506,963.06 

Y 4,475,296.70 

Vx −2.20 

Vy 2.04 

Adj. X 506,960.86 

Adj. Y 4,475,298.74 

Adj. Z 189.17 

CE90 0.13 

LE90 0.20 

4.4. Head-to-Head Accuracy Assessment of OSM, TNM, and TIGER 07 Roads  

The head-to-head accuracy assessment of OSM, the USGS National Map (TNM), and TIGER 07 

roads is meant to demonstrate a practical application of the proposed vector adjustment model. There 

are many applications that could benefit from knowing the positional accuracy of shape points and 

vectors in a geographical database, e.g., GPS navigation, vector-to-vector conflation problems, 

operational planning, and an improved decision making capability just to name a few. In this example, 

vector road centerlines and shape points were extracted from each database for the same location used 

in the urban city streets scenario above. Care was taken to ensure the datasets were referenced to the 

same horizontal and vertical datum, WGS84 and NAVD88 respectively. Each dataset was adjusted 

independently using the same GCP’s with the same a priori standard deviations (5-cm in x/y and 8-cm in 

elevation) and same image coordinates for the shape points. The a priori standard deviations for the 

ground location of the shape points in each dataset were varied according to an estimate of the positional 

accuracy. Figure 7 depicts the datasets referenced to an accurately georeferenced base image.  

In Figure 7 the OSM vectors are in green, TNM vectors in yellow, and the TIGER 07 vectors in 

blue. From visual inspection, the TIGER 07 lines appear to be shifted more than the OSM or TNM. 

However, keep in mind that a general user may not have base imagery or be comfortable with the 

accuracy of the georeferencing to make this judgment without the vector adjustment. The horizontal 

adjustment residuals for each dataset are summarized in Table 6. 
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Figure 7. OSM (green), USGS National Map (TNM) (yellow) and United States Census 

Bureau’s Topologically Integrated Geographic Encoding Referencing (TIGER) 2007 

(blue) roads. 

 

Table 6. Adjustment residuals for OSM, TNM, and TIGER 07 roads. 

PT. ID. 
OSM TNM TIGER 07 

Vx (m) Vy (m) Vx (m) Vy (m) Vx (m) Vy (m) 

OSM135 −0.75 −2.63 2.34 1.22 −12.74 11.15 

OSM136 −0.17 1.08 0.18 1.39 −18.31 14.71 

OSM137 1.55 0.23 0.98 0.87 −17.78 17.51 

OSM26 −2.70 −0.20 1.34 −0.07 −14.39 2.54 

OSM27 −1.91 −1.45 −0.52 0.15 −20.37 5.68 

OSM28 −1.86 0.20 −1.22 1.22 −22.94 9.24 

OSM283 −1.52 5.22 −0.16 1.57 −19.61 7.21 

OSM391 −2.20 2.04 −0.03 0.77 −19.32 6.61 

OSM559 0.61 −2.72 5.81 1.29 −10.06 2.11 

OSM570 −1.50 −2.42 0.67 0.20 −14.69 2.65 

OSM573 −0.63 11.22 −0.61 6.09 −0.63 11.20 

 RMSE 4.35  2.89  19.17 

A close up view of the center intersection showing the spatial relationship of the road centerlines is 

provided in Figure 8.  
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Figure 8. Close up view showing OSM, TNM, and TIGER 07 roads. 

 

Analyzing the numbers suggests that TNM roads have the best positional accuracy, as indicated by 

the smallest RMSE estimate of 2.89 m, compared to OSM at 4.35 m and TIGER 07 at 19.17 m. This is 

also confirmed by comparing the shape point adjustment residuals, which shows that the TNM points 

moved less than the OSM and TIGER 07 roads. Note the RMSE value for OSM is slightly different 

than in the analysis above because two points were removed so an accurate comparison could be made 

between the three datasets. The TIGER 07 roads have the largest displacement, as suggested by visual 

inspection, with two of the shape points moving over 20 m in the west direction. Overall, the 

TIGER 07 roads appear to have a bias in the East and South directions, as indicated by the negative  

x-residuals and positive y-residuals.  

5. Conclusions and Future Work 

5.1. Conclusions 

The proposed approach and vector adjustment model was developed to assess the positional 

accuracy of geographical vector data, such as road centerlines. The OSM database provides a unique 

dynamic environment to use as the test subject for this research because its underlining purpose of 

providing open source mapping by the people, to the people, suggests the importance of knowing how 

good the data is. For example, OSM contributors are mostly voluntary, non-professionals, who have an 

interest in mapping a local area they are familiar with. In addition, there is no cartographic or data 

quality standards in place to ensure contributors “map” in a similar fashion or adhere to any specific 

equipment requirements (GPS), field collection procedures, image mensuration standards, or map 

accuracy standards.  
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Most of the current methods of determining positional accuracy are based on comparing test vectors 

to a reference/truth dataset that is known to be of higher quality. However, these methods are not 

rigorous in nature (thoroughly modeling and propagating error in the system). To address this issue, the 

vector adjustment model presented here is based on applying rigorous photogrammetric positioning 

principles to vector data to determine the positional accuracy of shape points. Aerial imagery was used to 

build an analytical stereo model, with GCP’s and vector shape points, to enforce the collinearity 

equations with a bundle adjustment. Post adjustment the vector shape points are transformed closer 

toward their “true” real world ground locations and the adjustment residuals describe the positional 

accuracy of the shape point. Furthermore, accuracy estimates (CE90 and LE90) are computed for the 

adjusted shape points, which afford a user confidence in the information coming out of the adjustment.  

The proposed approach was tested on several urban gridded city streets from the OSM database. 

The results show that the post adjusted shape points improved positionally by 86%. Furthermore, the 

vector adjustment was able to recover 95% of the actual positional displacement present in the shape 

points. Once this valuable information is computed for the vector data it can be recorded as an attribute 

at the feature level, thereby improving the overall usefulness of the database and allowing a user to 

make more informed decisions based on the data. To demonstrate a practical application of the vector 

adjustment, it was used to characterize the positional accuracy of OSM, TNM, and TIGER 07 road 

vectors by comparing the RMSE values of the adjustment residuals.  

5.2. Future Work and Recommendations 

An application of this research would be to use the adjusted shape point residuals output from the 

vector adjustment model as input for a “smart conflation” procedure. For example, the scenario might 

include two road networks with varying attributes and geometries that could benefit from being 

integrated into one product. Traditionally, the user specifies one of the datasets to be held as the 

reference to control the geometry (for matched features) that prevails in the conflated product. This 

decision is usually based on the users overall knowledge and experience with the data and is made at the 

database or layer level. However, implementing the proposed vector adjustment model could provide 

positional accuracy information at the feature level, i.e., individual road centerlines. This information 

could then be used in a conflation solution where the matched features are compared and the one with the 

smallest positional displacement prevails as the reference and transferred to the conflated product.  

This research project utilized aerial frame imagery that covered an area of less than 1 km
2
 of area on 

the ground. Although, it was useful for demonstrating this proof-of-concept, it would be beneficial to 

extend this work to satellite imaging technology. For example, commercial satellites such as Quickbird 

are known to capture imagery having 10 km
2
, or more, of ground coverage. This would allow a much 

larger piece of a vector database to be tested. The positioning model for the imagery would be a bit 

different because satellites use scanning systems to acquire lines of imagery over time, which requires 

the use of sensor modeling to determine accurate image and ground coordinates. Nevertheless, the 

sensor model could be obtained from the satellite image provider or approximated using a replacement 

sensor model [47].  

The proposed approach is somewhat manual at this point, requiring an individual to mensurate the 

imagery to identify image coordinates for the shape point locations. However, this process could be 
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automated by performing a vector-to-image registration between the vector road network and the 

corresponding roads in the imagery. Road intersections serve as an ideal candidate to establish 

correspondence between each dataset for two reasons: (1) the linear road vectors usually intersect at a 

node whose coordinate represents the center of the intersection, and (2) intersections usually perform 

well for Automated Feature Extraction (AFE) algorithms, which are needed to identify the intersection 

in the imagery. The vector adjustment could then be automated based on input files for the image 

coordinates, object point coordinates (vector database), GCP’s, initial approximations for the EO 

parameters, their associated positional uncertainties, etc. 

Finally, open source geographic data offers a unique opportunity to exploit the geolocation attributes 

associated with it. Future research should investigate how OSM roads could be used (as pseudo-GCP’s) 

to determine/improve the location of a sensor (position and attitude) that collects imagery. This is 

essentially the reverse of what is being done here and could prove useful for geopositioning applications 

of non-traditional sensing systems, such as Unmanned Aerial Vehicle (UAV) platforms.  
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